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Forschungszentrum Jülich GmbH, Jülich, Germany, 2Department of Psychiatry, Psychotherapy and
Psychosomatics, RWTH Aachen University, Aachen, Germany, 3Jülich Aachen Research Alliance -
Brain (JARA – BRAIN) – Translational Medicine, Aachen, Germany, 4Institute of Neuroscience and
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Recent resilience research has increasingly emphasized the importance of

focusing on investigating the protective factors in mentally healthy

populations, complementing the traditional focus on psychopathology. Social

support has emerged as a crucial element within the complex interplay of

individual and socio-environmental factors that shape resilience. However, the

neural underpinnings of the relationship between social support and resilience,

particularly in healthy subjects, remain largely unexplored. With advances in

neuroimaging techniques, such as ultra-high field MRI at 7T and beyond,

researchers can more effectively investigate the neural mechanisms underlying

these factors. Thus, our study employed ultra-high field rs-fMRI to explore how

social support moderates the relationship between psychological resilience and

functional connectivity in a healthy cohort. We hypothesized that enhanced

social support would amplify resilience-associated connectivity within neural

circuits essential for emotional regulation, cognitive processing, and adaptive

problem-solving, signifying a synergistic interaction where strong social

networks bolster the neural underpinnings of resilience. (n = 30). Through

seed-based functional connectivity analyses and interaction analysis, we aimed

to uncover the neural correlates at the interplay of social support and resilience.

Our findings indicate that perceived social support significantly (p<0.001) alters

functional connectivity in the right and left FP, PCC, and left hippocampus,

affirming the pivotal roles of these regions in the brain’s resilience network.

Moreover, we identified significant moderation effects of social support across

various brain regions, each showing unique connectivity patterns. Specifically,

the right FP demonstrated a significant interaction effect where high social

support levels were linked to increased connectivity with regions involved in

socio-cognitive processing, while low social support showed opposite effects.
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Similar patterns by social support levels were observed in the left FP, with

connectivity changes in clusters associated with emotional regulation and

cognitive functions. The PCC’s connectivity was distinctly influenced by

support levels, elucidating its role in emotional and social cognition.

Interestingly, the connectivity of the left hippocampus was not significantly

impacted by social support levels, indicating a unique pattern within this

region. These insights highlight the importance of high social support levels in

enhancing the neural foundations of resilience and fostering adaptive

neurological responses to environmental challenges.
KEYWORDS

resilience, social support, UHF fMRI, healthy population, cognitive processing, emotion
regulation, mental health, functional connectivity
1 Introduction

Understanding the protective factors that contribute to mental

health resilience is a critical area of research, (1). Recent studies

have shifted the focus towards mentally healthy populations (2, 3),

moving beyond the traditional emphasis on trauma-induced

resilience (4, 5). This shift highlights the necessity of exploring

general protective factors in resilience, applicable across various

contexts, not just specific traumatic experiences (1, 6). This broader

approach allows for a more inclusive understanding of resilience

factors that are relevant to a wider demographic.

Traditionally, resilience has been defined as an individual’s

intrinsic ability to successfully navigate adversity (7). However,

this definition fails to capture the complexity of the construct. it is

not merely an individual trait but a dynamic process that unfolds at

the intersection of multiple factors — genetic, epigenetic,

developmental, and neurobiological — and is further shaped by

broader socio-environmental contexts, including familial, cultural,

and economic dimensions (7–11).

Given the complex interplay of individual and socio-

environmental factors in shaping resilience, the role of social

support has emerged as particularly salient in contemporary

research (9). Numerous studies underscore the beneficial impact

of social support in bolstering resilience (12, 13) and promoting

mental health (13–16). Social support, fundamentally, represents

the network available in times of need, providing emotional,

physical, and financial assistance (www.cancer.gov) (12).

Crucially, the delineation between structural facets (like network

breadth and interaction frequency) and functional elements

(encompassing perceived emotional and tangible support) of

social support is paramount. It is worth noting that relationship

quality, a facet of the functional dimension, often stands out as a key

health predictor (17–19).

Exploring the neural underpinnings of the relationship between

social support and resilience necessitates a nuanced understanding

of findings from both task-based and resting-state fMRI studies.
02
While resting-state fMRI can illuminate baseline brain connectivity

patterns associated with resilience and social support, task-based

fMRI could be instrumental in examining how resilient individuals

handle challenges or stressors, thereby highlighting brain

functionality during adversity. Holz et al. (20) provide a

comprehensive review of the current literature on the neural

mechanisms of resilience, particularly emphasizing the role of

supportive social environments in modulating neural substrates

involved in stress and emotion processing. Eisenberger (21) reviews

task-based fMRI studies, focusing on the neural basis of receiving

and giving social support, revealing activation in safety-related

neural regions and reduced threat responses. Sato et al. (22)

complement this with their resting-state fMRI findings, showing a

link between elevated social support and decreased amygdala

activation, indicating a potential neural pathway through which

social support might mitigate stress responses. Alongside these

neuroimaging insights, the behavioral research by Li et al. (23)

delves into the impact of social support sources and resilience on

mental health across various age groups during the COVID-19

pandemic. Their findings indicate that resilience positively predicts

mental health, with social support serving as a buffer against the

negative effects of low resilience. This pattern is consistent across

age groups, underscoring the vital role of high social support in

enhancing resilience and mental health. Collectively, these studies

from both neuroimaging and behavioral perspectives reinforce the

hypothesis that social support is integral to fostering resilience and

promoting mental health.

Building on the exploration of the neural correlates of social

support and resilience, we examine key neuroimaging studies that

shed light on the mechanisms underlying resilience. Van Der Werff

et al. (24) provide a comprehensive review of neuroimaging

research, revealing how structural, resting-state, and task-related

neuroimaging results capture the brain’s adaptive recovery

following stress. Complementing this, the review by Bolsinger

et al. (25) focuses on the neuroimaging correlates of resilience to

traumatic events, detailing how structural changes and functional
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connectivity alterations occur in individuals with post-traumatic

stress disorder PTSD, and how these changes relate to resilience.

