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Introduction: Synapses and spines play a significant role in major depressive disorder

(MDD) pathophysiology, recently highlighted by the rapid antidepressant effect

of ketamine and psilocybin. According to the Bayesian brain and interoception

perspectives, MDD is formalized as being stuck in affective states constantly

predicting negative energy balance. To understand how spines and synapses relate

to the predictive function of the neocortex and thus to symptoms, we used the

temporal memory (TM), an unsupervised machine-learning algorithm. TM models

a single neocortical layer, learns in real-time, and extracts and predicts temporal

sequences. TM exhibits neocortical biological features such as sparse firing and

continuous online learning using local Hebbian-learning rules.

Methods: We trained a TM model on random sequences of upper-case alphabetical

letters, representing sequences of affective states. To model depression, we

progressively destroyed synapses in the TM model and examined how that affected

the predictive capacity of the network. We found that the number of predictions

decreased non-linearly.

Results: Destroying 50% of the synapses slightly reduced the number of predictions,

followed by a marked drop with further destruction. However, reducing the synapses

by 25% distinctly dropped the confidence in the predictions. Therefore, even though

the network was making accurate predictions, the network was no longer confident

about these predictions.

Discussion: These findings explain how interoceptive cortices could be stuck

in limited affective states with high prediction error. Connecting ketamine and

psilocybin’s proposed mechanism of action to depression pathophysiology, the

growth of new synapses would allow representing more futuristic predictions with

higher confidence. To our knowledge, this is the first study to use the TM model to
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connect changes happening at synaptic levels to the Bayesian formulation of

psychiatric symptomatology. Linking neurobiological abnormalities to symptoms

will allow us to understand the mechanisms of treatments and possibly, develop

new ones.

KEYWORDS

MDD, predictions, prediction error, ketamine, psilocybin, hierarchical temporal
memory (HTM), confidence

GRAPHICAL ABSTRACT

“Depressed” interoceptive cortical layers, with a reduced number of spines, made a limited number of predictions with high prediction errors and
reduced confidence. The low confidence of these limited predictions might drive other cortical regions to consider multiple future possibilities, each
with its own energy cost, increasing predicted total energy cost and thus predicting negative energy balance, perceived as a negative mood in
depression. Thus, the fewer predictions might be similar to patients “stuck” in a negative mood.

Introduction

Synapses and spines play an integral role in the pathophysiology
of major depressive disorder (MDD), a severely disabling disease
that affects many aspects of life (1–3). Postmortem evidence
shows a reduction in spine density (4) and decreased synapse
numbers in the dorsolateral prefrontal cortex (DLPFC) in patients
diagnosed with MDD (5). Numerous lines of pre-clinical evidence
also highlight this relationship. Paired associative stimulation
experiments using transcranial magnetic stimulation (TMS) showed
impaired plasticity in patients struggling with MDD, suggesting
abnormal synaptic functioning (6). In chronic stress animal models
of MDD, dendritic spines of layer 2/3 in the medial prefrontal
cortex are lost (7–9). Chronic imipramine or fluoxetine restored
spine loss in both medial prefrontal cortex layer 2/3 pyramidal
neurons and hippocampal CA3 in animal models of chronic stress
(10). Likewise, a single session of repetitive TMS in hippocampal
CA1 slice cultures increased spine size and functional insertion
of the GluA1 subtype of AMPA receptors consistent with long-
term potentiation (LTP) of excitatory synapses (11). Cambiaghi

et al. (12) showed increased total spine density in apical and basal
dendrites of pyramidal neurons layer 2/3, with a pre-dominance
of thin spines following 5 days of high frequency repetitive TMS
applied to motor cortex. The application of repetitive TMS also
increased dendritic complexity. Similar effects on spine maturation
have been reported with electroconvulsive therapy in animal models
(13, 14).

These same cellular mechanisms are suggested by results of
cortical physiology experiments showing LTP-like changes in healthy
humans after a single session of repetitive TMS delivered to motor
cortex in combination with pharmacologic n-methyl-d-aspartate
(NMDA) receptor agonism (15, 16). Such findings support the
notion that effective antidepressant treatments such as repetitive
TMS (17, 18), approved for depression in 2008 (19), may work
through rescuing impaired synaptic plasticity. This notion received
additional support from two recent clinical studies investigating
the combination of stimulation with either placebo or the NMDA
receptor agonist d-cycloserine; in the first, the active combination
enhanced and normalized plasticity measures in the motor cortex of
depressed patients (20, 21).
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Single doses of ketamine (22–26) and psilocybin (27) result
in rapid antidepressant effects in depressed patients that appear
to be mediated by restoring synapses and spines. A single dose
of ketamine increased the rate of spine formation in non-stressed
animals (28). Following chronic stress, ketamine restored the number
of neocortical synapses in animal models in layer 5 of the medial
prefrontal cortex (29, 30). A single dose of ketamine also protected
spine loss induced by chronic stress (31). The deleterious effects
on spines were mediated by proteins like REDD1 that belong to
the mTOR pathway in layer 5 apical dendrites, which increased
with chronic stress. REDD1 was also elevated in the prefrontal
cortex in patients diagnosed with MDD (32). An increase in spine
densities suggests the formation of more synapses (33), and mediated
synchronized firing of ensembles encoding behavioral manifestations
affected by depression (34). Local infusion of ketamine into the
infralimbic cortex of rats resulted in the reversal of depression-like
behavior. This effect was also generated by optogenetic stimulation of
layer five pyramidal neurons and resulted in similar increases in spine
density in apical tufts (35). Related findings by Shao et al. showed
that psilocybin increased dendritic spines on both apical and basal
dendrites in the medial frontal cortex in a mouse model of depression,
reversing the behavioral manifestations of depression (36). Together
these clinical and preclinical findings converge to illustrate a critical
role for synaptic function and number in the pathology of depression
and in antidepressant treatment effects, but the direct and dynamic
investigation of neuronal synapses in living clinical samples is not
currently possible.

