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Background: The World Health Organization has reported that approximately

300 million individuals suffer from the mood disorder known as MDD. Non-

invasive measurement techniques have been utilized to reveal the mechanism of

MDD, with rsfMRI being the predominant method. The previous functional

connectivity and energy landscape studies have shown the difference in the

coactivation patterns between MDD and HCs. However, these studies did not

consider oscillatory temporal dynamics.

Methods: In this study, the dynamic mode decomposition, a method to compute

a set of coherent spatial patterns associated with the oscillation frequency and

temporal decay rate, was employed to investigate the alteration of the

occurrence of dynamic modes between MDD and HCs. Specifically, The BOLD

signals of each subject were transformed into dynamic modes representing

coherent spatial patterns and discrete-time eigenvalues to capture temporal

variations using dynamic mode decomposition. All the dynamic modes were

disentangled into a two-dimensional manifold using t-SNE. Density estimation

and density ratio estimation were applied to the two-dimensional manifolds after

the two-dimensional manifold was split based on HCs and MDD.

Results: The dynamic modes that uniquely emerged in the MDD were not

observed. Instead, we have found some dynamic modes that have shown

increased or reduced occurrence in MDD compared with HCs. The reduced

dynamic modes were associated with the visual and saliency networks while the

increased dynamic modes were associated with the default mode and sensory-

motor networks.
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Conclusion: To the best of our knowledge, this study showed initial evidence of

the alteration of occurrence of the dynamic modes between MDD and HCs. To

deepen understanding of how the alteration of the dynamic modes emerges

from the structure, it is vital to investigate the relationship between the dynamic

modes, cortical thickness, and surface areas.
KEYWORDS

resting-state fMRI, dynamic mode decomposition, major depressive disorder, manifold,
density ratio estimation
1 Introduction

The World Health Organization has reported that

approximately 300 million individuals suffer from the mood

disorder known as major depressive disorder (MDD). MDD gives

rise to psychological symptoms, such as despondent moods and

negative cognitions, as well as physical symptoms, such as sleep

disturbances and fatigue in mild cases, and even suicide in severe

cases (1). Neurotransmitter reuptake inhibitors, such as selective

serotonin reuptake inhibitors and transcranial magnetic stimulation

through electrical stimulation, have been employed in the treatment

of MDD (2–4). Although these treatments are effective, there are

patients whose depressive symptoms improve only partially or not

at all (5). Therefore, the mechanisms underlying MDD need to

be elucidated.

Non-invasive measurement techniques have been utilized to

reveal the mechanism of MDD, with resting-state functional

magnetic resonance imaging (rsfMRI) being the predominant

method (6). To evaluate dynamic changes in blood oxygenation

level-dependent (BOLD) signals using rsfMRI, static functional

connectivity (sFC), dynamic functional connectivity (dFC), and

energy landscape (EL) were employed as indices to portray the

dynamics of whole-brain networks. sFC captures the static

relationships of spontaneous fluctuations that represent

correlations over the entire duration (7, 8), whereas dFC captures

time-resolved spontaneous fluctuations in which functional

connectivity (FC) changes over a short time (9–11). Evaluation of

the static and dynamic relationships of spontaneous fluctuations in

the whole-brain network has revealed that MDD exhibits abnormal

connections in FC, such as the default mode network (DMN),

control executive network (CEN), and salience network (SN) when

compared with healthy controls (HCs) (12–16). Analyzing sFC

involves calculating the correlation between two independent

regions for all pairs (17). Even if a pair of regions is not directly

structurally interconnected, their sFC can exhibit a strong

correlation if both regions receive input from a third region (18).

Hence, it is imperative to simultaneously represent the dynamics of

whole-brain networks based on neural activity across multiple

regions. This is where EL emerges, which utilizes a pairwise

maximum entropy model to represent the dynamics of the whole-
02
brain network in terms of the activity within each region and the

interactions between two or more regions (19). Moreover, by

defining the functional network between subjects in terms of

energy, it is possible to evaluate the transition from one stable

state to another through the unstable states. Notably, MDD tends to

sink to specific states, and it is difficult to transition from one stable

state to another compared to HCs (20). Although EL excels in

stability analysis across subjects, some issues require prior

assignment of a functional network to each region and

binarization of BOLD signals. In common with sFC, dFC, and

EL, analyzing components of the BOLD signal above 0.1 Hz is a

challenging problem. Therefore, in terms of interactions across

multiple regions, a methodology is required to evaluate the sinking

into specific states under conditions free from functional network

assignment and binarization.