Roeckner et al. (26) and Swartz et al. (27) further add to this

narrative by highlighting the correlations between specific neural

networks and resilience, and the predictive power of amygdala

reactivity for stress vulnerability, respectively. These combined

insights from various neuroimaging studies enrich our

understanding of the neural dynamics of resilience.

The advancements in neuroimaging technology, particularly

resting-state fMRI and ultra-high field (UHF) MRI systems, further

augment our capacity to delve into the neural aspects of resilience

(28–31). Meyer-Lindenberg and Tost (32) have highlighted the

significance of these modern tools in exploring the interplay of

biological and environmental factors on brain function. Resting-

state fMRI, as explored in the ‘Conceptualizing Psychological

Resilience Through Resting-State Functional MRI in a Mentally

Healthy Population’ review, illuminates the spontaneous brain

activity related to resilience, demonstrating its complexity within

mentally healthy populations (1). Furthermore, the introduction of

UHF MRI systems, particularly at 7 Tesla, notably enhances spatial

resolution and signal strength, as shown by van der Zwaag et al. (33)

and Altinok et al. (34). This technological leap enables a more

nuanced understanding of subtle brain activity variations, enriching

our insights into the brain’s functionality in relation to resilience

and social support.

Leveraging recent advancements in neuroimaging and

anchored by the notion that high social support is integral to

fostering resilience, this study employs ultra-high field resting-

state fMRI (UHF rs-fMRI) to investigate the interplay between

social support and resilience in healthy individuals. Our analysis

focuses on key neural regions identified as central to resilience,

including the frontal pole (FP), anterior cingulate cortex (ACC),

posterior cingulate cortex (PCC), hippocampus, and amygdala, as

highlighted in the reviews by Van Der Werff et al. (24) and

Bolsinger et al. (25). Using a seed-to-voxel approach with a

multiple regression model, we are keen to study the moderation

role of high perceived social support on resilience and functional

connectivity. We hypothesize that at higher levels of social support,

the positive effect of resilience on seed-to-whole brain connectivity

is amplified, particularly in brain regions related to emotion

regulation, cognitive processing, and adaptive problem-solving.

This suggests a synergistic interaction where the presence of

strong social support enhances the neural correlates of resilience,

facilitating adaptive responses to environmental demands and

stressors. This study aims to reveal new neural pathways at the

crossroads of social support and resilience, potentially guiding

future resilience enhancement strategies in the general population.
2 Materials and methods

2.1 Participants

A total of 35 healthy volunteers were recruited in Aachen,

Germany, for this study, which was part of a planned project to

identify the neural underpinnings of resilience. All the participants
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were right-handed, native German speakers with no history of

neurological or psychiatric disorders, as defined by the Diagnostic

and Statistical Manual of Mental Disorders (DSM-V). We

employed a rigorous screening procedure to ensure the absence of

subclinical psychiatric diseases and trauma exposure. This was

achieved using the Structured Clinical Interview for DSM-IV

(SCID-I) to identify and exclude any subclinical psychiatric

conditions. Additionally, we employed two short versions of the

Early Trauma Inventory (ETI) - the ETI Trauma List (18 items) and

the ETI Trauma Symptoms (23 items) - to thoroughly screen for

and exclude any history of traumatic events and trauma-related

symptoms in our participants. This comprehensive screening

process was pivotal in establishing a cohort of healthy volunteers

devoid of confounding psychiatric or traumatic histories.

The Edinburgh Handedness Inventory was used to assess the

participants’ right-handedness (35). A total of 30 participants were

included in the final analysis. The mean age of participants (n = 30)

was 29 years, SD 9.06 (range 19–49). The mean age of male

participants (n = 13) was 29.4 years, SD 8.04, and that of female

participants (n = 17) was 28.8 years, SD 10.02. The study was

approved by the Ethics Committee of the Medical Faculty of

RWTH Aachen University, and all participants provided written

informed consent. The research was carried out following the

Helsinki Declaration.
2.2 Psychological questionnaires

2.2.1 Resilience scale
Psychological resilience was assessed using the German version

of the Resilience Scale (RS-25) (36). The RS comprises 25 items

rated on a seven-point Likert scale from 1 (strongly disagree) to 7

(strongly agree). The total RS-25 score ranged from 25 to 175, with

higher scores reflecting greater resilience (37). The adequate

internal consistency and empirical evidence for the reliability and

validity of the German version of the resilience scale have been

previously demonstrated by Wagnild and Young (37). The total

score of the RS-25 should be used in our analysis (36).

2.2.2 Social support scale (F-SozU)
The German version of the Social Support Scale, F-SozU was

used to assess perceived social support. The scale has a total of 14

statements about social contacts, for which individuals indicate

their level of agreement on a five-point Likert scale from 1 -

“strongly disagree” to 5 - “strongly agree” (e.g., “I have friends/

relatives who can also listen well from time to time, who are also

good at listening when I want to talk”). In terms of content, the

statements refer to the areas of emotional support (being liked and

accepted by others; being able to share feelings; experiencing

sympathy), practical support (being able to get practical help with

everyday problems, for example, borrowing something, receiving

practical advice, being relieved of tasks), and social integration

(belonging to a circle of friends; undertaking joint activities;

knowing people with similar interests). The higher scores indicate

better social support. The German version of the F-SozU has been

previously validated and is considered suitable for research (38).
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2.3 Multicollinearity assessment

Demographic data were analyzed using SPSS, version 20 (IBM

SPSS Statistics 20). To evaluate the potential impact of

multicollinearity, the Variance Inflation Factor (VIF) was

examined after regressing both independent variables: resilience

and social support, separately with age and gender as covariates. As

a result of this regression, R-square values of 0.524 and 0.334 were

obtained for resilience and social support, respectively.

