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Communication between the immune and the nervous system is essential for 
human brain development and homeostasis. Disruption of this intricately regulated 
crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative 
disorders. While animal models have been essential in characterizing the role of 
neuroimmunity in development and disease, they come with inherent limitations 
due to species specific differences, particularly with regard to microglia, the major 
subset of brain resident immune cells. The advent of induced pluripotent stem cell 
(iPSC) technology now allows the development of clinically relevant models of the 
central nervous system that adequately reflect human genetic architecture. This 
article will review recent publications that have leveraged iPSC technology to assess 
neuro-immune interactions. First, we will discuss the role of environmental stressors 
such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial 
function. Next, we will review how iPSC models can be used to study genetic risk 
factors in neurological and psychiatric disorders. Lastly, we will evaluate current 
challenges and future potential for iPSC models in the field of neuroimmunity.
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1. Introduction

Historically, the brain was considered a site of immune privilege, with minimal immune 
cell activation and infiltration except during states of infection and disease. However, thanks 
to technological advances, it is now appreciated that continuous neuro-immune crosstalk is 
essential in maintaining brain homeostasis (1–3). Microglia, the brain resident immune cells 
perpetually survey the central nervous system (CNS), not only in defense against invading 
pathogens but also to phagocytose dying or malfunctioning cells as well as protein aggregates, 
to provide trophic support to neurons, and to shape neuronal activity (1, 4). The importance 
of neuro-immune interactions is underscored by the emergence of disease when this crosstalk 
is disrupted. Indeed, an increasing number of genetic risk factors for neurodegenerative 
disorders such as Alzheimer’s disease (AD) are found to be  located in genes essential for 
microglia function (5). Additionally, patients with psychiatric disorders such as major 
depressive disorder (MDD), schizophrenia (SCZ), or bipolar disorder (BD) often exhibit 
abnormally high levels of systemic inflammation and microglial activation compared to the 
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FIGURE 1

Stem cell models of neuro-immune interactions. Induced pluripotent stem cells (iPSC) can be differentiated into various types of brain resident cells 
including neuroprogenitor cells, neurons, astrocytes, and microglia. To study neuro-immune interactions, co-culture models have proven insightful. 
These can include adding conditioned medium from one cell type (e.g., iPSC-derived microglia) to cultures of another cell type (e.g., iPSC-derived 
neurons), direct co-culture of two or more cell types, or co-cultures using microfluidic or transwell systems to limit direct cell-to-cell contact. Brain 
organoids, with or without incorporation of microglia can also be used to study neuropsychiatric disorders. Lastly, transplantation of microglia or 
microglia precursor cells into rodent brains promotes maturation of the microglia and allows studying neuro-immune interactions in an in vivo setting. 
This image was created using Biorender.

general population (6, 7). Interestingly, elevation in circulating 
inflammatory markers can precede the symptom onset, for example 
the first episode of psychosis in SCZ, suggesting a mechanistic role 
for inflammation in disease etiology (8). Lastly, postmortem brain 
tissue from patients with psychiatric or neurodegenerative disorders 
often show signs of microglial and astrocyte activation, representative 
of an inflammatory state in the CNS (9, 10). Despite considerable 
advances in therapeutic care for neuropsychiatric disorders, disease 
mechanisms often remain incompletely understood, hampering the 
development of novel, curative clinical interventions.

Neuropsychiatric disorders are commonly attributed to the 
interplay of genetic predisposition and environmental exposure. This 
complex interaction is difficult to model in vitro and animal studies as 
they do not adequately reflect the genetic architecture and 
heterogeneity found in humans. Additionally, significant species-
specific differences exist with regard to the brain. Core microglia 
functions are conserved across evolution, but human microglia exhibit 
distinct transcriptional and functional programs, particularly with 
regard to disease associated genes (11). The advent of human 
embryonic or induced pluripotent stem cell (ESC and iPSC, 
respectively) technology has revolutionized the field of neuro-
immunology. Indeed, generation of various human neuronal and glial 
subtypes allows the study of neuro-immune interactions in clinically 
relevant models. In this article, we will briefly summarize current stem 
cell-based models of the CNS before reviewing studies assessing the 
role of environmental or genetic factors in neurological and 
psychiatric disorders. Finally, we  will discuss limitations of iPSC 
models and highlight potential for future studies.