The dynamic mode decomposition (DMD) is a data-driven and

equation-independent approach for analyzing fluid dynamics (21).

DMD calculates eigenvectors and corresponding eigenvalues of the

approximate linear transformation expressing the time evolution of

multidimensional time-series data. Eigenvectors were called

dynamic modes (DMs) representing coherent spatial patterns and

the corresponding eigenvalues were called discrete-time eigenvalues

representing the frequency and time evolution such as growth and

decay. In other words, multiple coherent DMs coexist at a certain

time in multidimensional time-series data and corresponding

temporal characteristics are identified. EL analysis assigns a

functional network to each region, binarizes the BOLD signal, fits

it with a Boltzmann distribution, determines relationships between

activity patterns and energy, and assigns one state on EL at a certain

time in multidimensional time-series data (22). Here, since the

BOLD signals exhibit wave superposition, it is necessary to analyze

stability under conditions where multiple states coexist at a certain

time. DMD was successful and recent studies have applied DMD to

BOLD signals, a type of fluid that exhibits nonlinear spatiotemporal

changes (23–26). This study applied DMD to the BOLD signals

across all frequency bands of HCs and MDD. Subsequently, the

spatial patterns, frequencies, and temporal changes across all

subjects were analyzed in terms of stability.

Analysis of a large dataset of psychiatric disorders based on

rsfMRI (27) using DMD revealed that the number of DMs associated
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with MDD decreased in visual networks (VN) and SN, while it

increased in DMN and sensory-motor networks (SMN) when

compared to HCs. Interestingly, DMs’ differences between MDD

and HCs were identified not only within the 0.01–0.1 Hz range in

standard rsfMRI analysis but also extending beyond 0.1 Hz. Applying

t-distribution stochastic neighbor embedding (t-SNE) (28) to DMs

enables the disentangling of the intricate curved surfaces spanned by

DMs into a two-dimensional manifold, allowing for the evaluation of

stability across subjects. Subsequently, DMs resembling resting-state

networks (RSNs) were identified by evaluating the probability density

ratio between HCs andMDD using a two-dimensional manifold. The

amplitudes of the DMs resembling the VN and SNwere similar to the

spatial patterns associated with cortical thickness and surface area

abnormalities in MDD (29).
2 Materials and methods

In this study, we applied DMD to BOLD signals and devised a

method for extracting DMs based on the probability density ratio

between HCs and MDD on two-dimensional manifolds using t-

SNE (Figure 1). First, the BOLD signals of each subject were

transformed into DMs representing coherent spatial patterns and

discrete-time eigenvalues to capture temporal variations using

DMD. Second, all the DMs were disentangled into a two-

dimensional manifold using t-SNE. Finally, density estimation

and density ratio estimation were applied to the two-dimensional

manifolds after the two-dimensional manifold was split based on

the HCs and MDD. The results revealed that MDD tended to sink

into specific DMs in contrast to HCs.
2.1 Dataset

We used the Japanese Strategic Research Program for the

Promotion of Brain Science (SRPBS) dataset (27) (https://
Frontiers in Psychiatry 03
bicr.atr.jp/decnefpro/data/), along with additional datasets

obtained from various projects. Supplementary Table 1 describes

the protocols at each site, and Supplementary Table 2 describes the

subject information at each site.

The datasets were collected from the Center of Innovation at

Hiroshima University (COI) and the University of Tokyo (UTO),

Hiroshima Kajikawa Hospital (HKH), Hiroshima Rehabilitation

Center (HRC), Hiroshima University Hospital (HUH), and

Yamaguchi University (UYA). COI and UTO follow the unified

protocol but HKH, HRC, HUH, and UYA follow non-unified

protocols. The total number of HCs and MDD was 543 and 302,

respectively, with Beck Depression Inventory-II (BDI-II) scores of

7.5 ± 6.3 and 28.1 ± 10.5, respectively.
2.2 BOLD signals preprocessing

BOLD signals were preprocessed using fMRIPrep version

1.0.8 (http://fmriprep.readthedocs.io/en/1.0.8/workflows.html)