Correspondingly, VIF values of 2.10 for resilience and 1.50 for

social support were calculated. Generally, a VIF value less than 4 is

considered moderate collinearity (39). Given the relatively low VIF

scores in our study, the interaction in our regression model should

not be significantly affected by multicollinearity.
2.4 MRI data acquisition

MRI data acquisition was performed at Forschungszentrum

Juelich using a 7T Magnetom Terra scanner (Siemens Healthineers,

Erlangen, Germany) equipped with a 1Tx/32Rx Head Coil 7T

Clinical (Nova Medical, Wilmongton, MA, USA). The structural

and functional data were acquired in a single session.

For structural MRI, anatomical images were obtained with a T1

weighted MP2RAGE sequence within a scan time of 9:15 minutes.

The image matrix was set to 240 × 256, achieving a 0.75 mm3

isotropic resolution in 192 sagittal slices. A short echo time (TE) of

2.27 ms and a long repetition time (TR) of 4500 ms were used. T1

weighting was acquired with an inversion time (TI) of 1000 ms. The

signal-to-noise ratio (SNR) was optimized using a flip angle of 4°.

For functional imaging, resting-state fMRI data were obtained

using echo-planar imaging (EPI) with echo and repetition time, TE/

TR, of 25 ms/2200 ms. A total of 273 fMRI volumes were acquired

within a 10.05 min acquisition time with 36 slices and a slice

thickness of 3.1 mm. The image matrix size was 64 x 64, and the

FOV was 200 x 200 mm2, resulting in a 3.1 mm isotropic resolution.

In our protocol, participants were instructed to keep their eyes

closed. This approach was chosen to reduce visual input, thereby

minimizing potential confounds in neural activity related to visual

processing. To ensure participants remained awake, we conducted

brief verbal checks both before and after the resting-state

measurements. This eyes-closed method aligns with our broader

multimodal research approach, where we often integrate

simultaneous electrophysiological recordings, such as EEG or

evoked potentials. This standardized approach ensures

consistency and comparability across our neuroimaging and

electrophysiological datasets.
2.5 MRI data analysis

2.5.1 Image processing
The rs-fMRI data underwent analysis using the CONN toolbox

(40) (v.22.a) (41) default pipelines, supported by SPM 12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/) (42) and implemented
Frontiers in Psychiatry 04
in MATLAB R2023a. The preprocessing involved several stages

(43). Firstly, Functional data were realigned using the SPM realign

& unwarp procedure (44), where all scans were coregistered to a

reference image (first scan of the first session) using a least squares

approach and a 6-parameter (rigid body) transformation (45), and

resampled using b-spline interpolation to correct for motion and

magnetic susceptibility interactions. Temporal misalignment

between different slices of the functional data (acquired in

interleaved Siemens order) was corrected following the SPM slice-

timing correction (STC) procedure (46, 47), using sinc temporal

interpolation to resample each slice BOLD time-series to a common

mid-acquisition time. Potential outlier scans were identified using

ART as acquisitions with framewise displacement above 0.9 mm or

global BOLD signal changes above five standard deviations (48, 49),

and a reference BOLD image was computed for each subject by

averaging all scans excluding outliers. The functional and

anatomical data were then normalized into the standard MNI

space and compartmentalized into grey matter, white matter, and

CSF using the SPM unified segmentation and normalization

strategy (50, 51). Both functional and anatomical data were

resampled to a default 180x216x180mm bounding box, with 2mm

isotropic voxels for functional data and 1mm for anatomical data,

using 4th-order spline interpolation (49, 52). Last, functional data

were smoothed using spatial convolution with a Gaussian kernel of

8 mm full-width half maximum (FWHM).

Further refinement was done using a standard denoising

pipeline (43). This involved nuisance regression performed by

removing noise components of white matter and cerebrospinal

fluid (5 CompCor noise components), subject-motion parameters,

outlier scans (scrubbing), and the effect of rest (53). Temporal band-

pass filtering was applied with a frequency range of 0.008-0.09 Hz,

and linear detrending was conducted to remove low-frequency

drifts. The bandpass frequency filtering for the BOLD timeseries

(54) was set between 0.008 Hz and 0.09 Hz. The CompCor (55, 56)

noise components present in the white matter and CSF were

deduced by averaging the BOLD signal and factoring in the major

components orthogonal to the average BOLD signal, motion

parameters, and outlier scans per participant’s eroded

segmentation masks. Participants with over 50% of their volume

lost during scrubbing, owing to significant head movement during

the rs-fMRI scan, were subsequently excluded from the later stages

of the analysis.

2.5.2 Seed-to-voxel functional
connectivity analysis

In the first-level analysis, Seed-based connectivity maps (SBC)

were estimated to identify the spatial patterns of functional

connectivity associated with specified seed regions. Eight regions

of interest (ROIs) from the Harvard-Oxford atlas were selected (57).

The basis of selection was the literature proposing these regions as

key elements of resilience (24, 25). These included the right and left

FP, ACC, PCC, right and left hippocampus, and right and left

amygdala. The strength of functional connectivity was represented

using Fisher-transformed bivariate correlation coefficients derived

from a weighted general linear model (weighted-GLM) (43). The
frontiersin.org
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relationship between their BOLD signal time series was modeled for

each seed area and target voxel. To account for potential transient

magnetization effects at each run’s onset, scans were weighted by a

step function, which was then convolved with an SPM canonical

hemodynamic response function and rectified.

For second-level seed-to-voxel analyses (Group-level analyses),

a multivariate General Linear Model (GLM) was used (43). The

specific GLM formulation used was Y = b0 + b1(Resilience) + b2
(Social Support) + b3(Resilience × Social Support) + b4(Gender) +
b5(Age) + ϵ.