2. Stem cell-based models of the 
human central nervous system

Over the past decade, a growing number of iPSC-based models of 
neuro-immune interactions have been published (Figure  1). It is 
beyond the scope of this article to summarize all available protocols, 
but the reader is referred to several excellent reviews comparing 
advantages and limitations for various protocols of iPSC-derived 
neurons (12, 13), microglia (14–16), and astrocytes (12, 17).

2.1. Neurons and brain organoids

Differentiation of iPSC into cortical neurons is typically achieved 
by forced expression of the transcription factor neurogenin-2 (NGN2) 
and exposure to growth factors and other molecules known to 
promote neurodevelopment (18). More recent protocols similarly 
allow development of other neuronal subtypes such as GABAergic 
neurons or glial cells like astrocytes or oligodendrocytes through 
transcription factor overexpression (19–21). Other protocols rely on 
the timed exposure to growth factors, hormones, and cytokines to 
differentiate iPSC into specific subsets of brain cells (22). While the 
latter approach may resemble embryonic development more 
accurately, the former approach allows faster and more consistent 
generation of cells (13). In addition to monocultures of various cell 
types, ESC or iPSC can also be differentiated into so-called brain 
organoids or spheroids—self-organizing 3D structures that 
recapitulate human embryonic brain development. These (often brain 
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region specific) organoids have initiated a new era in studying 
molecular cascades in the human brain and hold tremendous potential 
for further discoveries on human brain function in health and disease 
(23–25). In the initial stages, brain organoids largely consist of neural 
progenitor cells with mature neurons and astrocytes subsequently 
develop at later stages. Brain organoids functionally mature as 
evidenced by emergence of electrophysiological properties (26). 
However, brain organoids typically lack microglia due to their distinct 
embryonic origin—neuronal cell types are derived from the ectoderm 
while microglia derive from the mesoderm.

2.2. Astrocytes

Various protocols exist to generate astrocytes from iPSC. Often, 
a multistep process is applied; differentiating iPSC into neural 
progenitor cells (NPCs) followed by lineage commitment to astrocyte 
precursors that gradually mature into astrocytes (12, 17, 27). Since 
these protocols can be  time consuming, several groups have 
developed protocols to initiate immediate differentiation of iPSC into 
astrocytes. These protocols commonly rely on overexpression of 
lineage-driving transcription factors such as NFIA/B or SOX9 (19, 
28). Validation of astrocyte identity and functionality include 
assessment of astrocyte markers AQP4, S100B, or GFAP, response to 
inflammatory stimuli, glutamate uptake, and support of neuronal 
functions, for example evidenced through neuronal network 
maturation in co-culture models (19, 29–31). Generally, iPSC-
derived astrocytes in vitro resemble fetal human astrocytes more 
closely than adult human astrocytes (29, 30).

2.3. Microglia

Similar to astrocytes, iPSC-derived microglia (iMG) are 
commonly generated in a two-step manner by first initiating 
differentiation toward the mesoderm, generating erythromyeloid 
progenitor or hematopoietic progenitor cells before polarizing cells 
to a microglial state (14, 16, 32–34). Recent publications also 
demonstrate that microglia can be generated through overexpression 
of transcription factors such as CEBPB and/or PU.1. These protocols 
significantly reduce the time required for microglia development and 
may facilitate modification by molecular tools such as CRISPR (35, 
36). To validate functionality, iMG are often stimulated with a 
combination of lipopolysaccharide (LPS) and interferon (IFN)-γ 
which leads to secretion of pro-inflammatory cytokines (34, 36). It 
should be noted that LPS is a bacterial cell wall component and 
hence not necessarily a physiological stimulus. However, due to its 
well-defined downstream responses in monocytes, macrophages, 
and microglia, it remains commonly used. Other inflammatory 
stimuli such as IFN-γ or IL-1β lead to distinct, yet similar responses 
(32). Further hallmarks of functional microglia include phagocytosis 
of beads or other particles, migration to sites of injury and ADP/ATP 
evoked changes in calcium transients (15, 32, 34, 37). Sometimes, 
microglia are labeled as M1 or M2 microglia, mirroring the 
nomenclature historically used for inflammatory (M1; induced by 
IFN-γ stimulation) and anti-inflammatory (M2; induced by 
treatment with IL-4) macrophages. However, this naming system has 
received criticism as myeloid cell polarization occurs on a spectrum 
and in vivo phenotypes do not neatly correspond to an M1 or M2 