To bridge synaptic changes to symptomatology in MDD,
it is helpful to consider the function of the central nervous
system from an evolutionary perspective. The brain has evolved
to optimize energy consumption as the body acts and grows, a
phenomenon termed allostasis, which means stabilizing in the face
of change (37–40). Instead of reacting to inputs, the neocortex
develops an internal model of the world and of the body, and
uses the model to predict input changes and update the model
predictions based on mismatches with the inputs. This has been
formulated into the Bayesian brain and predictive coding frameworks
(41, 42).

In the motor or “action” realm, instead of minimizing
prediction error by updating the model to match inputs, the
body minimizes the prediction error by enacting the prediction.
For example, before a person reaches out to grasp a cup of
water, the motor cortex generates predictions about the action,
such as “what would I experience when I am grasping that
cup of water I see in front of me on the counter?” Relevant
visual, tactile, and proprioceptive predictions are projected to the
spinal cord. Spinal cord reflex arcs then “enact” or fulfill these
predictions by moving the person’s hand and grasping the cup
of water, thus, reducing prediction error. This is termed active
inference (43).

Emotional states and their associated autonomic, hormonal, and
immune system changes are hypothesized to reflect enactments
of the brain’s predictions based on inputs from the inner milieu
of the body, as well as from the external world (interoceptive
predictions). Formulated in the Embodied Predictive Interoception
Coding (EPIC) framework, mood has been considered a low-
dimensional summary of the predictions related to these inputs
(44). Interoceptive predictions occur in interoceptive limbic cortical
areas, such as the anterior cingulate cortex (ACC) and insula,

the areas affected in chronic stress models of depression where
ketamine was found to be helpful in animal models. Applying
the interoceptive theory to understand states of clinical depression,
Barrett et al. hypothesized that the brain is locked-in, i.e., stuck
in a “metabolically-inefficient internal model of the body in the
world” (37, 45), constantly predicting negative metabolic energy
balance, i.e., that there will be less metabolic energy available in
the future. According to the interoceptive theory, such predicted
negative energy states will be experienced as unpleasant affective
states. It will also result in experiences of reduced energy and
consequently, decreased motivation. For example, hearing about an
event that I enjoyed before, the pleasant affective state I experienced
before is reflective of having overall more energy during the event.
In an undepressed state, my brain would predict positive energy
balance, i.e., more energy, during the event similar to my previous
experience. But in a depressed state, my brain will be stuck predicting
negative energy balance, i.e., that I will have less energy available
during the event. This will be reflected as unpleasant affective state
when I hear about an announcement for a future event, reducing
my motivation to go. Such locked-in states can also manifest as
ruminations, where the brain keeps coming back to the same
thought content. These states could arise as a consequence of the
abnormalities in interoceptive cortical areas that have been revealed
by neuroimaging studies in depressed samples (46), and suggested
as sites for DBS stimulation treatment for MDD (47). Indeed,
TMS has better outcomes when post hoc modeling shows DLPFC
stimulation has strong functional connectivity (negative correlation)
with the ACC (48, 49). Taken further, personalized targeting to the
ACC was one of several changes that produced the strongest TMS
outcomes to date (50), and may become the standard for TMS
therapy (51).

Machine learning algorithms constrained by neocortical
neurobiology can connect synaptic atrophy to impaired predictions,
a functional construct more proximal to symptoms. The neocortex
is hypothesized to be a spatio-temporal pattern-predictive machine
(52–54). The ability of the neocortex to learn from new information
on the fly and adjust its predictions accordingly is an integral
part of this process (55). This is referred to as “online learning”
in the machine learning literature and is different from batch
training, where an algorithm learns a training set, then is used on
a different set. We used the temporal memory (TM) algorithm,
a computer model of neocortical layers, to investigate the link
between synaptic changes and prediction making. TM is one
algorithm of the hierarchical temporal memory (HTM) framework.
The underlying assumption of HTM is that different neocortical
regions implement versions of the same cortical algorithm (56)
for online unsupervised sequence learning and prediction (57, 58).
Multiple features of the neocortex constrain HTM algorithms in
ways unlike most of the current artificial neural networks (59).
For example, the units or “neurons” in the HTM algorithms
exist in one of three states: active, inactive, and predictive.
Neurobiologically, the predictive state of a neuron maps to
subthreshold depolarization of the soma by dendritic NMDA spikes,
making it easier for the neuron to fire. NMDA spikes are triggered
by the co-activation of synapses clustered together on a dendritic
segment, indicating the detection of a specific input pattern (60).
HTM exhibits online learning, where the algorithm continuously
learns and predicts, rather than being trained in batches like
artificial neural networks. In addition, the HTM algorithms learn
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TABLE 1 Default parameter values of temporal memory (TM) model.