To evaluate the potential impact of multicollinearity between

the two independent variables on the model, the Variance Inflation

Factor (VIF) was calculated, as detailed in the multicollinearity

assessment section.

Although the model includes the main effects of resilience and

social support, our primary focus was on the interaction term b3
(Resilience × Social Support). This focus reflects the main goal of

our study, which is to determine whether social support moderates

the relationship between resilience and functional connectivity

(represented by Y) within our seed regions. A separate GLM was

estimated for each voxel, incorporating first-level connectivity

measures at these voxels as dependent variables and groups or

other subject-level identifiers as independent variables. Voxel-level

hypotheses were then examined using multivariate parametric

statistics, factoring in random effects across subjects and sample

covariance across multiple measurements. Inferences were made at

the level of individual clusters, which comprise groups of

contiguous voxels. These cluster-level inferences utilized

parametric statistics grounded in Gaussian Random Field theory

(43, 58). The results were thresholded using a dual criterion: a

cluster-forming voxel-level p-value of < 0.001 and a familywise

corrected p-FDR < 0.05 at the cluster size level (59). To this end, we

employed a contrast vector, C = [0,0,0,1,0,0], to examine the

interaction term while accounting for other covariates specifically.

A significant result for this contrast would indicate that the effect of

resilience on functional connectivity is moderated by social support.

In our analysis, resilience and social support scores were

standardized to z-scores, a method involving subtraction of the

mean and division by the standard deviation for each variable. This

standardization is crucial in regression analysis to minimize

multicollinearity, especially when incorporating interaction terms,

as highlighted by (60) in their work on multiple regression.

Additionally, as recommended by (61), centering variables

facilitates a clearer interpretation of interaction effects by setting

the predictors to have a mean of zero.

2.5.3 Resilience and social support
interaction analysis

To enhance our understanding of how resilience interacts with

social support to influence functional connectivity, we conducted an

interaction analysis, utilizing MATLAB R2023a to ensure

methodological consistency, particularly since our analyses were

based on the CONN toolbox (40), a MATLAB-based framework.

Participants were divided into ‘low’ and ‘high’ social support

categories using a median split of the social support scores, a
Frontiers in Psychiatry 05
method chosen to address the skewed distribution of our dataset

and to facilitate a clear dichotomous examination of the impact of

social support levels on neural connections.

We generated interaction plots to graphically represent the

influence of resilience on functional connectivity for the two

distinct social support groups. This involved extracting functional

connectivity values from significant clusters where the interaction

between resilience and social support was significant, as determined

by our regression analyses within the CONN toolbox.

The choice of a median split, allowed for straightforward group

comparisons while ensuring sufficient sample sizes for each

subgroup. This approach simplified the social support spectrum

into two categories, enabling a focused analysis to elucidate specific

interaction effects that define the relationship between social

support, resilience, and brain functional connectivity. The

interaction plots, created in MATLAB, serve as a visual testament

to these effects, providing clear insights into the differential impacts

observed across the grouped data.
3 Results

3.1 Sample characteristics

Out of 35 participants initially enrolled, five were excluded from

the study: three due to excessive head movement, resulting in more

than 50% volume removal during data scrubbing, and two owing to

their left-handedness. This led to a final sample of 30 participants.

The overall mean age was 29 years (SD = 9.06), with an age span

from 19 to 49 years. Male participants (n = 13) had a mean age of

29.4 years (SD = 8.04), while females (n = 17) averaged 28.8 years

(SD = 10.02).
3.2 Behavioral data

Utilizing the RS-25 scale, participants demonstrated a moderate

level of resilience, evidenced by an average score of 145.43 (SD =

14.07) and an observed range between 120 and 171. Furthermore,

participants reported high levels of perceived social support as

measured by the F-SozU scale, posting an average score of 64.08

(SD = 6.92) and scores spanning from 48 to 70. Notably, a

significant positive correlation was observed between the two

scales, yielding a correlation coefficient of 0.514 and accounting

for 26.51% of shared variance (R2 = 0.2651, p = 0.003; see Figure 1).
3.3 Seed-based functional connectivity

In the seed-based functional connectivity analyses, significant

alterations in connectivity influenced by the interaction between

resilience and perceived social support were observed within four of

our selected seed regions. This pattern underscores the specific

moderating role of social support on the neural correlates of

resilience (Table 1).
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The right FP displayed increased connectivity with a cluster

incorporating the left lateral occipital cortex and left angular gyrus.

This significant change was denoted by a size of 354 voxels, a t-value

of 4.84, and a p-FDR of 0.000063 (Figure 2).

Conversely, the left FP revealed both decreased and increased

connectivity patterns with different clusters: a decrease was noted

with a cluster encompassing the left planum temporale and parietal

operculum cortex, shown by 123 voxels, a t-value of -4.75, and a p-

FDR of 0.000167 (Figure 3). Enhanced connectivity was observed

with the right superior frontal gyrus and right FP (size: 141 voxels,

t-value: 5.16, p-FDR: 0.000055), the left lateral occipital cortex (size:

124 voxels, t-value: 5.89, p-FDR: 0.000018), and the right lateral

occipital cortex and right angular gyrus (size: 109 voxels, t-value:

4.40, p-FDR: 0.000190).

The PCC showed an increase in functional connectivity with a

cluster encompassing the left cerebellum Crus 2 and Crus 1,

denoted by a cluster size of 432 voxels, a t-value of 6.88, and a p-

FDR of < 0.000001 (Figure 4).

Lastly, the left hippocampus showed an increase in connectivity

with a cluster including the left paracingulate gyrus, presented with

a size of 108 voxels, a t-value of 5.54, and a p-FDR of

0.000011 (Figure 5).
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3.4 Interaction effects of resilience and
social support on functional connectivity

In our interaction analysis, we identified significant moderation

effects of social support on the relationship between resilience and

functional connectivity across various brain regions, each showing

unique connectivity patterns.

