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Generalized Anxiety Disorder (GAD) is a prevalent mental disorder on the 
rise in modern society. It is crucial to achieve precise diagnosis of GAD for 
improving the treatments and averting exacerbation. Although a growing 
number of researchers beginning to explore the deep learning algorithms for 
detecting mental disorders, there is a dearth of reports concerning precise 
GAD diagnosis. This study proposes a multi-scale spatial–temporal local 
sequential and global parallel convolutional model, named MSTCNN, which 
designed to achieve highly accurate GAD diagnosis using high-frequency 
electroencephalogram (EEG) signals. To this end, 10-min resting EEG data 
were collected from 45 GAD patients and 36 healthy controls (HC). Various 
frequency bands were extracted from the EEG data as the inputs of the 
MSTCNN. The results demonstrate that the proposed MSTCNN, combined 
with the attention mechanism of Squeeze-and-Excitation Networks, achieves 
outstanding classification performance for GAD detection, with an accuracy 
of 99.48% within the 4–30 Hz EEG data, which is competitively related to state-
of-art methods in terms of GAD classification. Furthermore, our research 
unveils an intriguing revelation regarding the pivotal role of high-frequency 
band in GAD diagnosis. As the frequency band increases, diagnostic accuracy 
improves. Notably, high-frequency EEG data ranging from 10–30 Hz exhibited 
an accuracy rate of 99.47%, paralleling the performance of the broader 
4–30 Hz band. In summary, these findings move a step forward towards the 
practical application of automatic diagnosis of GAD and provide basic theory 
and technical support for the development of future clinical diagnosis system.
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1 Introduction

Generalized Anxiety Disorder (GAD) is a common psychiatric disorder characterized 
by persistent anxiety, irritability, sleep disturbances, and nervousness (1). In addition, 
patients with GAD often have physical symptoms such as palpitations, dry mouth, and 
excessive sweating (2). Recently, the incidence of GAD has significantly increased and has 
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become a global health issue. It is reported that the global rate of the 
people with anxiety disorder was 26% in 2020, and the growth rate has 
accelerated compared to previous years (3). The lifetime prevalence 
rate of GAD in the general population is as high as 5% (4). Females 
have a much higher probability of developing this disorder compared 
to males (5). GAD not only brings negative impacts on the 
psychological and physical health of patients but also has the potential 
to seriously affect their daily functioning, social interaction, and 
quality of life.

The etiological factor of GAD is exceedingly intricate, 
encompassing the interplay of genetic, biological, and psychosocial 
factors (6, 7). The complex etiologies of GAD emphasize the need for 
a targeted treatment approach. Therefore, timeous diagnosis combined 
with effective treatment is crucial to avoid GAD becoming more 
severe and harder to treat (8). Currently, clinical diagnosis of GAD 
mainly relies on clinical assessment and subjective scales (9). These 
methods are highly subjective and rely heavily on accurate diagnosis 
by the psychiatrists and accurate self-reporting by the patients, which 
may easily lead to inconsistency and inaccuracy in diagnosis and 
assessing efficacy. Therefore, it is crucial to seek objective and precise 
diagnostic methods for GAD.

With the continuous developments of psychiatric neuroscience, a 
range of neuroimaging techniques have been applied to the study of 
psychiatric diseases including electroencephalogram (EEG) (10, 11), 
magnetoencephalography (MEG) (12), near-infrared spectroscopy 
(NIRS) (13), and functional magnetic resonance imaging (fMRI) (14). 
Among these techniques, EEG has excellent timing resolution and 
high time sensitivity, while being non-invasive and simple to operate 
(15, 16). EEG can record and measure the brain activity, offering 
valuable insights into its dynamic functioning (17). In recent years, the 
application of EEG to GAD has been continuously explored to help 
uncover the complex neuro-electrophysiological mechanism and 
provide more effective detection methods. Previous studies have 
utilized EEG to observe changes in the brain of GAD patients, such as 
increased brain activity (18) and alterations in brain network structure 
(19). Furthermore, by extracting various types of EEG features, such 
as functional connectivity (19), power spectral density (20), and 
correlation dimension (21), researchers found significant differences 
in features between GAD patients and healthy controls. Until now, 
EEG has been widely used to assist in the diagnosis of various 
psychiatric disorders, such as anxiety (22, 23), depression (24, 25), 
obsessive-compulsive disorder (26, 27), Alzheimer’s (28, 29), 
schizophrenia (30, 31). These studies imply that EEG is a valuable and 
promising neuroimaging technique in the diagnosis of GAD.

Prior research related to mental disorder detection that combines 
artificial intelligence and EEG can be  mainly divided into two 
categories. On the one hand, some researchers extract diverse EEG 
features (32–34), utilizing machine learning models for classification. 
This strategy strongly relies on the classification performances of the 
extracted features and the adaptability of the machine learning 
models. On the other hand, existence of researchers building deep 
learning models and using EEG signals as the inputs for classification. 
Deep learning can overcome the shortcomings of high feature 
dependence and limited shallow models. It streamlines processing by 
enabling automated end-to-end learning, integrating feature 
extraction and classification. Deep learning has demonstrated 
significant success in the processing of complex data (35). Due to the 
excellent end-to-end learning and ability to effectively utilize data 

hierarchies, convolutional neural network (CNN) has emerged as a 
widely favored architecture in deep learning-EEG research (36). For 
instance, Abdulhakim employed three different deep learning models: 
CNN, long short term memory (LSTM), CNN + LSTM, and achieved 
the highest accuracy of 92.86% for social anxiety disorder 
identification with CNN + LSTM model (37). Although the 
combination of EEG and deep learning has shown remarkable success 
in variety of fields (38–40), according to our previous survey, it is 
rarely utilized in GAD diagnosis, which highlights the urgent need for 
enhanced diagnostic methods in this specific domain.