Number of minicolumns per letter 20

Column dimensions (number of columns) 520

Cells per column 32

Activation threshold (number of active synapses for a dendritic
segment to be considered active)

13

Initial permanence 0.21

Connected permanence (permanence value above which a
synapse is connected)

0.5

Min threshold 10

Max new synapse count 20

Permanence increment 0.1

Permanence decrement 0.1

Predicted segment decrement 0.0004

Max segments per cell 255

Max synapses per segment 255

by local unsupervised Hebbian-learning rules similar to synaptic
plasticity that does not require error back propagation. HTM
algorithms act on sparse-distributed representations (SDR) of
data, which takes the stochastic nature of synaptic activation into
account (57).

With a TM model representing a neocortical layer of neurons that
learns and predicts sequences of inputs, this study explored a possible
connection between having a reduced number of synapses (i.e.,
characteristic of MDD) and being locked in dysfunctional predictive
states experienced as negative affective states. The TM model we use
contains basal distal dendrites, which provide temporal context to
the presented stimuli (57, 59). We ran simulations to examine how
many predictions are generated given a particular context, and then
examined how synaptic loss affected the total number and confidence
of the predictions made.

Materials and methods

Inputs, temporal memory (TM) models,
and training

The input patterns consisted of an array of ten randomly
generated sequences of 11 upper-case letters (A–Z) (Figure 1).
A TM model is composed of multiple minicolumns. Each upper-
case letter was represented in the TM network by activating neurons
in 20 consecutive minicolumns, resulting in a network with 520
minicolumns (20 minicolumns × 26 upper-case letters). Each
minicolumn contained 32 neurons.

Using the Numenta Platform for Intelligent Computing (NuPIC)
package (version 1.0.5) we generated five temporal memory (TM)
models (parameters in Table 1) using five different randomization
seeds. We then trained each model on five different versions of
the input patterns, i.e., five different arrays, each of ten randomly
generated sequences. A reset signal was applied at the end of each
input sequence to reset the predictive neurons. The training steps are

explained in detail in the results section and in schematic Figure 2.
On average, each TM model correctly learned each sequence of
the 11 letters over ten repeated presentations. Therefore, for each
of the five versions of the input pattern, we ran 1,100 iterations
of simulations to ensure the model had learned the full input
pattern. This generated five trained network models for each input
pattern, resulting in 25 trained TM models. Next, we calculated
the total number of future predictions a network can make by
summing the number of predictions for each of the upper-case letters:

Total predictions =
∑
letter

number of predictionsletter; letter = {A to Z}

Destroying synapses

Using five randomization seeds that were different from the ones
used to generate the TM models, we progressively removed fractions
of synapses, i.e., we destroyed 25, then 50, then 60, then 70, and
finally 80% of the total number of synapses. For each of the 25
networks (5 networks x 5 random variations of input sequences),
this step created five different versions of “depressed” networks for
each percentage of destroyed synapses, resulting in 125 versions
of networks for each percentage of destroyed synapses. We then
calculated the total number of predictions made at each level of
synaptic destruction.

Prediction error and calculating
confidence

As described in more detail in the Results section, when a
minicolumn receives a predicted input, only the neurons in the
predictive state fire, making them the winner cells. But when a
minicolumn receives an unpredicted input, none of the cells in that
minicolumn were in a predictive state, so all the neurons in the
minicolumn fire (minicolumn burst) representing prediction error,
and winner cells are selected at random from the active neurons.
To estimate the prediction error, we used the ratio of winner cells
to active cells to represent the confidence of the network about a
prediction:

Confidence =
winner neurons
active neurons

Lower confidence, usually due to a higher number of active cells
when a minicolumn bursts (higher prediction error), means a higher
mismatch occurred between the prediction and subsequent input.
Higher confidence represents a better match between prediction and
subsequent input. Confidence of a prediction is distinct from the total
number of predictions a network can make which is a function of the
size of the network and the history of inputs it was trained on.

Examining hyperparameters

We ran simulations where we varied the connected permanence,
which is the value of spine permanence above which the spine is
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FIGURE 1

Schematic of the neocortical layer temporal memory (TM) model and the input it learned. The network consisted of 520 columns, with 32 cells per
column. Each upper-case letter has a receptive field of 20 columns. The input consists of 10 sequences, each of 11 upper-case letters selected randomly
from a uniform distribution with replacement.

functionally connected to its dendritic segment. Spine permanence
is a float value that varies from 0 to 1. We used the default
value of 0.5 in the simulations. To investigate the effects of
varying connected permanence on the networks’ performance,
we also ran simulations with connected permanence values of
0.25, 0.75, and 0.9. We also examined varying the activation
threshold, which is an integer denoting the number of spines
needed for dendritic activation. We used the default value of
13 spines in the simulations. And again, to examine the effects
of varying activation threshold, we ran additional simulations
with activation thresholds of 18 and 20. Since 20 was the
maximum number of spines in a fully trained network, running
simulations with values higher than 20 would result in no
neuronal activation.