state. Therefore, it is now generally recommended to avoid these 
terms (38, 39). Technological advances in (single cell) RNA 
sequencing have allowed the characterization of microglial states 
found in physiological and pathological conditions. Transcriptomic 
signatures that are shared across disease-states and species have been 
developed. One example includes the disease associated microglia 
(DAM) phenotype, characterized by altered lysosomal and lipid 
metabolism. Microglia exhibiting DAM properties are enriched in 
postmortem brain tissue of patients with neurodegenerative 
disorders as well as their corresponding animal models (40, 41). 
Recent efforts have demonstrated that in vitro treatment of iMG with 
disease relevant stimuli (e.g., myelin debris, apoptotic neurons, or 
synthetic amyloid beta) can induce transcriptomic states comparable 
to those found in vivo, including the DAM signature (42). It should 
be  noted that the DAM signature, while widely used, is still 
controversial in the microglia research community (39).

2.4. Co-culture models

Interestingly, studies consistently demonstrate that iMG undergo 
significant functional maturation and resemble their in vivo 
counterpart more closely when they are co-cultured with neurons, 
integrated into brain organoids or transplanted into mouse brains (34, 
43–45). Conversely, when iMG are added to brain organoids, neuronal 
maturation is accelerated, exemplified by synapse pruning and 
acquisition of more mature electrophysiological properties (44, 46). 
Together, this highlights the importance of neuro-immune crosstalk 
for brain function. Transplantation of iMG or hematopoietic precursor 
cells into mouse brains to generate chimera is an especially useful 
model to study human microglial behavior in an in vivo model and 
holds great promise to identify novel therapeutic targets for many 
neuropsychiatric diseases. For example, transplanted human microglia 
are capable of phagocytosing myelin debris in the commonly used 
cuprizone model of multiple sclerosis (47), exhibit DAM signatures 
and migrate toward amyloid plaques in the 5XFAD model of 
Alzheimer’s Disease (43).

3. Modeling the impact of 
environmental stressors

In most cases, neuropsychiatric disorders are thought to arise 
through interplay of environmental and genetic risk factors (Figure 2) 
(48). Environmental stressors commonly associated with psychiatric 
or neurodegenerative disorders include early life adverse events, 
psychosocial stress, chronic low-grade inflammation, viral infections, 
and exposure to certain chemicals (48, 49). In this section, we will 
highlight iPSC-based studies that have assessed the impact of 
neurotropic viruses, inflammatory cytokines, or substances of abuse 
on neuroimmune function. For a summary, please refer to Table 1.

3.1. Infections of the CNS

Neurotropic pathogens are a major cause of disease burden yet 
remain difficult to study as animal models are often inadequate due to 
host-specific tropism. In recent years, iPSC models have bridged this 
gap and yielded important insight into disease mechanisms. In the 
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following paragraphs, we will highlight a few iPSC based studies of 
neuro-immune crosstalk evoked by neurotropic viruses. The reader is 
referred to current reviews on stem cell models of neurotropic 
infections for a more detailed discussion of the virology and neuronal 
responses (79, 80).

Perhaps one of the most studied neurotropic pathogens using 
iPSC-based models is Zika virus (ZIKV), a mosquito-borne flavivirus 
that, when transmitted to humans, can cause Guillain–Barré syndrome 
in adults and microcephaly in the developing human fetus (81). iPSC 
models were essential in demonstrating that human NPCs are 
particularly susceptible to ZIKV infection and in identifying potential 
therapeutic targets (82–84). Infection of NPCs or brain organoids 
leads to immediate upregulation of immune response pathways, 
particularly interferon and antiviral responses resulting in astrogliosis 
(50, 52, 53, 85). At later time points post infection, apoptosis and 
downregulation of transcripts related to nervous system development 
is observed, resulting in smaller sized organoids (51, 53, 86). 
Interestingly, quality and strength of the interferon response varies 
between different strains of ZIKV and is also distinct of the 
transcriptomic response induced by DENV despite many commonly 
affected pathways (50). Inhibiting inflammation or promoting 
interferon responses can partially rescue the detrimental effects 
imparted by ZIKV (52, 53, 86). Production of interferons may not only 

be  beneficial for neuronal function but also be  important for 
maintaining BBB integrity. Indeed, models of iPSC-derived human 
brain microvascular endothelial cells to study virus-BBB interactions 
have revealed that an inflammatory stimulus like LPS or TNF-α 
reduces barrier integrity and facilitates monocyte migration through 
the BBB while treatment with IFN-λ has the opposite effect (87).