Given the challenging low signal-to-noise ratio of EEG signals and 
complex spatiotemporal dynamic patterns, the importance of feature 
extraction in deep learning is magnified. As an efficient and rapid EEG 
signal feature extraction tool, CNN plays a powerful role in the field 
of EEG signal analysis. For EEG signals, traditional time-frequency 
domain feature extraction methods encounter challenges to fully 
capture the intricate details. Consequently, adopting the spatial–
temporal joint feature extraction method has a stronger signal 
representation ability in CNN model (41). Moreover, multi-scale 
convolution of CNN has been emphasized in EEG feature extraction. 
This technique can capture different levels of features at different 
scales, thereby enhancing the characterization ability of the model. 
Researchers have successfully applied multi-scale convolution to 
feature extraction, yielding favorable outcomes (42–44). For instance, 
Wu et al. introduced a parallel multi-scale filter bank CNN for EEG 
classification, and achieved excellent classification performance (44). 
To further elevate CNN performance, multi-scale convolution was 
introduced into the spatial–temporal feature extraction for 
GAD diagnosis.

In this study, we propose an end-to-end deep learning model 
architecture called MSTCNN based on multi-scale spatial–temporal 
convolution to facilitate in the precise diagnosis of GAD. To ensure 
the effectiveness of MSTCNN, we conducted a sequence of ablation 
experiments to validate the efficacy of our selection strategy in model 
design. In addition, we  try to use MSTCNN to reveal the key 
frequency bands of GAD, which helps us understand the potential 
differences of GAD in different frequency bands of EEG signals. Our 
research strives to present a viable approach for the precise 
diagnosis of GAD.

2 Materials and methods

2.1 Subjects

A total of 45 patients with GAD (13 males, 32 females, age: 
22–55 years, 41.8 ± 9.4 years) and 36 healthy controls (HC) (11 males, 
25 females, age: 21–57 years, 36.9 ± 11.3 years) were enrolled in this 
study, and there was no statistically significant difference in age 
between GAD and HC. All patients were diagnosed by the specialized 
psychiatrists and meet the DSM-5-TR criteria for GAD diagnosis. 
And all subjects should complete the questionnaire of Hamilton 
Anxiety Rating Scale (HAMA) and meet the following criteria: 
HAMA scores ≥14 for GAD; HAMA scores ≤7 for HC. Additionally, 
GAD patients had no other comorbidities (such as depression and 
other disorders). The average HAMA score in the GAD group was 
27.1 ± 9.0, and in the HC group was 2.3 ± 0.9. Moreover, each 
participant was required to meet stringent EEG data collection 
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requirements: (1) no other psychiatric disorders and brain damage; 
(2) right-handed; (3) no drug and alcohol abuse; (4) not stay up late 
the day before the EEG data collection; (5) no smoking, coffee and 
strong tea before eight hours of EEG data collection. The entire 
experiment received approval from the Ethics Committee of Zhejiang 
Normal University, and all participants provided a written informed 
consent form before the experiment.

2.2 EEG data collection and preprocessing

Participants were asked to close eyes, stay awake and stationary, 
and reduce head and body movements and eye movements to reduce 
interference from ocular and electromyography. Every participant 
would record clinical resting EEG for 10 min. The EEG acquisition 
device is Nicolet EEG TS215605. Following the international 10–20 
system, 16 electrodes were chosen, namely Fp1, Fp2, F3, F4, C3, C4, 
P3, P4, O1, O2, F7, F8, T7, T8, P7, and P8. The reference electrode 
refers to the left and right mastoid electrodes. The sampling frequency 
is 250 Hz, and the impedance of each electrode is controlled below 
5kΩ. The whole experiment took place within the professional EEG 
laboratory of the local hospital.

Then, the EEGLAB embedded in MATLAB R2021a was used to 
preprocess EEG. Firstly, the original EEG signal was down-sampled 

from 250 Hz to 125 Hz, and the signal was filtered by 4–30 Hz 
bandpass using a 4-order Butterworth filter. Secondly, fast independent 
component analysis (ICA) was used to remove EEG artifacts. Then, 
4 s of continuous EEG signals were extracted as an EEG sample, 
resulting in a total of 5,371 samples for GAD and 4,018 samples for 
HC. Finally, the same bandpass filter was used to divide the EEG 
signal into five basic bands: Theta (4–8 Hz), Alpha1 (8–10 Hz), Alpha2 
(10–13 Hz), Beta1 (13–20 Hz), Beta2 (20–30 Hz), and three extended 
bands: 13-30 Hz, 10-30 Hz, 8-30 Hz.