(30). The first 10 s of the data were discarded to allow for T1

equilibration. The preprocessing steps included slice-timing

correction, realignment, coregistration, distortion correction

using a field map, segmentation of T1-weighted structural

images, normalization to Montreal Neurological Institute space,

and spatial smoothing with an isotropic Gaussian kernel of 6 mm

full width at half maximum. “Fieldmap-less” distortion correction

was performed for the test dataset due to the lack of field

map data.
2.3 Preprocess of ROI time series for DMD

It is necessary to mitigate the effects of the protocols and

physiological noise. BOLD signal extraction was performed using

Glasser’s 360 regions of interest (ROI) (31), which excluded the

cerebellum and contained little white matter.
FIGURE 1

Overview of the analysis procedure. First, each subject’s blood oxygenation level-dependent (BOLD) signals were extracted using Glasser’s 360
regions of interest (ROI). Second, the BOLD signals were decomposed into dynamic modes (DMs) and discrete-time eigenvalues using the one-
stacked time-delay coordinates dynamic mode decomposition (tdcDMD). Third, all DMs were disentangled into the two-dimensional manifold using
t-distributed stochastic neighbor embedding (t-SNE). Fourth, density estimation was performed to visualize the features that major depressive
disorder (MDD) sink into the specific DMs compared to healthy controls (HCs). Finally, density ratio distributions between HCs and MDD were
calculated using relative unconstrained least-squares importance fitting (RuLSIF).
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Nilearn’s NiftiLabelsMasker function (https://nilearn.github.io/

stable/index.html) was used for the BOLD signal extraction.

Detrending was applied to eliminate long-term variations, and

BOLD signals were normalized using z-scores to mitigate the

effects of the protocols. When analyzed using the DMD, the

frequencies were computed for each DM. Therefore, band-pass

filtering was not applied.

Confounding factors must be removed when extracting BOLD

signals. The fit _transform function was applied to remove

confounding factors for the 12 regression parameters (six motion

parameters, average signals over the whole brain, and five

anatomical CompCor components).
2.4 One-stacked time-delay
coordinates DMD

BOLD signals were decomposed into DMs and discrete-time

eigenvalues. Time-delay coordinates DMD (tdcDMD) is a method

used for decomposing standing waves into spatiotemporal patterns

with high accuracy (21); tdcDMD was performed using the dmd.py

function in the DMD toolbox (https://github.com/erichson/

DMDpack). As described in a previous study (26), the BOLD

signals of each subject were converted into DMs. As shown in

Equation 1, the BOLD signal matrix X was composed of rows

representing the number of ROI, Nroi and columns representing the

number of measurements, NT.

X = ½ x1 x2 ⋯ xNT
�, (1)

where xk( ∈ RNroi) represents the BOLD signals at time k. The

following matrices were constructed from the BOLD signal matrix

X as shown in Equations 2, 3.

X1 = ½ x1 x2 ⋯ xNT−1 �, (2)

X2 = ½ x2 x3 ⋯ xNT
�, (3)

where X2 represents the matrix with X1 shifted back one

observation. Subsequently, xk+1 was stacked on xk as shown in

Equations 4, 5.

X1aug =
x1 x2 ⋯ xNT−2

x2 x3 ⋯ xNT−1

" #
, (4)

X2aug =
x2 x3 ⋯ xNT−1

x3 x4 ⋯ xNT

" #
, (5)

X2augwas predicted using X1aug so X2aug ≈ AX1aug .

A = X2augX
†
1aug , (6)

where the dagger represents the generalized inverse. Singular

value decomposition was applied to X1aug .

X1aug = USV*, (7)
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where U ,  S,  and  V represent the left singular, singular value,

and right singular matrices of X1aug , respectively. As shown in

Equation 8, the matrix A is rewritten by substituting Equation 7 into

Equation 6.

A = X2augVS−1U*, (8)

the proper orthogonal decomposition was applied to A.

~A = U*AU = U*X2augVS−1, (9)

then eigen decomposition was applied to ~A.

~AW = WL, (10)

where W and  L represent the eigenvector and eigenvalue

matrices of ~A, respectively. X2augVS−1 was multiplied from

the left in Equation 10 and Equation 9 was substituted into

Equation 10.