In the right FP, the interaction plot illustrated in Figure 6

revealed that individuals with high perceived social support

exhibited a positive association between resilience and functional

connectivity within a cluster that includes the left lateral occipital

cortex and left angular gyrus (b = 0.157, SE = 0.063, t = 2.498, p =

0.025). In contrast, those with low social support demonstrated a

significant negative association in the same region (b = -0.189, SE =

0.069, t = -2.765, p = 0.018), indicating that the level of social

support significantly modulates the relationship between resilience

and functional connectivity in the right FP.

In the interaction analysis of the left FP, we observed distinct

modulation patterns of functional connectivity influenced by social

support levels. The connectivity between the left FP and the left

planum temporale and parietal operculum cortex exhibited a

significant reduction in the low social support group (b = -0.261,

SE = 0.074, t = -3.527, p = 0.003). Conversely, for the high social

support group, a non-significant positive trend was noted in this

pathway (b = 0.101, SE = 0.083, t = 1.218, p = 0.243), illustrated

in Figure 7A.

Further analysis identified that the functional connectivity

between the left FP and the cluster combining the superior frontal

gyrus right and the FP right demonstrated a significant negative

relationship for individuals with low social support (b = -0.203, SE =

0.057, t = -3.549, p = 0.0046). In contrast, a significant positive

relationship was observed for individuals with high social support

(b = 0.169, SE = 0.038, t = 4.413, p = 0.0005), as shown in Figure 7B.

For the connection involving the left FP and the lateral occipital

cortex, superior division left, a significant negative correlation was
TABLE 1 Seed-based functional connectivity analysis results (resilience x social support).

Region
of interest

Cluster
#

MNI coordinates
(x,y,z)

Cluster
size (mm3)

Brain regions p-
unc

p-
FDR

T-
value

Effect
size

FP-r 1 -44 -64 + 42 2,832 Lateral Occipital Cortex,
superior division Left
Angular Gyrus Left

0.000063 0.000063 4.84 0.24

FP-l 4 -58 -32 + 14

+14 + 38 + 44

-40 -72 + 46

+40 -60 + 44

984

1,128

992

872

Planum Temporale Left
Parietal Operculum Cortex Left
Superior Frontal Gyrus Right

Frontal Pole Right
Lateral Occipital Cortex,
superior division Left

Lateral Occipital Cortex,
superior division Riht
Angular Gyrus Right

0.000125

0.000028

0.000004

0.000190

0.000167

0.000055

0.000018

0.000190

-4.75

5.16

5.89

4.40

-0.23

0.22

0.19

0.18

PCC 1 -36 -74 -36 3,456 Cerebellum Crus2 Left
Cerebellum Crus1 Left

0.000000 0.000000 6.88 0.16

Hippocampus-l 1 -08 + 44 + 22 864 Paracingulate Gyrus Left 0.000011 0.000011 5.54 0.14
fron
MNI coordinates (x, y, z) represent peaks within a cluster. Cluster size corresponds to the spatial extent (i.e., volume (mm3)). Multiple comparisons were corrected using family-wise error
correction at the cluster level.
In Table 1, the blue color represents decreased functional connectivity, while the red color represents increased functional connectivity.
FIGURE 1

Correlation between resilience and social support scales.
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reported for the low social support group (b = -0.180, SE = 0.053, t =

-3.423, p = 0.0057), which is detailed in Figure BB. The high social

support group’s connectivity in this region did not exhibit a

significant change, as demonstrated in Figure 7C.

Additionally, the connectivity between the left FP and the region

that includes the lateral occipital cortex, superior division right, and the

angular gyrus right showed a significant negative correlation in the low

social support group (b = -0.189, SE = 0.054, t = -3.495, p = 0.0050). A

non-significant positive trend for the high social support group ((b =

0.091, SE = 0.047, t = 1.940, p = 00714) in this connectivity was

illustrated in Figure 7D, underscoring the complex influence of social

support levels on these neural interactions.

For the PCC, Increased connectivity with a cluster that includes

the left cerebellum Crus 1 and Crus 2 was depicted in Figure 8, with

a notable negative interaction effect for low social support (b =
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-0.140, SE = 0.039, t = -3.596, p = 0.0042) and a positive but weaker

association for high social support (b = 0.065, SE = 0.030, t = 2.140,

p = 0.049).

Finally, the interaction plot for the left hippocampus, shown in

Figure 9, indicated increased connectivity with the left paracingulate

gyrus. However, this did not significantly vary with social support

levels, showing non-significant trends for both low (b = 0.054, SE =

0.031, t = 1.683, p = 0.120) and high social support groups (b =

0.023, SE = 0.043, t = 0.546, p = 0.593).
4 Discussion

Numerous studies have underscored the beneficial impact of

high social support on psychological resilience, illustrating its
A

B

D

C

FIGURE 3

Seed-based functional connectivity analysis results in Left FP, controlling for age and gender. Significance is indicated by peak voxel t-statistics on
color bars, with cluster significance set at p-FDR < 0.05 and a voxel-level threshold of p < 0.001. The left FP exhibits increased connectivity with
three clusters: (A) Superior Frontal Gyrus Right and FP Right (141 voxels), (B) Right Lateral Occipital Cortex (superior division) and Right Angular Gyrus
(109 voxels), and (C) Left Lateral Occipital Cortex (superior division) with 124 voxels. While exhibits decreased connectivity with a 123-voxel cluster,
including the Planum Temporale Left and Parietal Operculum Cortex Left (D).
FIGURE 2

