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Genetic background determines 
synaptic phenotypes in 
Arid1b-mutant mice
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2 Department of Biological Sciences, Korea Advanced Institute of Science and Technolgoy (KAIST), 
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ARID1B, a chromatin remodeler, is strongly implicated in autism spectrum 
disorders (ASD). Two previous studies on Arid1b-mutant mice with the same exon 
5 deletion in different genetic backgrounds revealed distinct synaptic phenotypes 
underlying the behavioral abnormalities: The first paper reported decreased 
inhibitory synaptic transmission in layer 5 pyramidal neurons in the medial 
prefrontal cortex (mPFC) region of the heterozygous Arid1b-mutant (Arid1b+/−) 
brain without changes in excitatory synaptic transmission. In the second paper, 
in contrast, we did not observe any inhibitory synaptic change in layer 5 mPFC 
pyramidal neurons, but instead saw decreased excitatory synaptic transmission 
in layer 2/3 mPFC pyramidal neurons without any inhibitory synaptic change. In 
the present report, we show that when we changed the genetic background of 
Arid1b+/− mice from C57BL/6  N to C57BL/6  J, to mimic the mutant mice of the 
first paper, we observed both the decreased inhibitory synaptic transmission in 
layer 5 mPFC pyramidal neurons reported in the first paper, and the decreased 
excitatory synaptic transmission in mPFC layer 2/3 pyramidal neurons reported 
in the second paper. These results suggest that genetic background can be a 
key determinant of the inhibitory synaptic phenotype in Arid1b-mutant mice 
while having minimal effects on the excitatory synaptic phenotype.
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Introduction

ARID1B (AT-rich interaction domain 1B; also known as BAF250B) is a subunit of the 
SWI/SNF chromatin remodeling complex implicated in various neurodevelopmental, 
psychiatric, and cognitive disorders, including autism spectrum disorders (ASD), intellectual 
disability, and Coffin-Siris syndrome (1–6).

Previous studies on Arid1b-mutant mice reported various ARID1B deficiency-related 
phenotypes and underlying mechanisms (7–10), including suppressed insulin-like growth 
factor signaling (8), impaired inhibitory synaptic transmission (9), and impaired excitatory 
synaptic transmission (10). The impaired inhibitory synaptic transmission was observed 
among layer 5 pyramidal neurons in the medial prefrontal cortex (mPFC) of heterozygous 
Arid1b-mutant (Arid1b+/−) mice that lacked exon 5 of the Arid1b gene (9). In a similar and 
more recent study on Arid1b+/− mice also lacking exon 5, our group did not find inhibitory 
synaptic changes in layer 5 pyramidal mPFC neurons, but rather observed impaired excitatory 
synaptic transmission in layer 2/3 mPFC pyramidal neurons (10). This discrepancy in the 
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synaptic phenotypes of two Arid1b+/− mouse lines with the same exon 
5 deletion may reflect a difference in the genetic background of the 
mutant mouse lines: The first study used C67BL6/J mice, while 
we  used C67BL/N mice. These genetic backgrounds have been 
reported to exhibit multiple phenotypic differences, including 
differences in synaptic transmission and metabolism (11–14).

In the present study, we  attempted to change the genetic 
background of our Arid1b+/− mice from C57BL/6 N to C57BL/6 J by 
backcrossing with wild-type C57BL/6 J mice for more than seven 
generations. We found that our new Arid1b+/− mice with the C57BL/6 J 
background show impaired inhibitory synaptic transmission in layer 
5 mPFC pyramidal neurons, similar to the previous results published 
by the other group (9). However, our new Arid1b+/− mice with the 
C57BL/6 J background continued to show impaired excitatory 
synaptic transmission in layer 2/3 mPFC pyramidal neurons, similar 
to our previous results (10). These findings suggest that genetic 
background is a key determinant of the inhibitory synaptic phenotype 
in Arid1b+/− mice carrying exon 5 deletion, whereas the excitatory 
synaptic phenotypes are minimally affected by the genetic background.