AX2augVS−1W = X2augVS−1WL,   (11)

where ~A is the similar matrix of A, so they have the same

eigenvalue matrix L but different eigenvector matrices. In

comparing Equations 10, 11, X2augVS−1W can be regarded as the

eigenvector matrix of A. Finally, the eigen decomposition of A was

reconstructed usingW and L and the dynamic mode matrix F was

calculated as shown in Equation 12.

F = X2augVS−1W , (12)

the i-th column of F, which we denote by fi( ∈ C2Nroi ), is the i-

th eigenvector of A. The i-th diagonal element of L, which we

denote by li( ∈ C), is the i-th eigenvalue of A. The phase and

amplitude of li mean the frequency and decay rate of the

corresponding mode. The frequency fi corresponding to the

dynamic mode fi and the eigenvalue li is described as following

Equation 13.

fi =
imag( ln (li))

2pDt , (13)

where Dt, ln( · ) and imag( · ) represent the temporal resolution

in each protocol, natural logarithm, and the imaginary part of a

complex number.
2.5 Two-dimensional manifold with t-SNE

When analyzed using the DMD, pairs of DMs with identical

amplitudes but antiphases emerged. Moreover, DMs representing

brain states describe intricate curved surfaces in a multidimensional

space. In a previous study (26), the modified K-means clustering

algorithm was applied to DMs and treated DMs with identical

amplitudes and antiphases. However, this approach failed to

disentangle intricate curved surfaces in a multidimensional space.

Hence, this study employed t-SNE (28) to disentangle the intricate

curved surfaces spanned by DMs.
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The initial 360 rows, which are inherently independent of the

720 rows of the DMs, were used to employ a one-stacked tdcDMD.

Subsequently, the DMs were separated into their real and imaginary

components, stacked together, and applied to t-SNE. When t-SNE

was applied to all DMs of both HCs andMDD, the perplexity varied

from 30 to 10,000. A value of 2,000 was visually selected to achieve

maximum separation between peaks within the two-dimensional

man i f o l d wh i l e k e ep i n g r andom_s t a t e fi x ed . The

sklearn.manifold.TSNE function in Python was employed, with all

parameters set to their default values except perplexity

and random_state.
2.6 Kernel density estimation

It is crucial to select the optimal perplexity at which the peaks

within the two-dimensional manifold achieve maximum

separation. Hence, we separated the peaks by performing a kernel

density estimation on a two-dimensional manifold. The formula for

estimating the probability density r at a given point y, estimated

from points xi(i = 1,  2,  …,  n) of DMs on the two-dimensional

manifold is expressed as following Equation 14:

r(y) =o
n

i
K(y − xi; h), (14)

where kernel K is the Gaussian kernel and bandwidth h is set to

the Scotts factor. Scipy.stats.gaussian_kde function in Python was

used (32).
2.7 Kernel density ratio estimation

The probability density was estimated using kernel density

estimation on the two-dimensional manifolds obtained by

applying t-SNE. Consequently, the distinction between HCs and

MDD was revealed as a different balance in the proportion of DMs

rather than the emergence of unknown DMs. Hence, we estimated

the probability density ratio between HCs and MDD using a

relatively unconstrained least-squares importance fitting (RuLSIF)

(33). In terms of estimation accuracy, it is more precise to directly

estimate the density ratio between HCs and MDD than to indirectly

estimate the density ratio by estimating HCs and MDD’s densities

separately and dividing HCs and MDD’s densities. To improve the

estimation accuracy, various methods have been developed to

directly estimate the density ratio without going through the

density estimation process. RuLSIF was chosen for this study

because its Python code is publicly available and its calculation

speed is fast.

The optimal parameters were automatically selected in the

range of coefficient a = 0, the regularization parameter h = 0:10,  

0:09,  …,   0:01, and Gaussian kernel width s = 1:2,   1:0,   0:8.

RuLSIF was performed using the toolbox (https://github.com/

hoxo-m/densratio_py).