2.3 MSTCNN model

In this study, we proposed an innovative deep learning model 
named MSTCNN for GAD detection, which incorporates multi-scale 
spatial–temporal local sequential and global parallel convolutions. 
This architecture is further enhanced through the integration of an 
attention mechanism strategy. Its basic flow is shown in Figure 1. 
Detailed parameters of MSTCNN can be  found in Table  1. The 
framework of MSTCNN can be divided into a feature extraction layer 
and a feature classification layer. (1) The feature extraction layer aims 
to learn and extract the most representative features from the original 
EEG signal, capturing the crucial information of the input data to 
provide support for subsequent classification tasks. This layer includes 

FIGURE 1

The corresponding network architecture of the MSTCNN. (A) represents the input of raw EEG signal at 4–30  Hz. (B) represents the input of different 
frequency bands for comparison.
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spatiotemporal feature extraction, spatial feature extraction, and 
attention mechanism modules. The spatiotemporal feature extraction 
layer adopts multi-scale convolution, which helps to effectively extract 
spatiotemporal features at different scales. The spatial feature 
extraction layer is used to extract spatial features and reduce the 
dimensionality of the data. Prior to being fed into the fully connected 
layer, attention mechanism modules are added to enhance attention 
to important features and further improve model performance. (2) 
The feature classification layer primarily consists of nonlinear 
function, Dropout and pooling layer, which is used to enhance the 
nonlinear expressive ability, mitigate overfitting risks, and reduce 
data dimensionality.

2.3.1 Feature extraction layer
Here, the multi-scale spatial and temporal feature extraction 

convolutions are combined to maximize the utilization of the 
spatiotemporal information in the EEG data. As shown in Figure 2, In 
order to obtain the best feature extraction layer structure, numerous 
ablation experiments, including five feature extraction modules within 
the multi-scale convolution structure, were designed to validate the 

efficacy of our proposed model for comparison. We  conducted 
in-depth analysis on the spatiotemporal feature extraction module, 
and tried different combinations based on temporal convolution (44). 
In addition, batch normalization is introduced to enhance the 
consistency and stability of the model between different samples, and 
ReLU activation function is used to help the model better learn 
nonlinear features and improve the expression ability of the model. 
With these improvements, we expected to improve the performance 
and robustness of the model.

2.3.1.1 Convolution + batch normalization + ReLU 
structure

Convolution + batch normalization + ReLU is a common feature 
extraction combination in deep learning, and has been successfully 
applied in some popular frameworks. The batch normalization layer 
speeds up the convergence of the network by normalizing each mini-
batch. It reduces the internal covariance movement of each layer of 
input data and fixes its range to a smaller range, which helps the 
network learn effective feature representations faster. ReLU introduces 
a nonlinear activation function in the network, which does not cause 

TABLE 1 Parameters of proposed MSTCNN architecture.

Layer Filters Size Stride Output Padding

Input (16, 500)

Reshape (1, 16, 500)

SpaConv1 10 (8, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv1 20 (1, 64) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

SpaConv2 10 (6, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv2 20 (1, 40) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

SpaConv3 10 (4, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv3 20 (1, 26) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

SpaConv4 10 (2, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv4 20 (1, 16) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

Concat (80, 16, 500)

SpaConv5 20 (16, 1) (1, 1) (20, 1, 500) 0

BatchNorm (20, 1, 500)

Square (20, 1, 500)

AveragePool (1, 75) (1, 15) (20, 1, 29) 0

Log (20, 1, 29)

Dropout (20, 1, 29)

Attention (20, 1, 29)

Flatten 580

Classifier 580 2
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gradient vanishing problems and can propagate gradients better than 
traditional activation functions such as sigmoid and tanh. The 
combined structure of Convolution + batch normalization + ReLU 
can accelerate convergence, improve generalization, mitigate gradient 
vanishing problems, and amplify the network’s expressiveness. 
Through the incorporation of batch normalization and ReLU modules 
after temporal convolution (Figure 2A), the model becomes more 
robust and has stronger feature extraction capabilities, as shown in 
Figure 2B.

2.3.1.2 Spatial–temporal convolution
Temporal convolution can capture the temporal characteristics of 

the temporal evolution information, and the spatial convolution can 
capture the spatial characteristics between different channels. There 
are complex dynamic interactions between different brain regions in 
EEG signals, and spatiotemporal convolution can more effectively 
capture the dynamic connections and interactions between different 
channels in EEG signals than relying solely on temporal convolution. 
When the input is Channel × Time, a single convolution is employed 
to extract spatiotemporal features, only so that the kernel size is 
greater than 1 in both the temporal dimension and spatial dimension 
of the extracted features (i.e., C > 1 & T > 1, where C represents the 
kernel size of the spatial dimension and T represents the kernel size of 
the temporal dimension). Here, we referred to the Inception structure 

(multiple kernels of different sizes are used in the space–time 
dimension to capture features at different scales and levels of 
abstraction) as shown in Figure  2C. However, the results of 
spatiotemporal feature extraction using a single convolution prove to 
be suboptimal. In order to improve spatiotemporal feature extraction, 
we explored how to add spatiotemporal convolution to the model to 
obtain better results. Inspired by the idea of SqueezeNeXt model that 
decomposing 3 × 3 convolutional layers into 3 × 1 and 1 × 3 
convolutional layers (45), the C × T of the original convolutional layer 
is decomposed into C × 1 and 1 × T. This decomposition scheme can 
not only reduce the number of parameters, increase the width and 
depth of the network, and capture long-range dependencies, but also 
increase the nonlinear feature extraction capability, thereby improving 
the efficiency and performance of the model.