Seed-based functional connectivity analysis results in right FP, controlling for age and gender. Significance is indicated by peak voxel t-statistics on
color bars, with cluster significance set at p-FDR < 0.05 and a voxel-level threshold of p < 0.001. The Right FP shows increased connectivity with a
354-voxel cluster, notably the Left Lateral Occipital Cortex (superior division) and Left Angular Gyrus.
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positive effects across various populations. However, the intricate

neural mechanisms that underpin this relationship, particularly in

healthy individuals, remain less explored. Our study aimed to

bridge this knowledge gap by exploring the moderating role of

high perceived social support in shaping the interplay between

resilience and resting-state functional connectivity. Building on the

notion that high perceived social support is integral to fostering

resilience, we hypothesized that high perceived social support

significantly influences the functional connectivity within key

brain regions associated with resilience. As hypothesized, we

explored whether higher levels of social support amplify the

positive effects of resilience on seed-to-whole brain connectivity,

particularly in brain regions related to emotion regulation, cognitive

processing, and adaptive problem-solving. This suggests a

synergistic interaction where the presence of strong social support

enhances the neural correlates of resilience, facilitating adaptive

responses to environmental demands and stressors. To examine this

hypothesis and the underlying neural pathways, we employed the

CONN toolbox for a seed-based analysis, using a multivariate

regression model to focus on eight seed regions: the right and left

FP, ACC, PCC and the right and left hippocampus and amygdala.

These regions have been identified in previous research as integral

to resilience (24, 25).

Our findings revealed critical insights into how perceived social

support modulates functional connectivity within essential brain
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regions. Specifically, social support notably influences connectivity

in the right FP, PCC, and left hippocampus – regions pivotal for

cognitive control, self-reflection, and stress adaptation.

Furthermore, in the left FP, we observed a complex pattern of

increased and decreased connectivity in different clusters,

underscoring the multifaceted influence of social support on

resilience-related neural mechanisms.

The interaction analysis further illuminated these dynamics,

particularly showing that high social support correlates with

positive connectivity between resilience and the right FP,

involving key areas like the left lateral occipital cortex and left

angular gyrus. In contrast, individuals with low social support

showed a significant negative association in this region. For the

PCC, a significant negative interaction effect with low social support

was observed in its connectivity with the left cerebellum Crus 1 and

Crus 2, whereas high social support demonstrated a positive, albeit

weaker, relationship.

In the case of the left hippocampus, the interaction analysis

indicated a relationship with the left paracingulate gyrus, yet this

connectivity did not significantly vary with social support levels,

presenting non-significant trends for both low and high support

groups. These comprehensive findings, integrating results from

both seed-to-voxel and interaction analyses, robustly affirm our

hypothesis, emphasizing the significant moderating role of social

support in the neural foundations of resilience.
FIGURE 5

Seed-based functional connectivity analysis results in Left Hippocampus, controlling for age and gender. Significance is denoted by peak voxel t-
statistics on color bars, with cluster significance set at p-FDR < 0.05 and a voxel-level threshold of p < 0.001. The Left Hippocampus demonstrates
increased connectivity in a 108-voxel cluster, prominently with the Paracingulate Gyrus Left.
FIGURE 4

Seed-based functional connectivity analysis results in the PCC, controlling for age and gender. Significance is indicated by peak voxel t-statistics on
color bars, with cluster significance set at p-FDR < 0.05 and a voxel-level threshold of p < 0.001. The PCC reveals increased connectivity within a
432-voxel cluster, with the Cerebellum Crus2 Left and Cerebellum Crus1 Left.
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Starting with our first seed region, the right FP we observed a

notable increase in connectivity with a cluster encompassing the left

lateral occipital cortex (superior division) and the left angular gyrus.

This enhancement in connectivity underlines the crucial role of

high perceived social support in strengthening neural connections

within the right FP, particularly linking it to regions essential for

visual processing and cognitive functionalities.

Our refined interaction analysis further clarifies the moderation

role of perceived social support in this connectivity. At higher social

support levels, an increase in functional connectivity is evident,

correlating positively with resilience (b = 0.157, p = 0.025),

underscoring the supportive framework’s potential to bolster

adaptive neural processes within the FP. Conversely, under

conditions of lower social support, we detect a decrease in

connectivity, characterized by a significant negative association (b
= -0.189, p = 0.018), thus highlighting the critical role of social

support in modulating the neural dynamics of resilience within

the FP.

The FP, a key part of the prefrontal cortex (PFC), plays a

multifaceted role in cognitive and emotional processes, delineated

into regions such as the lateral frontopolar area and the medial

frontopolar area (62, 63). These areas are pivotal for tasks ranging

from working memory and perception to the processing of

emotional cues and understanding social interactions. The
B

C D

A

FIGURE 7

(A-D) Interaction plots demonstrating the moderation effect of social support on the functional connectivity associated with the left FP. In (A) low social
support correlates with a statistically significant decrease in connectivity to the left planum temporale and parietal operculum cortex (b = -0.261, p = 0.003),
whereas high social support is linked to an insubstantial positive effect (p = 0.243). (B) indicates a significant negative relationship with the superior frontal
gyrus right and FP right in participants with low social support (b = -0.203, p = 0.0046), in contrast to a significant positive relationship in the high support
cohort (b = 0.169, p = 0.0005). (C) demonstrates a substantial reduction in connectivity with the lateral occipital cortex, superior division left for those with
low social support (b = -0.180, p = 0.0057), with no notable change for those with high support. Finally, (D) suggests a significant negative association for
the low social support group with the lateral occipital cortex, superior division right, and angular gyrus right (b = -0.189, p = 0.0050), and an unsubstantial
positive association for the high social support group (p = 0.0714).
FIGURE 6

Interaction plot demonstrating the moderation effect of social
support on the association between resilience and functional
connectivity between the right FP and a cluster including the left
lateral occipital cortex and left angular gyrus. Individuals with high
social support exhibit a positive association between resilience and
functional connectivity (b = 0.157, p = 0.025). Conversely, those
with low social support show a significant negative association
within the same regions (b = -0.189, p = 0.018), underscoring the
influence of social support on neural resilience mechanisms.
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observed modulation of connectivity within the right FP, influenced

by social support, aligns with these recognized functions,

highlighting the FP’s role in orchestrating complex cognitive and

emotional interactions.