To estimate the density ratio of the area where the HCs’ density

was higher than the MDD’s density, the HCs’ manifold was used as

the denominator, and the MDD’s manifold was used as the
Frontiers in Psychiatry 05
numerator. To estimate the density ratio for the area where the

MDD’s density was higher than the HCs’ density, the MDD’s

manifold was used as the denominator, and the HCs’ manifold

was used as the numerator.
2.8 Plotting dynamic modes, histogram of
frequency, and discrete-time eigenvalues
greater than 95% significance level

Kernel density ratio estimation was used to calculate the

probability density ratio between HCs and MDD. However, the

specific regions exhibiting significant differences in terms of density

ratio between HCs and MDD remain unknown. To solve this

problem, permutation tests were performed to clarify areas higher

than the 95% significance level and to plot the mean amplitude and

phase of the DMs, a histogram of frequency, and discrete-time

eigenvalues within the significant areas.

First, we randomized the labels of the HCs and MDD in a two-

dimensional manifold. Second, with fixed parameters (a ,  s ,  h) =
(0,   1:0,   0:01), RuLSIF was performed to calculate the maximum

peak value, repeating this process 100 times. Third, we applied the

density-based spatial clustering of applications with noise

(DBSCAN) (34) to cluster points within areas that exhibited

maximum peak values higher than the 95th percentile. Finally, we

plotted the mean amplitudes and phases of the DMs, frequency

histograms, and discrete-time eigenvalues l associated with each

cluster. For the density ratios pMDD(x)=pHCs(x) and pHCs(x)=pMDD

(x), the DBSCAN parameters were set as (eps,  min   samples) =

(1,   100)   and   (0:15,   300), respectively. Points that were not

assigned to a cluster were excluded.
3 Results

3.1 Applying t-SNE, density estimation, and
density ratio estimation to the DMs

First, the two-dimensional manifold was calculated by applying

t-SNE to all DMs across all subjects and was visualized after

separating the HCs and MDD (Figure 2A: HCs, B: MDD).

Second, the perplexity was varied from 30 to 10,000 and

consequently set to 2,000 to maximally separate the peaks in the

two-dimensional manifold. Finally, kernel density estimation was

performed to clarify the distribution features exhibited by the two-

dimensional manifold (Figure 2C: HCs, D: MDD).

In the HCs, the peaks displayed a relatively uniform distribution

(Figure 2C). Conversely, in the MDD group, the peaks exhibited a

bias toward the upper right, lower left, and central areas

(Figure 2D). In other words, MDD tended to sink more into

specific DMs than HCs. In addition, the edge of the MDD

manifold appeared slightly wider than that of the HCs manifold

at the elliptical periphery. To assess these features, density ratio

estimation was performed by applying RuLSIF to the two-

dimensional manifolds.
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3.2 DM’s features in the clusters

The density ratio was calculated using HCs as the denominator

and MDD as the numerator (Figure 2E). Similarly, the density ratio

was calculated using the MDD as the denominator and HCs as the

numerator (Figure 2F). The colored bars represent the value of the

density ratios. For parameter search, a = 0, the regularization

parameter h varied from 0.10 to 0.01, and the Gaussian kernel

width s took values of 1.2, 1.0, and 0.8. As a result, h = 0:01 and

s = 1:0 were selected. After performing the density ratio

estimation, it was necessary to determine the significant areas.

Therefore, a permutation test was performed with a = 0,  h =

0:01,  and  s = 1:0. The labels of HCs and MDD across all DMs

were shuffled, and density ratio estimation was applied to calculate

the maximum peak value 100 times (Supplementary Figure S1).

Subsequently, areas above the 95th percentile of the maximum peak

value were calculated (Supplementary Figures S2A, B) and clustered

using DBSCAN (Supplementary Figures S2C, D).

Glass brain plots depicting the amplitude and phase of the mean

DMs, histograms of frequency, and discrete-time eigenvalues within

clusters in the MDD/HCs (Figure 3) and HCs/MDD (Figure 4)

cases are presented. Because DMs appear in pairs with modes of

identical amplitude and an anti-phase relationship, DMs at

symmetric locations are paired (Figure 2E 1-2, Figure 2F 4-5,

and 6-7).

In the MDD/HCs case, the glass brain plots of DM1 and DM2

were similar to those of DMN. The discrete-time eigenvalues were

distributed along the unit circle, indicating stability in DM1 and
Frontiers in Psychiatry 06
DM2. The glass brain plots of DM3 were similar to those of the

SMN. The discrete-time eigenvalues were relatively numerous

inside the unit circle, indicating not only stability but also

convergence in DM3. Additionally, because both the DMN and

SMN were concurrently active in DM2, the frequency histogram

was likely to show an intermediate distribution between the

distributions in DM1 and DM3.