Results

The network learned and predicted
accurately with training

We presented five input arrays to each of five temporal memory
(TM) versions. Each input array consisted of 10 rows × 11
minicolumns of randomly selected upper-case letters (A–Z) from a
uniform distribution. It took each TM network an average of 1,100
iterations to learn to predict the input patterns with 100% prediction
accuracy (Figure 3A). For clarity, below we describe separately how
the learning took place before and after training. However, the TM
learns and predicts continuously.
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FIGURE 2

Schematic diagram for the steps of learning and predicting in HTM. (A) The sequence A, B, C is presented to the temporal memory algorithm. Each
minicolumn represents the receptive field of an input. Since the network has not learned any sequences, the presentation of each of the letters fires all
the neurons in a minicolumn (minicolumn burst). (B) After learning, the presentation of A predicts B. Presenting B confirms the prediction, strengthening
the connection from A to B (same for predicting C after presenting B). (C) After B is presented, C is predicted. However, D is presented after that, firing all
the neurons in minicolumn corresponding to D. This results in making a new connection from a neuron in the B minicolumn to a neuron in the D
minicolumn, with reduction of connection strength from B to C. Of note, we are separating the before training and after training phase to simplify the
description, but learning and predicting happens continuously.

Before training

The basic learning steps have been described in multiple papers
(57, 61, 62) and are illustrated schematically in Figure 2A. In
summary, the network learned as follows:

(1) Before any learning, no predictions were made as the
neocortical layer was learning the sequences for the first time.

(2) When a stimulus was presented (e.g., “A”), all neurons in the
minicolumns corresponding to the presented letter, i.e., its
receptive fields, were activated.

(3) Winner neurons in the first set of minicolumns were randomly
selected (one neuron from each column).

(4) With the presentation of the following sequence (e.g.,
“B”), all neurons in the receptive field minicolumns were
activated as well.

(5) Winner neurons in the second set of minicolumns were
randomly selected.

(6) A connection was made from the winner neurons of the
previous time step to the winner neurons in the current
time step.

(7) Repeat from step number two until the sequence ended.

After training

After a network learned the sequences of letters, the network
continued predicting and updating its predictions as follows
(Figure 2B):

(1) After the first stimulus was presented, since it was the first one,
there were no predictions before it. All neurons in the receptive
field minicolumns fired.

(2) The firing of the neurons across the receptive field set their
target neurons into a predictive state. Biologically, this occurs
through activation of an NMDA spike that depolarizes the soma
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FIGURE 3

The network learned and reached the number of ideal predictions. (A) Over 1,100 iterations, the network progressively made predictions approaching
ideal predictions (dotted line). (B) Number of predictions when the network was presented by each upper-case letter, resulting in a “prediction
landscape.”

membrane to sub-threshold voltage (60, 63). Through learning,
the neurons in the predictive state were in minicolumns
corresponding to the next predicted letter.

(3) When the subsequent input arrived, the next step varied
depending on whether the input matched the predicted
input, as follows.

(a) If the input matched the minicolumns that contained the
predictive neurons, then within each minicolumn, the
predictive neurons fired earlier than the other neurons
in the minicolumn because they were closer to the
spiking threshold. This firing in turn inhibited the other
neurons in the minicolumn (winner-takes-all), and the
predictive neurons were selected as the winner neurons.
The synapses between the neurons that were active in
the previous time step and the predictive-turned-winner
neurons will be strengthened in a Hebbian manner, where
neurons that fire repeatedly in close temporal proximity
to each other have stronger connections (64).

(b) If the input did not match the minicolumns that
contained the predictive neurons, all neurons in each
minicolumn corresponding to the current input were
activated and the winner neurons were randomly
selected. New synapses were then formed between the
neurons that were active in the previous time step and
the randomly selected winner neurons in the current
time step. Also, the synapses that were projecting to
the incorrectly predicted neurons were weakened. The
prediction error signal in these cases was the activation
of all neurons in the minicolumns receiving the input.

In the TM model, formation of synaptic connections and changes
in their strength is not done by changing the synaptic weights
(magnitude of synaptic influence on the neuron). Instead, it is done
by modifying synaptic permanence. Permanence is how resistant the

synapses are for removal, where stronger synapses are more resistant
to atrophy (57).

The total number of predictions a TM can
make

To calculate the total number of predictions each trained TM
version is capable of making (with all synapses intact), we presented
each upper-case alphabetical letter to the network while pausing new
learning to avoid changes in synaptic plasticity. We then calculated
how many letters were predicted on the next time step, to create a
“prediction landscape” (Figure 3B). The predicted letters were based
on the minicolumns containing neurons in the predictive state, and
what letter(s) did these minicolumns map to. Since the presented
letter and predicted letter(s) form a two-letter sequence (a letter
dyad), we compared each prediction landscape to the number of
letter dyads (the ground-truth of what the network should be able to
predict). As expected, we found no difference in the number of letter
dyads between a fully trained network and the frequency of letter
dyads in the presented sequences. Counting the predictions across
the upper-case letters resulted in the total number of predictions each
trained TM makes. The mean number of total predictions across the
25 TM versions was 94.6 (std. dev.= 1.85).