Induction of interferon responses and its potentially beneficial 
effects have also been demonstrated in iPSC-models for other 
neurotropic pathogens including La Crosse virus (54), Japanese 
Encephalitis Virus (55), Toxoplasma gondii (56), and Herpes Simplex 
Virus (HSV) (58). For example, HSV infection of iPSC-derived NSCs 
or neurons resulted in apoptosis and impaired neuronal differentiation, 
which was also validated in brain organoid models where HSV led to 
reduced cortical plate thickness and gliosis (57). Interestingly, 
integration of microglia in a choroid plexus organoid model limited 
viral load and barrier disruption induced by HSV. This protective 
effect was conferred through cGAS-STING pathway activation in 
microglia, resulting in IFN-α secretion (58).

Lastly, iPSC-derived brain cells are also an excellent model to 
study glia-tropic viruses. For example, accumulating data, including 
from iPSC models, suggest that SARS-CoV-2 can infect and replicate 
in astrocytes, and readily elicit antiviral and inflammatory responses 
in astrocytes and microglia (60–62, 88). Another prominent example 

FIGURE 2

Gene  ×  environment interactions in neuropsychiatric disorders. Many neuropsychiatric disorders arise from complex interplay of genetic predisposition 
and environmental exposure. Genetic risk factors include single nucleotide polymorphisms with small or large effect size that together may result in a 
high polygenic risk score. Copy number variations or aneuploidy can also increase the risk for neuropsychiatric disorders. Known environmental risk 
factors include certain chemicals, systemic inflammation, substances of abuse, traumatic brain injuries, adverse life events and neurotropic infections, 
among others. iPSC models can be used to study genetic risk factors, either by using patient-derived iPSC or by introducing known genetic risk 
variants, for example using CRISPR. Environmental risk factors can be studied by addition of risk substances to in vitro cultures or by transplantation of 
iPSC into animal models of neuropsychiatric disorders. Lastly, the interaction of genetic and environmental risk factors can be modeled using iPSC by 
combination of the above described techniques. This image was created using Biorender.
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of glia specific viral infection is HIV, where replication competent 
virus likely persists in microglia even in the presence of effective 
antiretroviral therapy (89). These viral reservoirs in the CNS, together 
with systemic changes in the microbiome and immune system, likely 
contribute to HIV associated neurocognitive dysfunction, also known 
as HAND (90). Stem cell models have replicated in vivo findings 
showing that HIV does not infect iPSC-derived neurons or astrocytes 

but can readily infect iMG. Infection occurred preferentially with 
macrophage-tropic strains compared to T cell-tropic strains and 
induced pro-inflammatory cytokines upon infection (64–66). 
Incorporation of HIV-infected microglia also led to cell death and 
reduced synapse density (67). Treatment of HIV-infected iMG with 
clinically used anti-retrovirals reduced the viral load but only partially 
rescued the virus-induced inflammation and cytokine production 

TABLE 1 Stem cell models evaluating environmental stressors in neuro-immunity.

Environmental 
stressor

Cell type Effect of stressor in iPSC model References

Neurotropic viruses

Zika virus NPCs Upregulation of immune response pathways including interferon and 
inflammatory responses (50)

Cranial neural crest cells Production of LIF, IL-6, and VEGF; only low levels of interferons produced (51)

Brain organoids ± microglia Upregulation of immune response pathways including interferon and 
antiviral responses; microglia become ameboid; and increased synaptic 
pruning

(52, 53)

La Crosse virus Brain organoids Upregulation of interferon response genes; treatment with type I interferons 
reduced viral-induced cell death

(54)

Japanese encephalitis 
virus

Brain organoids Upregulation of interferon response genes and production of IFN-β (55)

Toxoplasma gondii Brain organoids Upregulation of type I interferon responses (56)

Herpes Simplex Virus Brain organoids Upregulation of inflammatory genes (57)

Choroid plexus organoids with 
incorporated microglia

HSV leads to upregulation of the cGAS-STING pathway in the microglia, 
resulting in secretion of IFN-α. This limits viral load and HSV-induced 
barrier disruption.