By using two convolutions to extract spatial and temporal features, 
two different connection strategies were emerged. In the first way, the 
temporal features are extracted first, and then the spatial features are 
extracted, as shown in Figure  2D; In the second way, the spatial 
features are extracted first, followed by the temporal features, as shown 
in Figure  2E. Among them, in the first connection method, the 
temporal convolution section uses 10 filters with filter sizes of 64, 40, 
26,16, and the spatial convolution part uses 20 filters with filter sizes 
of 8, 6, 4, 2, respectively. In the second connection method, 10 filters 
are used in the spatial convolution section and 20 filters are used in 

FIGURE 2

Five feature extraction structures. BR means adding BatchNorm and ReLU functions after the convolution. (A) TemConv: Temporal convolution. 
(B) TemConv+BR: temporal convolution followed by BR. (C) TemSpaConv+BR: temporal convolution and spatial convolution share a same 
convolution kernel and combined with BR. (D) TemConv+SpaConv+BR: temporal convolution followed by the spatial convolution and combined with 
BR. (E) SpaConv+TemConv+BR: spatial convolution followed by the temporal convolution and combined with BR.
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the temporal convolution section, and the filter size is consistent with 
the above.

In addition, the model also contains a layer of spatial feature 
convolution after the spatiotemporal feature convolution. This layer 
extracts spatial features while reducing the dimension of the feature 
map. Through such a design, we  anticipated the model to 
comprehensively capture the spatiotemporal features in EEG signals, 
efficiently decrease computational complexity, and enhance the 
model’s overall performance and efficiency.

2.3.1.3 Attention mechanism
Attention mechanism is a technology that emulates human 

attention processes, which has grown in significance within the 
domains of natural language processing and deep learning in 
recent years (46). The technology enables machines to handle 
large-scale data and complex tasks more intelligently by simulating 
human focus and the ability to selectively process information. At 
present, the attention mechanism has become a widely used tool 
for deep learning (47, 48). Integrating the attention mechanism 
module into the convolutional network can help it automatically 
select and focus on important features in the data, and improve 
the model’s ability to extract and represent key information. In 
this study, we  employed three commonly used attention 
mechanisms: Squeeze-and-Excitation Networks (SE) (49), 
Convolutional Block Attention Module (CBAM) (50), and 
Efficient Channel Attention (ECA) (51). Among them, the 
relevant parameters of SE are set to: reduction = 1; the relevant 
parameters of CBAM are set to: reduction = 1, kernel_size = 7; and 
the relevant parameters of ECA are set to: kernel_size = 3. The 
principles of each of the three attention mechanisms are 
detailed below.

2.3.1.3.1 SE
SE (Squeeze-and-Excitation Networks) is a convolutional neural 

network model designed to enhance the model’s ability to pay 
attention to crucial features from the input data. The core idea of SE is 
to add an attention module channel on top of the CNN. The module 
consists of two pivotal parts: a squeeze segment and an excitation 
segment, and its framework is shown in Figure 3.

Squeeze: SE uses global average pooling to compress each 
channel’s feature map into a scalar, which reduces the dimension of 
the feature map and captures global statistics between channels. If the 
input is a feature map X C H W∈ × × , the compressed feature map is 
Z

C∈ × × 1 1 , ZC  is the c-th element of Z can be  calculated as 
Equation (1):

 
( ) ( )

1 1

1 ,
= =

= =
× ∑∑

H W
C sq C C

i j
Z F X X i j

H W
 

(1)

Fsq represents the squeeze operation, where H and W denote the 
feature map’s height and width. In our EEG data, the channel and time 
correspond, respectively. X i,jC ( ) stands for the value on the feature 
map with a height dimension of i and a width dimension of j.

Excitation: to take advantage of the information gathered by 
squeeze, use excitation operations to capture channel dependencies. 
The excitation operation mainly obtains the attention weight S by 
nonlinear mapping by input of the compressed feature Z to the fully 
connected layer can be calculated as Equation (2):

 ( ) ( )( )2 1σ δ= =exS F Z W W Z
 (2)

Fex represents the excitation operation, δ  represent to the ReLU 
function, W C r C

1∈
× /  and W C C r

2∈
× / , r is the reduction radio. W1 

and W2 are the weight parameters of the descending and ascending fully 
connected layer, and the σ represents the Sigmoid function, which limits 
the input value to the range of 0 and 1. The final output XC is derived 
from the feature map XC rescaling transformation as Equation (3):

 ( ), ·= =C scale C C C CX F X S S X
 (3)

2.3.1.3.2 CBAM
Convolutional Block Attention Module (CBAM) contains two 

submodules: the channel attention module (CAM) and the spatial 
attention module (SAM), as is depicted in Figure 4. CAM and SAM are 
used to strengthen the model’s attention capability to different channels 
and different spatial locations of the input feature map, respectively.