Loss of predictions and increased
prediction error with synaptic destruction

To understand how synaptic atrophy can affect the predictive
function of a neocortical layer, we randomly destroyed the number
of synapses in fractions (25, 50, 60, 70, and 80%) across all trained
TM versions (five TM versions trained across five variations of
input sequences) and examined the number of predictions made
by the models. Reducing the number of synapses resulted in a
progressively flatter prediction landscape, starting at the point of
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50% synapse destruction and reaching a flat line of zero predictions
when there were 20% remaining synapses (Figure 4A). To ensure
the reproducibility of this result, we used five random seeds to
randomly select the synapses to be destroyed for each fraction
of synaptic removal, resulting in 125 network versions for each
fraction removed. With 75% of synapses intact, the mean number
of predictions was the same as it was at baseline when all synapses
were present (Figure 4B, black data points and left y-axis). At
50% removal, the mean number of predictions decreased slightly
to 89.1 (std. dev. = 2.7), which is still close to the number of
predictions a “healthy” network (100% synapses) had. With 40% of
synapses intact, the mean number of predictions dropped to 34.9
(std. dev. = 2.97). With 30% of synapses remaining, the average
number of predictions was 2.5 (std. dev. = 1.7), and when only 20%
of synapses were remaining, no predictions were generated across the
125 networks.

The reduction we found in the number of predictions with
greater degrees of synaptic loss was not accounted for by less
activity in the network. On the contrary, with increasing synaptic
destruction, more cells were firing as more minicolumns became
fully active. We calculated the average confidence the network
had with the progressive destruction of synapses by calculating
a scaled ratio of winner cells to active cells (Figure 4B, red
data points and right y-axis). As more synapses were lost, fewer
neurons received the predictions from the active neurons on the
previous time step, resulting in more bursts of the minicolumns,
denoting prediction error. Thus, the less confident the network
is, the more bursting and the more active it is. Interestingly,
we found that network confidence dropped much faster than its
total number of predictions. With 100% of synapses present, the
mean confidence was 0.9 (std. dev. = 0.1), while with 75% of
synapses remaining, the mean confidence dropped to 0.68 (std.
dev. = 0.06) despite the same number of predictions made.
With 50% reduction of synapses, despite a mild reduction in the
number of total predictions, the confidence dropped to 0.05 (std.
dev.= 0.003).

Loss of confidence but intact number of
predictions with dendritic segment
destruction

To investigate another possible scenario of connectivity loss, we
modeled the destruction of connections along dendritic segments.
We found that even after destroying 80% of dendritic segments,
the total number of predictions was very similar to the healthy
network, unlike with destroying 80% of synapses throughout the
network (Figure 5). However, the confidence of the network about
the predictions it made dropped markedly, similar to the networks
with loss of spines.

Varying hyperparameters

To assess how the findings were dependent on the default
hyperparameter values we used, we ran additional simulations while
varying two hyperparameters. The first is connected permanence,
which is the spine permanence above which a spine is connected.

In HTM, synaptic strength is not measured by weight. Instead,
permanence is used, i.e., how resistant a synapse is for removal
following synaptic depression. Synapses with high permanence
would be equivalent to mature mushroom spines. The second
hyperparameter we varied was activation threshold, which is how
many synapses need to be activated on a dendritic segment to trigger
subthreshold depolarization, biologically equivalent to generating
a dendritic NMDA spike, putting the soma in a predictive state.
We found that varying connected permanence did not change
the number of predictions or the confidence of either in the
intact networks or the “depressed” ones (Figure 6A). Increasing
the activation threshold more than the default value of 13 spines
did not affect the prediction number or confidence in the intact
network. But both the number of predictions and the prediction
confidence were reduced as synapses were destroyed (Figure 6B).
This was because, with synaptic destruction, there were not
enough spines remaining to activate the dendrites, reducing the
number of neurons in the predictive state, resulting in lower
number of predictions. Also, because there were less neurons in
the predictive state, there were more columnar bursts, reducing
confidence.

Discussion

The main goal of this study was to mechanistically connect
the reduction of synapses seen in postmortem biopsies from
MDD patients and in animal models of depression with MDD
symptomatology based on the Bayesian brain, predictive coding,
and interoception frameworks. Using the temporal memory (TM)
model, we ran computer simulations investigating how the prediction
making capacity of a neocortical layer would be affected by reducing
the number of available synapses since synaptic loss characterizes
brains with MDD and restored number of synapses is associated with
antidepressant effects.

Emotions are hypothesized to exist on two dimensions (37).
The first is valence, which reflects a prediction about net
energy balance. A prediction of negative net energy balance,
either because of predicted reduced gain or predicted high
energy cost, will be perceived as sadness. The second dimension
is arousal, which reflects increased prediction error, and is a
signal for learning and updating the internal model. MDD was
conceptualized as a disorder where interoceptive neocortical regions
are stuck in fewer affective states with high prediction errors
(37, 45, 65). We started from the first principles of individual
neuronal functioning formalized into a functional microcircuit
of a single neocortical layer in the HTM framework (57),
and we found that reducing the number of synapses would
result in both a limited number of predictions and increased
prediction error.