In the HCs/MDD case, the glass brain plots of DM4 and DM5

were similar to those of the VN. The discrete-time eigenvalues were

distributed along the unit circle, indicating stability in DM4 and

DM5. The histogram of the frequency showed a peak at

approximately 0.03 Hz. The glass-brain plots of DM6 and DM7

were similar to those of the SN. The discrete-time eigenvalues were

distributed along the unit circle, indicating stability in DM6 and

DM7. The histogram of the frequency showed a peak at

approximately 0.15 Hz. The small number of DMs in DM7 likely

resulted in a negative bias of the phase and scattering of the

frequency histogram.
4 Discussion

We devised a methodology for estimating brain-state stability

across subjects by applying DMD to BOLD signals; t-SNE was

applied to the DMs to disentangle the intricate curved surface

spanned by the DMs into a two-dimensional manifold (Figure 2).

Density ratio estimation was then performed on the two-

dimensional manifolds of HCs and MDD (Figures 2E, F).
A B

D E F

C

FIGURE 2

Two-dimensional manifolds of HCs (A) and MDD (B) with t-SNE, kernel density estimation of HCs (C) and MDD (D), and density ratio distribution
estimated by relative unconstrained least-squares importance fitting (RuLSIF) in the case of MDD/HCs (E) and HCs/MDD (F). The points on the two-
dimensional manifold indicate DMs (A, B). The curved lines on the density estimation indicate contour lines (C, D). The red numbers indicate the
peak number. In the MDD/HCs case, the peaks located at the far left and far right were not assigned numbers due to their lack of significance at the
95% confidence level (E, F). MDD/HCs shows increased DMs in MDD, and HCs/MDD shows reduced DMs in MDD.
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Consequently, it was revealed that MDD did not cause the

emergence of unknown DMs distinct from HCs but sank into

specific DMs, such as DM1, DM2, and DM3.

In machine learning using DMD, there are two important aspects

of comparing HCs and MDD. One is interpretability in terms of

physiology and the other is classification performance for biomarker.

Therefore, individual-level classification between HCs and MDD was

performed to demonstrate usability to the biomarker development

(Supplementary Figure S6). As a result, when evaluated using 10-fold

cross-validation (Supplementary Figure S7), the balanced accuracy
Frontiers in Psychiatry 07
(Bacc) was slightly better than that in the previous study (12) using

sFC (Supplementary Figure S8).
4.1 Dynamic modes and cortical
abnormalities of MDD

The spatial patterns of reduced DMs corresponded to the

patterns observed in the cortical thickness and surface area

abnormalities (29). Specifically, DM6 and DM7 exhibited spatial
FIGURE 3

Mean DMs’ amplitude, phase, histogram of frequency, discrete-time eigenvalue l in each MDD/HCs cluster. The left numbers correspond to the
peak numbers in Figure 2. DM1 resembles the default mode network (DMN), has a low frequency, and is stable. DM2 resembles DMN, has a flat
frequency, and is stable. DM3 resembles a sensory-motor network (SMN), has high frequency, and tends to converge.
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patterns similar to the reductions in cortical thickness observed in

adult MDD, whereas DM4 and DM5 displayed spatial patterns

resembling the reductions in cortical surface area observed in

adolescent MDD. Therefore, the reduction in DM4, DM5, DM6,

and DM7 levels plays a key role in elucidating the mechanisms

of MDD.
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Widespread abnormalities have been discovered in MDD, from

microscopic phenomena such as the genome and molecular

pathways to macroscopic phenomena such as BOLD signals.