Results

Synaptic transmission differs between two 
exon 5-deleted Arid1b+/− mouse lines

Two previous studies on Arid1b+/− mice (exon 5 deletion) reported 
distinct changes among excitatory and inhibitory synaptic 
transmissions in layer 2/3 or 5 pyramidal neurons in the mPFC 
(Figure 1A). Specifically, a previous study on Arid1b+/− mice in the 
genetic background of C57BL/6 J (EUCOMM; MGI:4435087) 
reported that the frequency but not amplitude of miniature inhibitory 
postsynaptic currents (mIPSCs) was decreased in layer 5 pyramidal 
neurons in the mPFC while excitatory miniature excitatory 
postsynaptic currents (mEPSCs) were not altered (9). This functional 
change was observed in adult brains and further supported by a 
decrease in the excitatory synapse number, as revealed by electron 
microscopy (EM) (9).

In contrast, our more recent study on Arid1b+/− mice with the 
same exon 5 deletion in the genetic background of C57BL/6 N 
(NorCOMM2; MGI:6156423) revealed normal mIPSCs and mEPSCs 
in layer 5 mPFC pyramidal neurons but a decrease in the frequency 
(not amplitude) of mEPSCs in layer 2/3 pyramidal neurons without 
changes in mIPSCs (10). These excitatory synaptic changes were 
supported by EM results and observed at both juvenile and adult 
stages (10).

We hypothesized that the difference in the genetic backgrounds 
of the Arid1b+/− mouse lines (hereafter termed “Aridb1-Jung-J” and 
“Arid1b-Kim-N” mice) might contribute to the discrepancy in the 
observed synaptic phenotypes. To test this hypothesis, we attempted 
to change the genetic background of our Arid1b+/− mice from 
C57BL/6 N to C57BL/6 J (i.e., Arid1b-Kim-N mice to Arid1b-Kim-J 
mice) by backcrossing Arid1b-Kim-N mice with wild-type (WT) 
C57BL/6 J mice for more than seven generations (Figure 1B). This 
change in the genetic background was confirmed by PCR genotyping 
for exon 9 of the Nnt (nicotinamide nucleotide transhydrogenase) 
gene (14), which was present in Arid1b-Kim-N mice but absent from 
Arid1b-Kim-J mice.

Synaptic transmission in Arid1b-Kim-J 
mice

We then measured mIPSCs in Arid1b-Kim-J mice to see if the 
shift of genetic background from C57BL/6 N to C57BL/6 J had any 
effect on inhibitory synaptic transmission in layer 5 mPFC pyramidal 
neurons at postnatal day 90 (P90), when mIPSCs were measured in 
the first study (9). Similar to the previous results (9), we observed a 
decrease in the frequency but not amplitude of mIPSCs in layer 5 
mPFC neurons of Arid1b-Kim-J mice (Figure 2A). This suggests that 
Arid1b haploinsufficiency in mice leads to inhibitory synaptic deficits 
in the C57BL/6 J background but not the C57BL/6 N background.

We next tested if the mEPSCs found to be  suppressed in the 
Arid1b-Kim-N mice (10) were affected by the change of genetic 
background from C57BL6/N to C57BL6/J. Measurements of mEPSCs 
in layer 2/3 mPFC pyramidal neurons in Arid1b-Kim-J mice at P21 
revealed a decrease in the mEPSC frequency but not the amplitude 
(Figure 2B), which was similar to the results we previously obtained 
in P21 Arid1b-Kim-N mice (10). This suggests that excitatory synaptic 
transmission deficits are consistently observed in Arid1b+/− mouse 
lines of the two different genetic backgrounds (Arid1b-Kim-N and 
Arid1b-Kim-J mice).