Furthermore, the FP’s involvement in emotional cognition

regulation and its significance in decision-making and executive

control underscore its broader functional implications (64–66). The
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interaction analysis illustrates that high social support enhances the

FP’s connectivity, potentially augmenting its capacity for value-

driven decisions and goal-oriented behaviors (67, 68), particularly

in socio-emotionally rich contexts.

Consistent with existing neuroimaging research, our findings

confirm the FP’s connectivity with posterior visual areas and its

collaboration with the lateral occipital cortex and angular gyrus,

essential for visual and cognitive integration (69–72). This

connectivity is crucial for the top-down regulation of emotions,

engaging with other significant brain areas like the dorsolateral

prefrontal cortex, ACC, and anterior insula (73, 74), and is reflective

of the FP ’s role in processing diverse emotional and

cognitive information.

By demonstrating the FP’s enhanced connectivity under

conditions of high social support, our findings contribute to the

understanding of how social environments influence the neural

correlates of resilience, offering insights into the brain’s adaptive

mechanisms. This perspective is particularly relevant when

considering the differential roles of the right and left prefrontal

cortices in emotional processing (75–77) and the potential

implications for stress-related adaptations and resilience, as

suggested by research connecting frontal activity with PTSD

outcomes (78).

Addressing the left FP, our observations resonate with the

findings on the right FP, reinforcing the idea that resilience and

social support synergistically enhance the brain’s capacity to

integrate visual cues with social contexts. The left FP displayed a

nuanced pattern of connectivity changes influenced by social

support levels, as revealed in our interaction analysis.

Notably, the left FP demonstrated a decreased coupling with a

cluster involving the operculum (PO) and planum temporale (PT)

for individuals with lower social support levels (b = -0.261, p =

0.003). These regions are crucial for auditory processing and social

cue integration, with the PT’s role in auditory speech processing

being well-documented (79–84) and the PO’s involvement in

sensory integration and processing (85, 86). Conversely, a non-

significant positive trend in this connectivity was observed for the

high social support group (b = 0.101, p = 0.243), suggesting a

potential buffering effect of social support on auditory and social

processing networks. Given the PT’s critical role in auditory

processing and the PO’s involvement in sensory integration (79,

81), the observed reduction in connectivity may reflect a more

focused cognitive state in individuals with lower social support,

enabling better filtering of irrelevant sensory information, a

function that is particularly vital considering the links between

executive inhibition deficits and disorders like ADHD and PTSD

(87, 88).

Transitioning to clusters exhibiting increased connectivity in

relation to social support levels, we observe distinct patterns that

further elucidate the left FP’s role in the neural network. The left

FP’s increased connectivity with the right superior frontal gyrus

(SFG) in individuals with high social support (b = 0.169, p = 0.0005)

aligns with the SFG’s established functions in executive control and

emotional regulation (89, 90). This enhancement potentially reflects

the SFG’s and FP’s collaborative roles in higher cognitive processes

and decision-making, underpinned by a supportive social milieu.
FIGURE 9

Interaction plot illustrating the moderation effect of social support
levels on the relationship between resilience and functional
connectivity in the left hippocampus, specifically with the left
paracingulate gyrus. Trends indicate a slight, non-significant positive
association for both low (b = 0.054, p = 0.120) and high social
support groups (b = 0.023, p = 0.593), suggesting that the influence
of social support on this connectivity is not pronounced in the
current sample.
FIGURE 8

Interaction plot highlighting the moderation effect of social support
on functional connectivity between the PCC and a cluster
encompassing the left cerebellum Crus 1 and Crus 2. Low social
support is associated with a significant negative effect on
connectivity (b = -0.140, p = 0.0042), while high social support
exhibits a positive, although weaker, association (b = 0.065, p
= 0.049).
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Moreover, the left FP’s interaction with the lateral occipital

cortex’s superior division left shows a significant negative

correlation in the low social support group (b = -0.180, p =

0.0057), emphasizing the modulation of visual processing

networks by social support. Conversely, the high social support

group maintains stable connectivity in this region, highlighting the

protective effects of social support against connectivity reductions

in critical visual processing areas.

Additionally, the enhanced connectivity between the left FP and

regions including the lateral occipital cortex, superior division right,

and angular gyrus right, in contexts of high social support,

showcases the complex interplay between social support levels

and neural connectivity across diverse cognitive and sensory

domains. Specifically, the analysis demonstrated a significant

negative correlation in the low social support group for this

connectivity (b = -0.189, p = 0.0050), emphasizing the

modulatory influence of social support. Conversely, in the high

social support group, there is a non-significant positive trend,

suggesting that high social support may mitigate or even reverse

the negative impact on connectivity observed under lower social

support conditions.

These findings elucidate a multifaceted neural interplay where

social support emerges as a key modulator of connectivity patterns,

underscoring its significance in shaping the brain’s adaptive

mechanisms. The left FP, through its intricate connections

moderated by social support, exemplifies the dynamic interplay

between individual cognitive-emotional capabilities and their

interaction with the social environment, fostering resilience and

adaptive cognitive strategies as supported by the literature (16,

91–94).

The PCC emerged as the third region where functional

connectivity is significantly influenced by social support,

particularly in its connectivity with a cluster encompassing the

left cerebellum (Crus2 Left and Crus1 Left).

Positioned at the core of the Default Mode Network (DMN)

(95), the PCC plays a pivotal role in internal thought processes,

memory recall, future planning, and mind-wandering (96–99),

while also helping to mediate between internal and external

stimuli (100, 101).

