AUTHOR=Endo Hidenori , Ikeda Shigeyuki , Harada Kenichiro , Yamagata Hirotaka , Matsubara Toshio , Matsuo Koji , Kawahara Yoshinobu , Yamashita Okito TITLE=Manifold alteration between major depressive disorder and healthy control subjects using dynamic mode decomposition in resting-state fMRI data JOURNAL=Frontiers in Psychiatry VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2024.1288808 DOI=10.3389/fpsyt.2024.1288808 ISSN=1664-0640 ABSTRACT=Background

The World Health Organization has reported that approximately 300 million individuals suffer from the mood disorder known as MDD. Non-invasive measurement techniques have been utilized to reveal the mechanism of MDD, with rsfMRI being the predominant method. The previous functional connectivity and energy landscape studies have shown the difference in the coactivation patterns between MDD and HCs. However, these studies did not consider oscillatory temporal dynamics.

Methods

In this study, the dynamic mode decomposition, a method to compute a set of coherent spatial patterns associated with the oscillation frequency and temporal decay rate, was employed to investigate the alteration of the occurrence of dynamic modes between MDD and HCs. Specifically, The BOLD signals of each subject were transformed into dynamic modes representing coherent spatial patterns and discrete-time eigenvalues to capture temporal variations using dynamic mode decomposition. All the dynamic modes were disentangled into a two-dimensional manifold using t-SNE. Density estimation and density ratio estimation were applied to the two-dimensional manifolds after the two-dimensional manifold was split based on HCs and MDD.

Results

The dynamic modes that uniquely emerged in the MDD were not observed. Instead, we have found some dynamic modes that have shown increased or reduced occurrence in MDD compared with HCs. The reduced dynamic modes were associated with the visual and saliency networks while the increased dynamic modes were associated with the default mode and sensory-motor networks.

Conclusion

To the best of our knowledge, this study showed initial evidence of the alteration of occurrence of the dynamic modes between MDD and HCs. To deepen understanding of how the alteration of the dynamic modes emerges from the structure, it is vital to investigate the relationship between the dynamic modes, cortical thickness, and surface areas.