CAM: This module first obtains the average and maximum values 
of each channel by averaging pooling and maximizing pooling 
operations on the input feature map. These values are then processed 
by a hidden layer of Multilayer Perceptron (MLP) to learn and 
generate weights for each channel. Finally, the sum and merge of each 
element to obtain the channel attention degree M FC ( ). For the input 
feature map F C H W∈ × × , after passing through the CAM 
M FC

C( )∈ × × 1 1 can be calculated as Equation (4):

 
( ) ( )( ) ( )( )( )σ= +CM F MLP AvgPool F MLP MaxPool F

 (4)

FIGURE 3

Structure of SE. Fscale represents channel-wise multiplication.
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AvgPool  signifies the average pooling operation, MaxPool  
signifies the maximum pooling operation, MLP stands for multilayer 
perceptron, and σ  refers to the Sigmoid function.

SAM: This module is mainly concerned with the location of 
the information, which complements the CAM. To calculate 
spatial attention, the SAM uses average pooling and maximum 
pooling across the channel axis with convolution to generate 
spatial feature maps. Unlike channel attention, spatial attention 
does not use MLP, but instead employs convolution to process 
spatial feature maps. For input feature map F C H W

1∈
× × , after 

passing through the SAM M FS
H W

1
1( )∈ × ×  can be calculated as 

Equation (5):

 
( ) ( ) ( )( )( )7 7

1 1 1;σ ×=   SM F f AvgPool F MaxPool F
 

(5)

Where f  stands for the convolution operation, 7 × 7 is the 
convolution kernel size, and σ  refers to the Sigmoid function.

The final output feature map is calculated by CAM and SAM. The 
output map M FC ( ) after CAM is multiplied element by element with 
the input feature map F to generate feature F1, and F1 is multiplied 
element by element with the output diagramM FS 1( ) after SAM to 
generate the final output feature map F2.

2.3.1.3.3 ECA
Efficient Channel Attention (ECA) is commonly used in image 

classification tasks based on SE, as shown in Figure 5. The core idea of 
ECA is to use one-dimensional convolution operations to model 
relationships between channels instead of traditional fully connected 
layer operations, which can significantly reduce calculations, model 
parameters, and improve the calculation efficiency of the model. 
Similar to SE, ECA uses global average pooling (GAP) to aggregate 
spatial information for channels. Then, by performing a 
one-dimensional convolution operation on the feature map after 
global average pooling, all channels share learning parameters and 
quickly extract the relationship between channels, thereby enhancing 

FIGURE 4

Structure of CBAM.

FIGURE 5

Structure of ECA.

https://doi.org/10.3389/fpsyt.2023.1310323
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Liu et al. 10.3389/fpsyt.2023.1310323

Frontiers in Psychiatry 08 frontiersin.org

the performance of channel attention which can be  calculated as 
Equation (6):

 
ω σ= ( )( )( )C D GAP Xk1

 (6)

C D1  stands for one-dimensional convolution operation, k is the 
one-dimensional convolution kernel size, and σ  is the Sigmoid 
function. The use of one-dimensional convolution not only reduces 
model complexity, but also ensures efficiency and effectiveness 
through local cross-channel interaction. Finally, ω  is multiplied by X 
element by element results in the final feature map X.

2.3.2 Feature classification layer
The input of the feature classification layer is the feature map 

obtained after passing through the spatial feature convolutional 
layer. There are four steps in this layer. Firstly, the input feature map 
undergoes the application of the nonlinear function Square, and 
then downsampling is performed through the average pooling layer 
to reduce the dimensionality of the feature map while retaining the 
main feature information. Secondly, the nonlinear function Log for 
activation is used to extract features related to EEG bands after the 
averaging pooling layer. Thirdly, the dropout layer is introduced to 
prevent the model from overfitting. The dropout layer can randomly 
omit the output of some neurons during training, thereby reducing 
the dependence between neurons. Ultimately, the fully connected 
layer is utilized to finalize the classification.

2.4 Network training

For the MSTCNN model, the batch size was set as 32 and the 
200 epochs were trained for early stopping. Early stopping strategy 
was triggered when the value of the loss function no longer 
decreases in 10 consecutive epochs. CrossEntropy was chosen as 
the loss function, and AdamW optimizer was used for gradient 
optimization. In terms of the MSTCNN’s learning rate, the 
warm-up strategy was adopted shown in Figure 6, which starts 

with the learning rate set to 8e-5, gradually increases to 1e-3 after 
10 warm-up rounds, and finally gradually decreases to 3e-5. By 
employing the learning rate warm-up strategy, the training speed 
can be accelerated, and the convergence and performance of the 
network can be improved. Applying a larger learning rate in the 
initial epochs can help the model find the global optimal solution 
or regions closer to the optimal solution in the parameter space 
more quickly. As the train continues execution, the learning rate 
gradually decreases, which is conducive to the training of 
stable networks.

2.5 Evaluation methods

Use cross-validation to evaluate the model’s performance and 
generalization ability. Nine folds of data were used for training and 
one fold of data for testing. Accuracy, Precision, Recall, and F1Score 
were computed to evaluate model performance as Equations (7–10). 
Specifically, True Positives (TP) indicates positive samples correctly 
classified, False Positives (FP) indicates negative samples incorrectly 
classified as positive, True Negatives (TN) indicates negative samples 
correctly classified, and False Negatives (FN) indicates positive 
samples incorrectly classified as negative.