Discussion

In this study, we demonstrate that the genetic background has 
strong effects on inhibitory synaptic transmission but not excitatory 
synaptic transmission in Arid1b+/− mice. This explains the distinct 
synaptic phenotypes observed in two previously reported Arid1b+/− 
mice having the same exon 5 deletion in different genetic backgrounds: 
Decreased mIPSC frequency was reported in Arid1b-Jung-J mice but 
decreased mEPSC frequency was found in Arid1b-Kim-N mice. The 
results from the present study suggest that genetic background of 
Arid1b+/− mice can modulate an excitation/inhibition imbalance, a 
mechanism implicated in ASD (15–19), through the regulation of 
inhibitory synaptic transmission.

It remains unclear how altering the genetic background of 
Arid1b+/− mice from C57BL/6 N to C57BL/6 J can decrease inhibitory 
synaptic transmission. We  do know that mice of C57BL/6 N and 
C57BL/6 J backgrounds differ in their genetic and phenotypic profiles 
(12–14). Genetic differences between C57BL/6 N and C57BL/6 J mice 
include 34 single-nucleotide polymorphisms, 2 indels, and 15 
structural variants. Phenotypic differences were observed in various 
domains, including dysmorphology, ophthalmology, cardiovascular, 
metabolism, neurological, behavioral, sensory, clinical chemistry, 
hematology, and immune/allergy.

Previous studies on Arid1b-Jung-J mice showed that Arid1b 
haploinsufficiency dramatically decreases the number of 
parvalbumin-positive GABAergic interneurons through various 
mechanisms, including altered Wnt/β-catenin signaling and 
impaired modulation of histone acetyltransferase activity in the 
promotor region of the parvalbumin/Pvalb gene (9, 20). 
We  speculate that the genetic background switch from Arid1b-
Kim-N to Arid1b-Kim-J mice might have altered these mechanisms 
involved in parvalbumin-positive GABA neuronal development. 
With regard to a candidate mechanism, wild-type mice of 
C57BL/6 N background carry a mutation (S968F) in the CYFIP2 
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(cytoplasmic FMR1-interacting protein 2) protein (11). CYFIP2 is 
a component of the actin regulatory WAVE complex, which binds 
the fragile X messenger ribonucleoprotein (FMRP) (21–23) and has 
been implicated in developmental delay, epilepsy, West syndrome 
(a developmental and epileptic encephalopathy), and Alzheimer’s 
disease (23–25). The CYFIP2-S968F mutation was originally 
reported to destabilize the protein (11), but later shown to also 
induce excessive Rac1-mediated WAVE complex activation (26). In 
addition, in vitro and in vivo studies have shown that CYFIP2 
regulates various neuronal and synaptic functions, including 
neuronal excitability, excitatory and inhibitory synaptic structure/
function, presynaptic/mitochondrial function, neuronal excitability, 
and local translation (11, 23, 27–33). In the context of the present 
work, it is notable that CYFIP2 is enriched at inhibitory synapses, 
and its neuronal overexpression suppresses inhibitory synaptic 
structure (30). Thus, we speculate that the loss of the CYFIP2-S968F 
mutation in Arid1b-Kim-J mice during the genetic background 

switch might have contributed to inducing inhibitory synaptic 
deficits. Future studies will be needed to explore this possibility 
in detail.

Secondly, Arid1b haploinsufficiency in mice has been shown to 
cause growth impairment and deficiency of insulin-like growth factor 
(IGF) (8); this key regulator of brain/neuronal/synaptic development 
and metabolism has been implicated in various brain disorders, 
including ASD and neurodegenerative disorders (34–38). IGF-1, in 
particular, has been shown to induce long-lasting changes of inhibitory 
synaptic transmission in the neocortex, cerebellum, and olfactory bulb 
(39–42). WT C57BL/6 J mice reportedly show distinct metabolic states 
(body weight, tissue weight, and plasma insulin levels) compared to 
those of WT C57BL6/N mice (43). This is thought to involve 
differential gene expression and spontaneous genetic mutations. For 
example, deletion of exons 7–11 from the Nnt gene in C57BL/6 J mice 
is known to induce metabolic changes, such as glucose intolerance and 
body weight changes (44–46). We  therefore suggest that 