Reducing the synapses by 50% slightly reduced the number of
predictions made, but the confidence strikingly dropped. Reducing
the synapses by more than 50% decreased the number of predictions
made by the trained networks further in a non-linear fashion. The
decrease in prediction numbers was not due to reduced activity
following reduced synaptic numbers. On the contrary, neuronal
firing increased secondary to increased minicolumn bursts, reflecting
higher prediction error (66) (or lower confidence in predictions).
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FIGURE 4

Reduced confidence in predictions before number of predictions is decreased with destroying synapses. (A) Illustrative example from the same network
in Figure 3 showing the progressive reduction in number of predictions for each letter with loss of synapses. Each colored line represents the number of
remaining synapses. Of note, the number of predictions from network with remaining 75% is identical to network with 100% of synapses. (B) At 75% of
synapses, the networks encoded similar number of predictions as 100% of synapses, but with less confidence. At 50% of synapses, there is a slight
reduction of number of predictions, but the confidence is less than 0.1. There is marked reduction of number of predictions at 40 and 30% of synapses.
No predictions could be generated with 20% of synapses. There are 25 simulations at 100%, and 125 simulations at the remaining percentages.

FIGURE 5

Unlike loss of synapses, loss of connections along dendritic segments affected confidence (dashed lines) but not number of predictions (solid lines).

Clinical relevance and proposed
mechanisms

Rumination, where the brain keeps coming back to the same
thought content (67), is construed here as a manifestation of
limited predictions and reduced confidence in these predictions.

Being stuck in a negative mood could be considered “affective
rumination,” or more formally, affective inertia (68). Koval et al.
(67) found that the symptom of being cognitively stuck (i.e.,
rumination) and emotionally stuck (emotional inertia) are positively
correlated with one another yet independent in determining
the overall severity of the clinical depression. According to the
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FIGURE 6

Examining two hyperparameters of TM. (A) Varying connected permanence did not change the number of predictions the network made with intact
synapses or with destruction of synapses (solid lines), or the confidence about these predictions (dashed lines). Circles are mean and error bars are
standard deviation across 25 simulations for the intact network and 125 simulations for networks with destroyed synapses. (B) On the contrary, in
comparison to activation threshold of 13 (blue lines), increasing activation threshold reduced the total number of predictions (solid lines) with each
iteration of synaptic destruction, and reduced confidence about the predictions (dashed lines). Solid circles: mean; error bars: Standard deviation.

Embodied Predictive Interoception Coding (EPIC) model, the brain’s
interoceptive agranular cortices (44) project diffusely to other cortical
areas to relay affective states (69, 70). Applying our results to
the agranular cortices, e.g., subgenual cingulate cortex (sgACC),
suggests a mechanism by which a condition like depression with
reduced synapses has limited interoceptive predictive states and
high prediction errors, reflecting limited mood experiences, i.e.,
constricted/restricted affect but with high arousal and perhaps
heightened anxiety levels (71, 72), shaping further expectations of
patients (73).

Our study also suggests why the limited predicted states in MDD
are experienced as negative affective states. According to the concept
of interoceptive allostasis, states with predictions of negative energy
balance would be perceived as affectively unfavorable (45). When
there is reduced confidence in predictions made by interoceptive
cortices, the uncertainty would be transmitted to other neocortical
and subcortical regions (74, 75). Such uncertainty might signal the
need to be “ready for anything,” to prepare for a larger number of
possibilities. However, being ready for anything would also predict
high energy costs and negative energy balance, which would be
perceived by the depressed patient as negative affect.

The non-linear relationship of our findings could explain the
rapid antidepressant properties of ketamine and psilocybin. Above
a threshold, restoring a fraction of synapses would be enough
to improve the confidence in the predictions made, reducing the
prediction error signal, thus limiting the number of possibilities for
which energy costs have to be calculated, and ultimately reducing the
negative energy balance.

Our findings also suggest a possible mechanism for how atrophy
in cortical regions in MDD (76–79) could be associated with
increased neuronal activity. Multiple studies showed a spontaneous
state of hypermetabolism of sgACC in depression, particularly
in patients struggling with treatment-refractory depression; this
biochemical marker reflecting increased neuronal activity has been

observed with positron-emission tomography (PET) (80) and in
human MEG studies (81), and is similar to observations arising in
mouse models of depression (82). Our results shows that synaptic
and dendritic atrophy would lead to less neurons in predictive
states, resulting in more columnar bursting, and thus increased
neuronal firing.