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(7)

 
Precision TP

TP FP
=

+  
(8)

 
Recall TP

TP FN
=

+  
(9)

 
F Score TP

TP FP FN1

2

2
=

+ +  
(10)

FIGURE 6

Learning rate setting during model training with warming strategy. Total trained in 200 epochs.
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3 Results

The results of different multi-scale convolutional structures 
for GAD detection are given in Table  1. The model with only 
temporal convolution obtained an accuracy of 96.75%, a precision 
of 96.69%, a recall of 97.68% and a F1Score of 97.18%. In order to 
enhance the generalization ability and nonlinear expression ability 
of the multi-scale CNN model in convolutional feature extraction, 
Convolution + batch normalization + ReLU structure was added 
in the model. The accuracy improved to 98.25%. Therefore, all 
other comparison models adopted the Convolution + batch 
normalization + ReLU structure. Further, we introduced spatial 
convolution and explored different combinations of temporal and 
spatial convolution for comparisons. The results showed that the 
combination with spatial + temporal convolutions (named 
MSTCNN) yielded superior performance, achieving an accuracy 
of 99.19%, a precision of 99.45%, a recall of 99.14% and a F1Score 
of 99.29%.

Several classic models also used to verify the effectiveness of our 
model. The compared models of EEGNet, multi-resolution CNN 
(MRCNN), and CNN-LSTM, yielded average accuracies of 
94.34 ± 0.75%, 96.35 ± 0.42%, and 97.26 ± 0.86% on our datasets, 
respectively. The specific classification evaluation indicators of each 
model are shown in Table 2.

Based on our proposed convolutional structure (SpaConv + 
TemConv + BR), three commonly used attention mechanisms (SE, 
CBAM, and ECA) were added into the model. As shown in Table 3, 

our MSTCNN model shows performance improvement following 
the inclusion of attention mechanisms and yielded more stable 
results. In particular, the improvement effect of the SE attention 
mechanism was the most significant, with the highest accuracy 
of 99.48%.

Besides, the impacts of five different frequency bands (Theta, 
Alpha1, Alpha2, Beta1, and Beta2) were explored on the 
classification of GAD and HC with MSTCNN-SE model. As 
indicated in Table 4, the accuracy of the Theta band and the Alpha1 
band is lower with a classification accuracy of less than 90%. With 
the increase of frequency band, the classification accuracy also 
gradually improved, and the highest classification accuracy of 
97.45% was achieved on the Beta2 band.

Based on the results of Table  4, that is, high accuracy can 
be  obtained with the high-frequency EEG rhythm. Three high-
frequency EEG bands, including 13-30 Hz, 10-30 Hz, and 8-30 Hz, 
were extracted for GAD diagnosis. The results are presented in 
Table  5. It shows that 10-30 Hz can gain consistent accuracy 
compared with 4-30 Hz, which has no statistically significant 
difference (see Table 6).

4 Discussion

This study proposed a novel end-to-end multi-scale Spatial–
Temporal local sequential and global parallel convolutional neural 
network called MSTCNN and applied it to diagnose GAD by 

TABLE 2 Classification performances of different convolution methods.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

TemConv 96.75 ± 0.68 96.69 ± 1.20 97.68 ± 0.65 97.18 ± 0.56

TemConv + BR 98.25 ± 0.35 98.19 ± 0.51 98.76 ± 0.47 98.47 ± 0.31

TemSpaConv + BR 97.43 ± 0.85 98.19 ± 0.99 97.33 ± 1.56 97.75 ± 0.73

TemConv + SpaConv + BR 98.64 ± 0.32 98.75 ± 0.71 98.88 ± 0.52 98.81 ± 0.26

SpaConv + TemConv + BR 

(MSTCNN)
99.19 ± 0.40 99.45 ± 0.47 99.14 ± 0.49 99.29 ± 0.34

“TemConv” means temporal convolution. “BR” means adding BatchNorm and ReLU functions after the convolution. “TemSpaConv” means that the temporal convolution and the 
spatial convolution are in the same convolutional kernel. “TemConv + SpaConv” means the temporal convolution followed by the spatial convolution. “SpaConv + TemConv” means the 
spatial convolution followed by the temporal convolution. The bold values provided in the table represent the best results compared with others.

TABLE 3 Classification performances of classical deep learning models.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

EEGNet (52) 94.34 ± 0.75 95.80 ± 1.23 94.26 ± 2.02 95.00 ± 0.71

MRCNN (53) 96.35 ± 0.42 96.28 ± 1.22 97.40 ± 1.46 96.82 ± 0.44

CNN-LSTM (54) 97.26 ± 0.86 98.32 ± 1.01 96.89 ± 2.14 97.57 ± 0.81

Our model 99.19 ± 0.40 99.45 ± 0.47 99.14 ± 0.49 99.29 ± 0.34

The bold values provided in the table represent the best results compared with others.