FIGURE 1

Genetic backgrounds of Arid1b+/− mice and their changes. (A) Summary of the electrophysiological properties of layer 2/3 or layer 5 pyramidal neurons 
in mPFC regions representing two Arid1b+/− mouse lines of different genetic backgrounds (C57BL/6  J and C57BL6/N) having the same exon 5 deletion, 
as reported in two different studies (termed Arid1b-Jung-J and Arid1b-Kim-N mice, respectively). mEPSC, miniature excitatory postsynaptic currents; 
mIPSC, miniature inhibitory postsynaptic currents. (B) (Upper) A schematic diagram showing strategy of backcrossing Arid1b-Kim-N mice with wild-
type (WT) C57BL/6  J mice for more than seven generations to generate Arid1b-Kim-J mice. (Lower left) Schematic diagrams of the WT and mutant 
Arid1b alleles and the Nnt alleles of the C57BL/6  N and C57BL/6  J backgrounds, along with the primers used to genotype them. (Lower right) PCR 
genotyping results indicating that the genetic background was successfully switched from C57BL/6  N to C57BL/6  J, as tracked by the lack of Nnt exon 
9 in the C57BL/6  J background.
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C57BL/6 J-specific metabolic changes might have interfered with the 
Arid1b haploinsufficiency-induced changes of IGF signaling to induce 
the inhibitory synaptic deficits observed in Arid1b-Kim-J mice.

In summary, we herein show that the genetic background is a key 
determinant of inhibitory synaptic phenotype in cortical neurons 
from Arid1b-mutant mice of C57BL/6 N and C57BL/6 J genetic 
backgrounds, whereas the excitatory synaptic phenotype is minimally 
affected by these genetic backgrounds.

Methods

Animals

Experimental procedures using mice (Mus musculus) were 
approved by the Committee on Animal Research at KAIST 
(KA2020-51 and KA2023-092-v1) and performed in compliance with 
all relevant ethical regulations. Mice were maintained according to the 
Requirements of Animal Research at KAIST, fed ad libitum, and 
housed under a 13:00–01:00 dark/light cycle.

As part of the NorCOMM2 project (TCPC317) funded by 
Genome Canada and the Ontario Genomics Institute (OGI-051) at 
the Toronto Centre for Phenogenomics, Arid1b+/− mice were generated 
by targeting exon 5 of Arid1b using CRISPR/Cas9 
(C57BL/6 N-Arid1bem1Tcp). This involved the use of Cas9 nickase 
(D10A) and single-guide RNAs with spacer sequences 
CTGCTTAGCAAGTTACCACT and GCCTGATACAGCACTTACAT 
for targeting the 5′ side of exon OTTMUSE00000314956 (exon 5), and 

sequences ACACTAAAGGGGTTGCTTTC and CTTGTAATCCCCC 
TGTAGTA for targeting the 3′ side. This resulted in deletion of Chr17 
from 5242523 to 5243410 with insertion of “TT.” For the present work, 
these mice were obtained from the Canadian Mouse 
Mutant Repository.

The originally published Arid1b-mutant mice were maintained in 
the C57BL/6 N background (10). To change the genetic background 
from C57BL/6 N to C57BL/6 J, male Arid1b+/− mice of C57BL/6 N 
background were backcrossed with female wild-type C57BL/6 J mice 
for more than seven generations. All mice used in the present study 
were generated by crossing backcrossed male Arid1b+/− mice of the 
C57BL/6 J genetic background with female wild-type C57BL/6 J mice. 
Pups were weaned at postnatal day (P) 21. After weaning, three to six 
mice of the same genetic background were co-housed in a single cage. 
The following primers were used for PCR genotyping: Arid1b HT/
heterozygotes, F/forward CATTACAGTGTCCTCTCCCATCTTG 
and WT-R/reverse GAAAGAGAAAGCGGGTGTTCATAC plus 
knockout (KO)-R CGGTGTGTGACTGTGATCATAGATG; for Nnt, 
primer ex6 F GGGTTTCGATTGCTGTCATT and ex6 R 
AGTCAGCAGCACTCCTCCAT; and ex9 F CCAGCATGCACT 
CTCTTCTG and ex9 R TGGTCTCCAAGTGCACAGAG (47).