This work illustrates how to formalize Bayesian brain theories
into a neocortical neurobiological framework. For example, suicidal
ideations can result from a limited ability to consider alternative
future scenarios to the extent that the patient cannot escape internal
pain, a construct called internal entrapment. De Beurs et al. (83)
investigated the interactions of two prominent theories underlying
suicidality, namely interpersonal psychological theory (IPT) and
the integrated motivational-volitional (IMV) model. They found
that two factors, one from each theory, were directly related to
suicidal ideations; the factors were perceived burdensomeness of
IPT and internal entrapment from the IMV framework. Subjective
experiences are predictions based on internal and external cues. To
be adaptive, subjective experiences need to be updated when the
cues change. In light of our findings, failure to update subjective
states, such as perceived burdensomeness, would be related to the
restricted ability to make new predictions secondary to the limited
number of synapses. Internal entrapment describes the inability to
escape internal pain, which could be conceptualized as a limited
view of new possibilities because of “tunnel vision” (84). Such
a limited view would be expected when motivation visceromotor
cortices are unable to make more predictions because of a reduced
number of spines and/or decreased spine maturation. These spine
changes are supported by studies of brain derived neurotrophic factor
(BDNF), a growth factor implicated in plasticity and spine growth, in
postmortem brains of people who died by suicide (85, 86). In fact, the
notion that functional synaptic connection may be the final common
pathophysiologic mediator of depression (87) is consistent with our
synapse model presented here, and is also suggested by the following:
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(1) Stress-based animal models induce BDNF methylation resulting
in decreased expression, while antidepressants renew BDNF
production through acetylation (88).

(2) Likewise, in humans, decreased BDNF serum levels are seen
in depressed patients, and these levels correct to the level of
healthy controls with selective-serotonin reuptake inhibitors
(SSRIs) (89).

(3) Synaptic density is decreased in patients with depression,
detected by positron emission tomography (PET) (90),
while BDNF induces dendritic arborization (91) and
neurogenesis, which underlies reversal of depressive behavior
in animal models after 1-month of SSRIs (92) or tricyclic
antidepressants (93).

(4) Electroconvulsive therapy also enhances BDNF production,
spine maturation, and neurogenesis (13, 14).

Therefore, synapses and BDNF are reduced in depression, but
restoration of BDNF rescues synaptogenesis, reversing depression.

Relation to other models
Other computer modeling work of MDD has shown how cortical

regions can be caught in their dynamic states in MDD. A computer
model was developed of two interacting regions, ventral anterior
cingulate cortex (vACC) engaged in emotional processing, and
DLPFC involved in cognitive processing. Ramirez-Mahaluf et al. used
the model to investigate how the two regions interacted together
in depression (94). Each region contained 800 pyramidal neurons
and 200 interneurons, reciprocally connected. The two regions
inhibited each other by activating the interneuronal population in
the other region. They modeled a healthy condition where each
region can either be active in a state of low-rate asynchronous
firing (0.5–1 spikes/second) or high-rate asynchronous firing (25–30
spikes/second). The corresponding region became active in the
healthy network when presented with either a cognitive (working
memory) or an emotional (sadness provocation) task. When they
modeled depression as slower glutamate reuptake in vACC, it
resulted in sustained activity of vACC that DLPFC could not inhibit.
Thus, the network could not switch to active DLPFC when presented
with the cognitive task. They explored the progression of MDD
symptom severity from mild to moderate to severe, and found that
switching to active DLPFC functioning in the face of a cognitive task
was more difficult as the disease progressed. They examined the effect
of SSRIs on the dynamics of switching and found that SSRIs inhibited
the excitatory neuronal population in the vACC and reversed the
dynamics back to the healthy bistable state, though the reversal
became more difficult in more severe depression. When they modeled
the effects of deep brain stimulation (DBS) on their model, they found
that DBS also reversed the dynamics. Similar to our study, modeling
depression resulted in increased activity of the interoceptive region
model (vACC), where the increased firing was secondary to increased
prediction errors.

Somatostatin-positive interneurons (SST) are a population of
interneurons that mainly target the distal apical dendrites of
pyramidal neurons in the neocortex. Deficiency of SST interneurons
might play a role in MDD (95). To examine the effects of
reducing somatostatin (SST) mRNA in postmortem tissue from
depressed patients (96), Yao et al. (97) developed a computer
model of neocortical layer 2/3 based on both human and
rodent data. The model consisted of pyramidal neurons targeting
three interneuronal populations: SST, parvalbumin-positive (PV),

and vasoactive intestinal peptide-positive (VIP) interneurons. SST
interneurons targeted the apical dendrites of pyramidal neurons, as
well as the PV and VIP interneurons. To model depression, they
decreased the SST inhibition by 40% and examined how that affected
neuronal firing and stimulus processing. SST activity reduction
increased the background firing rates of the different neuronal
populations, including the pyramidal neurons. However, when they
presented a stimulus to their model, the stimulus triggered similar
pyramidal neuronal firing rates. Similar to our findings, the signal-
to-noise ratio in that model (calculated as the ratio between baseline
pyramidal firing rate and the post-stimulus firing rate) was reduced
because the baseline firing rate was higher in the depressed network
model than in the healthy network model. They also found that
reduction in the signal-to-noise ratio doubled the rates of both failed
detection and false detection of the stimulus when it was presented in
the depressed models.