TABLE 4 Classification performances of different attention mechanisms.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

MSTCNN-SE 99.48 ± 0.23 99.66 ± 0.23 99.43 ± 0.28 99.55 ± 0.20

MSTCNN-CBAM 99.34 ± 0.38 99.31 ± 0.54 99.54 ± 0.33 99.42 ± 0.33

MSTCNN-ECA 99.46 ± 0.20 99.61 ± 0.22 99.44 ± 0.46 99.52 ± 0.18

MSTCNN-SE/CBAM/ECA means adding SE Attention, CBAM Attention, or ECA Attention for MSTCNN model. The bold values provided in the table represent the best results compared 
with others.
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utilizing multichannel EEG signals. The main findings are as 
follows. Firstly, the proposed MSTCNN combined with SE 
attention mechanism obtained an excellent classification 
performance on the collected EEG data, with an accuracy of 
99.48%, a precision of 99.66%, a recall rate of 99.43%, and a F1 
Score of 99.55%. Secondly, an interesting phenomenon was 
stumbled upon: the high-frequency band holds significant 
importance in diagnosing GAD, and higher frequency band can 
obtain higher accuracy in GAD recognition. Notably, the accuracy 
of the 10-30 Hz band is consistent with the 4-30 Hz band. Detailed 
discussion will be presented next.

4.1 Best classification performance from 
MSTCNN model

When applying deep learning to extract features from EEG 
signals, researchers mostly focus on multi-scale convolution in 
the temporal domain and ignore the spatial relationships between 
channels (42–44). Introducing multi-scale spatial convolution 
can extract spatial features more efficiently, thereby improving 
model performance. In this study, we explored the method of 
multi-scale spatial–temporal convolution and found that the 
spatial axis decomposition idea of splitting a single convolution 
kernel into two convolutions can achieve better results. This idea 
can not only effectively reduce the complexity of the model and 
decrease the risk of overfitting, but also improve the 
computational efficiency (45). Furthermore, we compared the 
effects of convolutional sequences with different spatial and 
temporal convolutions. It has been presented in Table 1 that the 
accuracy of spatial convolution combined with temporal 
convolution is 0.55% higher than that of temporal convolution 
combined with spatial convolution. Since there is spatial 
convolution after the spatial–temporal convolution module, it 
can effectively avoid redundant operations in the 
spatial dimension.

We also tried to validate the effectiveness and accuracy of our 
proposed MSTCNN Model for GAD detection. On the one hand, 
some classical deep learning models was used to compare with 

our models. Among them, EEGNet is a concise deep learning 
model commonly used to process EEG data, which can efficiently 
extract features and use them for classification (52). In our study, 
EEGNet model obtained an accuracy of 94.34%. Next, we tried 
the MRCNN model proposed by Eldel et al. for sleep EEG data 
(53), and its accuracy in our classification task reached 96.35%. 
Finally, CNN-LSTM model proposed by Wang et  al. (54) was 
used to classify our data, and obtained an accuracy of 97.26%. 
The above results indicate that the multi-scale spatial–temporal 
convolution strategy proposed in this study outperforms 
conventional deep learning models, leading to exceptional 
achievements. On the other hand, our results were compared 
with other similar studies. Park et al. used machine learning in 
major psychiatric disorders based on resting EEG and obtained 
an accuracy of 91.03% (55). Al-Ezzi et al. used a deep learning 
model (CNN-LSTM) for three different degrees of anxiety and 
HC based on task-state EEG data, and obtained the accuracy of 
92.86%, 92.86%, 96.43%, and 89.29%, respectively (37). Mohan 
et al. used CNN to discriminate depressed and anxiety patients 
based on EEG and obtained an accuracy of 97.6% (56). It is worth 
mentioning that our previous study, combining features 
extraction and machine learning model, obtained an accuracy of 
97.83% for GAD and HC (20). MSTCNN model, to the best of 
our knowledge, has achieved the highest accuracy for GAD and 
HC detection compared with advanced models and existed 
studies. In summary, MSTCNN has outstanding advantages in 
classification performance. These findings not only verify the 
effectiveness of our proposed model, but also provide support for 
its potential advantages in subsequent clinical application for 
GAD diagnosis.

4.2 MSTCNN improved with attention 
mechanisms

EEG signals contain a wealth of information, which poses 
challenges to signal processing, feature extraction, and 
classification. To efficiently extract features and obtain excellent 
classification performance, the attention mechanisms were 

TABLE 6 Classification performances of extended frequency bands with MSTCNN-SE model.

Frequency band Accuracy (%) Precision (%) Recall (%) F1 Score (%)

13–30 Hz 98.90 ± 0.29 99.13 ± 0.34 98.95 ± 0.56 99.04 ± 0.25

10–30 Hz 99.47 ± 0.24 99.48 ± 0.37 99.59 ± 0.28 99.54 ± 0.20

8–30 Hz 99.42 ± 0.26 99.48 ± 0.47 99.52 ± 0.29 99.50 ± 0.22

The bold values provided in the table represent the best results compared with others.

TABLE 5 Classification performances of different frequency bands with MSTCNN-SE model.