Electrophysiology

For electrophysiological recordings, mice were anesthetized 
using isoflurane (Terrell). To prepare coronal mPFC sections, 
extracted brains were sectioned (300 μm) using a vibratome (Leica 

FIGURE 2

Excitatory and inhibitory synaptic phenotypes in Arid1b-Kim-J mice. (A) Decreased frequency but normal amplitude of miniature inhibitory 
postsynaptic currents (mIPSCs) among layer 5 pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC) from adult (postnatal 
day [P] 90) Arid1b-Kim-J mice (n  =  13 neurons from 3 mice for WT, 13 neurons from 3 mice for HT; Student’s t-test, **p  <  0.01, ns, not significant). 
(B) Decreased frequency but normal amplitude of miniature excitatory postsynaptic currents (mEPSCs) among layer 2/3 pyramidal neurons in the 
prelimbic region of the mPFC from juvenile (P19–21) Arid1b-Kim-J mice (n  =  15 neurons from 3 mice for WT, 12 neurons from 3 mice for HT; Student’s 
t-test, *p  <  0.05, ns, not significant).
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VT1200) in ice-cold sucrose based cerebrospinal fluid buffer 
containing (in mM) 212 sucrose, 25 NaHCO3, 10 D-glucose, 5 KCl, 
2 Na-pyruvate, 1.25 L-ascorbic acid, 1.25 NaH2PO4, 3.5 MgSO4, and 
0.5 CaCl2 bubbled with 95% O2 and 5% CO2 gas. Sectioned brain 
slices were recovered at 32°C in a chamber loaded with artificial 
cerebrospinal fluid (ACSF) containing (in mM) 125 NaCl, 25 
NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1.3 MgCl2, and 2.5 CaCl2 and 
bubbled with 95% O2 and 5% CO2 gas. After 30 min, the chamber was 
moved to room temperature and a second 30-min recovery was 
performed with bubbling of 95% O2 and 5% CO2 gas. For recordings, 
slices were moved to a recording chamber perfused with circulating 
ACSF at 28°C. Borosilicate glass pipettes (Harvard Apparatus) were 
pulled using an electrode puller (Narishige) and used as recording 
pipettes. For whole-cell recordings, recording pipettes (2.5–3.5 MΩ) 
were filled with the following internal solutions: (1) for EPSC 
experiments, in mM, 117 CsMeSO4, 10 TEA-Cl, 8 NaCl, 10 HEPES, 
5 QX-314-Cl, 4 Mg-ATP, 0.3 Na-GTP, 10 EGTA with pH 7.3, and 
285–300 mOsm; and (2) for IPSC experiments, in mM, 115 CsCl2, 10 
TEA-Cl, 8 NaCl, 10 HEPES, 5 QX-314-Cl, 4 Mg-ATP, 0.3 Na-GTP, 10 
EGTA with pH 7.3, and 285–300 mOsm. Miniature synaptic currents 
were measured while holding the voltage at −70 mV. The responses 
were filtered at 2 kHz and digitized at 10 kHz (MultiClamp 700B and 
DigiData 1550, both from Molecular Devices). Data files were 
acquired using pClamp (10.1, Molecular Devices) and analyzed using 
Clampfit 10 (Molecular Devices). Tetrodotoxin (10 μM, Abcam) was 
added to the ACSF to inhibit action potential firing during miniature 
current recordings. For mEPSC measurements, picrotoxin (100 μM, 
Abcam) was added to the ACSF to block inhibitory synaptic currents. 
For mIPSC measurements, NBQX (100 μM, Tocris) and D-AP5 
(100 μM, Tocris) were added to the ACSF to block AMPA and NMDA 
receptor-mediated currents, respectively.

Statistical analysis

Data are presented as means with standard error of mean (SEM). 
Statistical analyses were performed using GraphPad Prism software. 
Details on mice and statistical details are summarized in 
Supplementary Table S1.
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