In the light of evolutionary psychology and the Bayesian brain
framework, one theory conceptualizes depression as a way to
minimize surprises in social interactions (98). This theory is based
on observations that patients diagnosed with depression have learned
to expect negative interactions with others based on their past
experiences. This would reduce surprises (i.e., prediction error),
perhaps as a mechanism to reduce emotional vulnerability when such
negative interactions arise. At the same time, this theory assumes that
it is challenging for a depressed patient to update their (negatively
valenced) beliefs. Given their predictions about negative interactions,
it is possible that depressed patients tend to avoid social interactions,
and thus miss interactions that could update their expectations about
the outcome of the social interaction. Another possibility could be
that neuromodulatory neurobiological factors in a depressed brain,
such as reward learning mediated by dopamine neurotransmission,
make it difficult for patients to update their predictions.

The findings from our study hint at a third potential mechanism
underlying the difficulty a depressed patient may have in updating
their negative cognitions. Our results show that a reduced number
of synapses to encode more predictions will limit the ability to update
one’s beliefs with novel interactions or experiences. Typically, authors
of prior studies with Bayesian brain formulations of psychiatric
disorders [e.g., (98, 99)] have assumed that a distinct neuronal
population be used for calculating predictions than the population
used for calculating prediction errors. Barrett and Simmons (44)
suggested that agranular layers of interoceptive cortices can send
predictions but lack the number of neurons needed to compute
prediction errors of interoceptive inputs. In the TM model of
the HTM framework that we used here, neurons within a single
neocortical layer were capable of both making predictions and
calculating prediction errors. This suggests that agranular cortical
areas can both send predictions and compute prediction errors.

Future directions
This is a proof-of-concept study of a single neocortical layer

exhibiting synaptic atrophy as seen in MDD and animal models
of depression. David Marr suggested three levels of analysis when
looking at the function of neuronal microcircuits (100, 101). The first
is a computational level: What is the problem that the microcircuit
solves? The second level is the algorithmic level, describing the steps
needed to solve the problem. The third level is the implementation
level, how the microcircuit elements, such as neuronal populations
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and their connections, perform the steps of the algorithm. We
aimed to connect Marr’s three levels of analysis in the context
of MDD using the HTM framework. At the computational level,
the problem is making predictions about energy expenditures in
a changing environment. At the algorithmic level, the network
represents multiple possible predictions and selects the ones which
agree with the current input (57). At the implementation level,
the neurons used are restrained by the neurobiology of neocortical
neurons, e.g., sub-threshold soma depolarization by NMDA spikes
when clustered synapses are activated within a short time window
(60, 102).

To validate the main prediction from this work, we can look at
sequences of action potentials, or replays. According to the HTM
framework, predictions are encoded as temporal firing sequences.
Replay of neocortical temporal sequences has been shown widely
across multiple neocortical regions, usually in the context of memory
retrieval (103, 104), as well as in neocortical slices (105). Replay
could be examined in animal models of depression, and from invasive
recordings in patients undergoing DBS for depression, as in Scangos
et al. (106). Our finding of reduced number of predictions would
mean that there are less potential sequences of neuronal activation
in a network, reflected in depression as reduced replay variability.

To examine other aspects of depression pathophysiology,
there are several ways to take this work further. The dendrites
represented here are basal. Within the structural model of neocortical
organization, agranular cortical areas receive input from dysgranular
cortical areas (with less developed layer IV) onto deeper layers (107),
most likely terminating on basal dendrites of layer 5 and 6 neurons.
Both ketamine (108) and psilocybin (36) increased the number of
spines along the basal dendrites, as well as along the apical dendrites
[e.g., (31, 35)]. Adding apical dendrites to the model will allow us to
examine how apical synaptic atrophy affects the predictive function of
the neocortex, especially with the postulated role of SST interneurons
targeting apical dendrites in depression (96).

Laminar structure has been suggested to play a role in the
perception-action cycle through integration of information across
layers within cortical columns (109, 110). Expanding the model to
include multiple HTM layers will allow us to investigate the effects
of synaptic loss within layers vs. between layers on predictions
made by a whole cortical column (111) and to examine how
interlaminar information flow changes in depression. Modeling more
than one region, including subcortical nuclei, would also enable
us to predict how manipulating neurons and microcircuits, usually
through pharmacology, would affect elements of Bayesian inference
underlying symptoms, thus creating a mechanistic connection
between therapeutic interventions and symptom improvement. Yet
another future direction would be to implement neuromodulators
like monoamines that play a role in depression. Our model does not
take the effects of endogenous neuromodulators such as serotonin
or dopamine into account. The level of modeling we did here also
does not consider the immunological and hormonal mechanisms that
mediate the effects of chronic stress on synaptic atrophy. Instead,
we looked at one of the possible outcomes of chronic stress, namely
synaptic atrophy, and how this could be related to MDD.

To our knowledge, this is the first study applying algorithms
from the biologically constrained HTM framework to neocortical
abnormalities found in a psychiatric disorder. This work highlights
the potential of the HTM framework to formalize the predictive

capacity of neocortical layers and the possible insights this line
of investigation can bring to understanding psychiatric disorders.
Instead of limiting brain microcircuit modeling to molecular and
microcircuit mechanisms underlying specific neural dynamics, this
approach extends microcircuit modeling into the functional realm,
potentially connecting microcircuit models to behavioral tasks and
symptoms (112–114), using neurons that have more biological
features than ones traditionally used in artificial neural networks.
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