Microscopic mutations are environmentally influenced, promote

synaptic degeneration with inflammation, lead to mesoscopic

neuronal firing abnormalities weighted by the neurotransmitter
FIGURE 4

Mean DM’s amplitude, phase, histogram of frequency, discrete-time eigenvalue l in each HCs/MDD cluster. The left numbers correspond to the
peak numbers in Figure 2. DM4 resembles a visual network (VN), has a low frequency, and is stable. DM 5 resembles a VN, has a low frequency, and
is stable. DM6 resembles a salience network (SN), has a high frequency, and is stable. DM 7 resembles an SN, has a high frequency, and is stable.
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map, and result in macroscopic abnormalities, such as BOLD

signals (35–39). Related to mesoscopic phenomena, some

abnormalities are observed in the reuptake of neurotransmitters,

such as serotonin, dopamine, norepinephrine, and GABA (40–42)

resulting in neurotransmitter concentrations in plasma metabolism

(43). Related to macroscopic phenomena, MDD exhibits reduced

cortical thickness and surface area compared with HCs (29). As if to

connect these two different scale phenomena, both the cortical

abnormalities and receptor maps share similar spatial patterns (44,

45). These combined abnormalities likely resulted in sinking into

specific DMs, such as DM1, DM2, and DM3. Hence, if a subject

transitions from HCs to MDD, it is plausible that MDD would

submerge into these particular DMs alongside reductions in cortical

thickness and surface area, as well as neurotransmitter

reuptake abnormalities.

As a first step in integrating multiple pieces of information that

reflect different aspects of MDD, it is vital to investigate the

relationship between alterations in stability based on DMs and

reductions in cortical thickness and surface area using large

datasets. In a comprehensive study on white matter alterations in

HCs and MDD, fractional anisotropy was found to be decreased in

adult MDD but not significantly different in adolescent MDD

compared to HCs (46). Conversely, adolescent MDD exhibited

decreased cortical surface areas, particularly in regions such as the

orbitofrontal cortex and lateral occipital cortex, when compared to

HCs (29). Therefore, in addition to examining the structural

connectivity based on the fiber structure in the white matter, it is

essential to consider stability measures based on reduced cortical

surface areas in both HCs and MDD. Notably, sFC can be well

explained (approximately 0.9) by geometric modes (GMs) derived

from the cortical geometric structure in HCs (47), suggesting that

GMs could serve as a valuable stability indicator based on

brain structure.

The integration of multiple indicators will be effective in

psychiatric care. A combination of temporally stable trait

biomarkers and temporally variable state biomarkers is necessary

for early diagnosis and intervention using mechanism-based

treatments (48). Therefore, structural connectivity and GMs, as

temporally stable trait biomarkers, are employed as criteria for

assessing stability. Additionally, DMs serve as temporally variable

state biomarkers for evaluating the current cortical stability. The

integration of the stability associated with cortical structural and

geometric alterations and BOLD signals may shed light on

previously unknown mechanisms underlying MDD.
4.2 Inconsistency with the previous studies

In MDD, negative emotions are associated with increased

activity in the DMN (49) and motor impairment is associated

with slow gait and slumped posture (50). Consequently, DM1 and

DM2, resembling the DMN, probably emerged for experiencing

negative emotions, and DM3, resembling the SMN, probably

emerged for experiencing movement difficulties.

In the EL-based method (20), non-melancholic MDD tended to

sink into the left CEN, whereas melancholic MDD tended to sink
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into both the left CEN and dorsal DMN states. In contrast, in the

DMD-based method, the MDD sinks into brain states resembling

the DMN and SMN. These differences can be attributed to the

following three factors. First, the binarization process affects the

results. In the DMD-based method, the strong amplitudes of all

DMs, except for DM3, were approximately 0.03 in regions

associated with the DMN, VN, and SN, and medium amplitudes

were approximately 0.01 in regions associated with the SMN. In

contrast, the strongest amplitudes of DM3 were associated with the

SMN, but the amplitude value was only 0.003, which is

approximately 1/10 compared with the other DMs. Conversely,

the EL-based method requires the binarization of BOLD signals

after functional network assignment to a specific region. This

binarization process may have led to an outcome in which

regions with amplitudes smaller than the average were considered

inactive. Second, the larger number of subjects in our study may

lead to more robust results than the previous study. This study

included 845 subjects, whereas the previous study included 262

subjects. Lastly, regarding the subtype of MDD, this study did not

differentiate between non-melancholic and melancholic MDD,

whereas previous studies analyzed these subtypes separately.

These methodological discrepancies and different numbers of

subjects may account for the sinking into different states between

the DMD- and EL-based methods.