Frequency band Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Theta 88.09 ± 1.09 89.08 ± 2.30 90.34 ± 2.16 89.66 ± 0.99

Alpha1 86.35 ± 1.12 88.53 ± 1.93 87.52 ± 2.17 87.99 ± 1.10

Alpha2 93.56 ± 0.76 93.45 ± 1.05 95.46 ± 1.54 94.43 ± 0.67

Beta1 96.26 ± 0.48 96.69 ± 1.08 96.79 ± 0.72 96.73 ± 0.41

Beta2 97.45 ± 0.43 98.08 ± 0.86 97.46 ± 1.19 97.76 ± 0.41
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employed in combination with MSTCNN. Specifically, 
we  incorporated and evaluated three widely used attention 
mechanisms (SE, CBAM, and ECA) into the convolution. At 
present, the attention mechanism has gradually become a boom 
in deep learning, and an increasing number of researchers are 
applying it to EEG signal processing. Deng et al. (57) improved 
the accuracy of major depressive disorder classification from 
91.24% to 94.37% by adding SE attention mechanism to 
one-dimensional convolution. Chen et al. used CBAM attention 
for ResNet34  in emotion recognition task, and the accuracy 
increased by 5.54% compared with ResNet34 (58). Jia et al. (59) 
proposed a spectral-temporal convolutional neural network with 
ECA attention, and the classification results showed that there 
was also a significant increase for the classification performance. 
By introducing these attention mechanisms, MSTCNN model can 
focus on more important features, further optimize the feature 
extraction process and enhance the performance and stability of 
the model.

4.3 Deep learning reveal the key 
frequency band for GAD diagnosis

Previous studies have reported a clear correlation between 
EEG rhythms and alternate EEG features in GAD patients (60). 
Additionally, our previous research has pointed to the importance 
of beta rhythms in GAD (20). Significantly higher accuracy was 
obtained for Beta rhythms in the high-frequency band compared 
to Theta and Alpha in the low-frequency band. Beta rhythms are 
associated with functions such as attention, cognitive control, 
and emotion regulation in the brain (61). Given that GAD often 
accompanies mood fluctuations, which may be the reason why 
beta sub-bands are prone to exhibit high accuracy in GAD and 
HC classification. In summary, different frequency bands had a 
significant impact on the classification results of GAD. A more 
universal regularity is that the higher the frequency range, the 
better the GAD classification performance.

Based on the above findings, we  attempted to expand the 
frequency bands to further explore key frequency bands for 
distinguishing GAD. Three extended frequency bands are 
extracted in this study: 13–30 Hz, 10–30 Hz, and 8–30 Hz. In 
contrast to the results of Beta2, the classification accuracy is 
considerably improved when using the 10-30 Hz frequency band 
with the accuracy of 99.47%, which has no statistical difference 
with the accuracy of the 4-30 Hz frequency band (F = 0.0099, 
p = 0.92; which was tested by one-way analysis of variance. If p is 
less than 0.05, there is a significant difference between groups. 
Otherwise, there is no significant difference). Wen et al. used the 
CNN model and EEG signals to identify cognitive impairment 
diseases, and also achieved the highest classification accuracy 
through three frequency band combinations (10–30 Hz) 
compared with other combinations (62). To the best of our 
knowledge, no prior research has utilized deep learning methods 
to explore the impact of different combined frequency bands on 
GAD classification. Our current results provide preliminary 
evidence supporting the importance of high-frequency bands in 
GAD identification and highlight the prominent advantages of 

the 10-30 Hz band. These findings will contribute to a more 
comprehensive understanding of the relationship between EEG 
frequency bands and GAD, and provide a new insight for the 
GAD diagnosis. The excellent classification performances of 
GAD detection at high frequencies can provide guidance for 
subsequent practical applications. For instance, we may choose 
to filter out low frequencies to effectively mitigate the noise and 
interference stemming from those bands when developing an 
EEG-based system for GAD diagnosis.

4.4 Limitation

Although the MSTCNN proposed in this study has 
demonstrated impressive capabilities in the identification of GAD 
and HC, it still has come with certain limitations. Firstly, the main 
manifestation is the sample size utilized in the study is relatively 
limited (45 participants for GAD and 36 participants for HC), 
which limits our effective verification of the robustness and 
generalization ability of the model. Secondly, our deep learning 
model appears to lack reasonable interpretability for GAD 
diagnosis. Thirdly, in real-life scenarios, the process in which 
hospitals collect EEG data may be some discrepancies, such as 
different EEG acquisition equipment and inaccurate placement of 
electrodes, which may lead to diagnostic performance decline. To 
more comprehensively evaluate the performance and 
generalization ability of the model, we will try to use more diverse 
data sources and explore deep learning model interpretability in 
follow-up studies.

5 Conclusion

In this study, an end-to-end deep learning MSTCNN model 
was proposed for the precise diagnosis of GAD based on EEG 
signals. Three widely used attention mechanisms were applied on 
MSTCNN model for the improvements of the classification 
performances. And different frequency bands were extracted to 
explore key frequency band in GAD diagnosis. Notably, MSTCNN 
combined with the attention mechanism of Squeeze-and-
Excitation Networks achieved an excellent classification 
performance, to the best of our knowledge, with the highest 
accuracy of 99.48%. More interestingly, it is found that higher 
frequency band can obtain higher accuracy in GAD recognition. 
The accuracy of the high-frequency band with 10-30 Hz has no 
statistical difference with the accuracy of the 4-30 Hz frequency 
band. This finding could simplify the signal processing process 
and reduce the complexity of low-frequency EEG data processing. 
In sum, this work can have a positive impact on the precise 
diagnosis of GAD and move a step forward towards the automatic 
diagnostic system of GAD.
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