Our findings provided a nuanced perspective on how social

support levels distinctly moderate the connectivity between the

PCC and left cerebellar regions, Crus 1 and Crus 2. Figure 8

illustrates a significant negative moderation effect on this

connectivity in participants with low social support (b = -0.140, p

= 0.0042), contrasting with a positive association in those with high

social support (b = 0.065, p = 0.049). This differential influence

highlights the role of social support in moderating the neural

communication between the PCC and cerebellum, expanding our

understanding of their involvement in higher-order cognitive and

emotional functions beyond traditional sensorimotor coordination

(102–104).

Recent research underscores the cerebellum’s contribution to

non-motor functions, including emotional regulation and social

cognition (105–107), aligning with its connectivity to the PCC. This

moderation effect elucidates the cerebellum’s integral role in the

social and emotional dimensions of brain function, as evidenced by
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its connectivity with the PCC being sensitive to the levels of

perceived social support.

In sum, our findings enrich the discourse on the neural

mechanisms underpinning resilience and the perception of social

support, shedding light on the PCC and cerebellum’s coordinated

roles in this context. By demonstrating how social support levels

significantly moderate PCC-cerebellar connectivity, our research

contributes to a more comprehensive understanding of the

cerebellum’s extended roles within the DMN, emphasizing its

relevance in the neural networks that underpin social cognition

and emotional regulation in relation to resilience and social support

(104, 107, 108).

The last seed region scrutinized in our study is the left

hippocampus, which demonstrated a nuanced relationship with

the paracingulate gyrus, influenced by the levels of social support.

Known for its roles in memory consolidation, spatial navigation,

and emotion regulation, the hippocampus is also pivotal in

orchestrating complex cognitive tasks and modulating behavior in

response to novel situations—capabilities central to resilience (109,

110). Additionally, its consistent association with resilience

mechanisms is well documented (111).

Montagrin et al, (112), emphasize the hippocampus’s

involvement in processing social information. Highlighting its

support for social memory and the organization of social space,

crucial for dynamic social interactions and the adaptation of social

knowledge. Correspondingly, the paracingulate gyrus plays a

significant role in decision-making, error monitoring (113), and

social cognition (114), positioning it as a complementary neural

hub in the hippocampal network.

The interaction analysis for the left hippocampus, depicted in

Figure 9, indicated increased connectivity with the left paracingulate

gyrus. However, this increase did not significantly vary with social

support levels, showing non-significant trends for both low (b =

0.054, p = 0.120) and high social support groups (b = 0.023, p =

0.593). This outcome prompts further exploration into potential

underlying factors, such as genetic variances or individual life

experiences, that might modulate this relationship beyond the

detected trends in our study. While our findings did not

demonstrate a significant interaction effect, they suggest a

trajectory for future research. The trend toward increased

connectivity, though not statistically significant in our sample,

may indicate a latent pattern that larger or longitudinal studies

could uncover, offering deeper insights into the individual

differences influencing the connectivity between these essential

brain regions (115, 116). Such investigations could elucidate the

complex interplay between the hippocampus and paracingulate

gyrus, enriching our understanding of how these regions support

cognitive and emotional integration within varied social contexts.

In our exploration, we delved into the sophisticated interplay

between social support and resilience, anchoring our hypothesis

that elevated levels of social support intensify the positive influence

of resilience on brain connectivity, especially within areas critical to

emotion regulation, cognitive processing, and adaptive problem-

solving. The results from our study substantiate this hypothesis,

illustrating that heightened social support modifies functional

connectivity in regions essential for the brain’s adaptive
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mechanisms, as revealed through our pioneering use of ultra-high

field resting-state fMRI.

Utilizing seed-based analysis with UHF resting-state fMRI, we

identified that high social support significantly alters connectivity

patterns in the left and right FP, the PCC, and the left hippocampus.

Notably, the FPs and PCC—areas integral to emotion regulation

and socio-cognitive processing—demonstrated connectivity

changes that corroborate our hypothesis, suggesting that

supportive social environments bolster the neural foundations

of resilience.

While our study did not find the hypothesized interaction effect

in the hippocampus’s connectivity with the paracingulate gyrus, the

significant findings in other regions affirm the synergy between

social support and resilience. This is particularly evident in the

PCC’s interaction with the cerebellum, highlighting its role in

emotional regulation and social cognition, pertinent to our

understanding of resilience (95, 97).

The relevance of these findings extends to the context of mild

traumatic brain injury, TBI and PTSD, where disruptions in

emotional regulation, cognitive processing, and problem-solving

are prevalent. Studies like those by Vasterling et al, (117) underscore

the impact of social support in mitigating cognitive and emotional

challenges associated with trauma, resonating with our results that

advocate for the therapeutic potential of bolstering social networks

to enhance resilience and aid recovery in these conditions.

Moreover, our insights align with digital mental health

interventions, such as the FRIEND and Balsam apps, which

operationalize the concept of social support to alleviate

psychological distress (118, 119). Such tools exemplify how our

findings can be translated into practical applications, offering

personalized support and aligning with the therapeutic strategies

for TBI and PTSD as discussed by Ozbay et al. (12) and reflected in

the broader literature on social support and mental health.

In conclusion, our research affirms the hypothesis that high

social support can amplify the brain’s resilience mechanisms,

offering valuable perspectives on the neural interplay underlying

these effects, captured through the use of UHF resting-state fMRI.

This contribution is particularly salient for individuals with mild

TBI and PTSD, where enhanced social support could play a critical

role in recovery and rehabilitation. Moving forward, the

implications of our findings beckon further inquiry into targeted

interventions that leverage social support to foster resilience,

providing new pathways to support recovery in individuals facing

TBI, PTSD, and related stressors.
4.1 Limitations

In interpreting the findings of this study, several limitations

warrant consideration. Firstly, the relatively small sample size

employed in our research might constrain the external validity of

our results, possibly not reflecting the diversity and nuances of

larger populations. Consequently, replicating this study with a

larger and more diverse sample size becomes a pivotal step in

accentuating and affirming the robustness of our observations.
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