In a large dataset study using the sFC (13), hypoconnectivities were

observed within the SMN and SN, as well as between the SMN, SN,

dorsal attention network (DAN), and VN in MDD. However, no

significant differences were found between the DMN and fronto-

parietal networks (FPN). In contrast, this study identified

abnormalities in the DMN, SMN, VN, and SN but no abnormalities

in the DAN. A previous study using the same dataset showed that there

were only a few abnormal FCs related to the DAN andmany abnormal

FCs related to the DMN (12). It is worth noting that the DMN and

DAN exhibit an inverse correlation, wherein DAN activation leads to

DMN suppression (51). Therefore, it is possible that the subjects in this

study activated the DMN, while those in the larger dataset study used

an sFC-activated DAN (13).
4.3 Relationships among DMs’ spatial
pattern, histogram of frequency, and
discrete-time eigenvalue

The amplitude of DM3 exhibited a spatial pattern resembling

that of the SMN and was approximately 0.003, which was

approximately 1/10 smaller than the amplitudes of the other

DMs. The amplitudes in DM6 and DM7 were stronger in the SN

and slightly stronger in the SMN than in the other DMs. The

amplitudes of DM1 and DM2 were stronger in the DMN and

slightly stronger in the SMN. Consequently, the SMN tended to

appear more frequently in conjunction with other networks.

Furthermore, the observation that the SMN tended to co-occur

with low-frequency DM1 and DM2, as well as high-frequency DM6

and DM7, suggests that DM3 transmitted information across a

broad range of frequencies, resulting in a smoother frequency

distribution compared to the other DMs.
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A comparative study investigating empirical and simulated sFC

and dFC proposed that SMN serves as a driver of cortical dynamics

(52). The SMN probably exhibits weak amplitudes and a wide

frequency range across all DMs because of its role as a driver in

cortical dynamics.
4.4 Limitation of the current method

t-SNE was employed to disentangle the intricate curved surfaces

spanned by the DMs and analyze the inter-subject stability. However,

the method used in the study encountered two problems. First, the

computation time was considerable, requiring approximately one week

to apply t-SNE to approximately 160,000 DMs, search for the optimal

perplexity, estimate the density ratio using RuLSIF, and calculate the

clusters based on permutation tests. Consequently, the search for

optimal parameters was limited to perplexity during the t-SNE. It is

noteworthy that t-SNE encompasses additional parameters, including

the early exaggeration factor, learning rate, angle, and random_state,

which also influence the manifold. These parameters were determined

using a heuristic method (53) in the sklearn.manifold. Second, memory

usage has become a serious concern as increasing the perplexity of t-

SNE consumes up to approximately 100 GB. To analyze larger datasets,

alternative methods such as deep learning or other approaches need to

be developed.

When performing rsfMRI, some subjects rarely lacked BOLD

signals in the cerebellum. Additionally, BOLD signals from the

white matter often contain significant noise. To avoid these issues,

the stability analysis between HCs and MDD in this study utilized

Glasser ’s 360 ROI, which excludes the cerebellum and

predominantly consists of gray matter. Therefore, to analyze

intersubject stability using ROI that includes the cerebellum and

white matter, alternative methods such as deep learning or other

approaches need to be developed instead of this method.

Supplementary Figure S5 shows the normalized number of

DMs for each protocol, which was obtained by dividing the

number of DMs in the cluster by the total number of DMs in the

protocol. The COI and UTO employed a unified protocol, whereas

HKH, HUH, HRC, and UYA employed independent protocols.

However, the normalized histogram of site in COI tended to be

closer to UYA and HKH, while the normalized histogram of site in

UTO tended to be closer to HUH and HRC. Supplementary Table 1

showed that Siemens manufactured COI, UYA, and HKH while GE

manufactured UTO, HUH, and HRC. The inter-protocol

differences in DM6 and DM7 were more dependent on

manufacturers such as Siemens and GE than on protocol

unification (Supplementary Table 1). In a previous study on

physiological noise (54), the approximately 0.2 Hz component of

BOLD signals was affected by respiration. In addition, the FD values

of DM 6 and 7 were higher than those of other DMs, as shown in

Supplementary Figures S3, S4. However, the Bacc in the case of

using all frequencies was higher than that of using 0.01–0.08 Hz, as
Frontiers in Psychiatry 10
shown in Supplementary Figure S8. Thus, as in previous research

(26), there are more spontaneous fluctuations representing cortical

dynamics than noise associated with respiration, head movement,

and manufacture.
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