(58)

Cytomegalovirus Brain organoids Upregulation of immune response genes (59)

SARS-CoV-2 Microglia, brain organoids Upregulation of antiviral and inflammatory responses, mainly by microglia 
and astrocytes.

(60–63)

Human 
immunodeficiency virus

Microglia More susceptible to macrophage-tropic than T cell tropic HIV; sustain viral 
replication; and production of pro-inflammatory cytokines

(64–66)

Brain organoids + microglia (cell line) Pro-inflammatory cytokine production; apoptosis; reduced synapse density (67)

Cytokines

IFN-γ NPCs Upregulation of anti-viral, antigen presentation and innate immune 
response genes; increased neurite length and number

(68)

Astrocytes Increased secretion of complement component C4 (69)

IL-6 Neurospheres Apoptosis; premature neuron formation (51)

Neurons Gliogenesis; JAK–STAT activtion (70)

Brain organoids Gliogenesis; upregulation of immune response genes, particularly in radial 
glia

(71)

LIF Neurospheres Apoptosis; premature neuron formation (51)

IL-1α, TNF-α, and C1q Astrocytes Upregulation of immune response genes; secretion of pro-inflammatory 
cytokines; reduced phagocytosis; reduced glutamate uptake; impaired 
support of neuronal function; increased neurotoxicity

(29, 31, 72)

Similar phenotypes also observed with other combinations of pro-
inflammatory cytokines

(73–75)

Substance use disorder

Oxycodone Brain organoids Upregulation of type I interferon response genes, particularly in choroid 
plexus cells

(76)

Methamphetamine Brain organoids Upregulation of immune response genes; production of IL-6; astrogliosis; 
and NLRP1 expression in astrocytes

(77)

Toxicants

Cadmium Brain organoids Upregulation of JAK–STAT signaling; IL-6 production; astrocyte activation (78)
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(65), highlighting the potential of iPSC to generate clinically relevant 
models for HAND. Undoubtedly, future iPSC-based studies will yield 
further insight into the mechanisms of the neurotropic infections 
discussed here. They also hold great potential for examining neuro-
immune interactions of less studied neurotropic viruses such as 
Powassan or Nipah virus.

3.2. The role of cytokines in shaping 
neuro-immune interactions

Several of the above summarized studies also examined the direct 
effects of virus-induced cytokines on neuronal function. Indeed, 
treatment of neurospheres with LIF or IL-6 (cytokines upregulated 
after ZIKV infection) led to apoptosis and premature neuron 
formation which could be a mechanism contributing to microcephaly 
in vivo (51). Clinically, high levels of circulating IL-6 have been 
associated with psychiatric disorders such as MDD or BD (7). IL-6 is 
also a hallmark cytokine of maternal immune activation (MIA), an 
umbrella term to describe the epidemiological link between sterile or 
infection-induced inflammation during pregnancy with higher rates 
of neuropsychiatric disorders in the off-spring (91). Modeling MIA in 
vitro is challenging as disease etiology is incompletely understood but 
treatment of developing brain cells with pro-inflammatory cytokines 
linked to MIA has yielded valuable mechanistic insight. Indeed, 
transient exposure to IL-6 during long-term neuronal culture or brain 
organoid development increases GFAP expression and gliogenesis (71, 
70). Radial glia are particularly responsive to IL-6 and upregulate 
transcripts enriched in protein translation and immune response 
pathways (71). IFN-γ is another key cytokine implicated in MIA and 
associated with neurodevelopmental disorders like autism spectrum 
disorder (ASD). Transient exposure of NPCs to IFN-γ increased 
neurite length and neurite number (68). Additionally, not only were 
anti-viral, innate immune response and antigen presentation pathways 
upregulated, the transcriptomic changes induced by IFN-γ also 
showed significant enrichment for ASD and SCZ risk genes (68).

It is becoming increasingly apparent, that astrocytes are quickly 
adapting to changes in their environment and that different astrocyte 
states can have beneficial or detrimental roles in many neuropsychiatric 
disorders (92, 93). A landmark study by Liddelow et  al. (94) 
demonstrated that the secretion of pro-inflammatory cytokines by 
stimulated microglia in turn activates astrocytes, so-called reactive 
astrocytes that are neurotoxic. In vitro, reactive astrocytes can 
be  generated by treating astrocytes with a combination of the 
cytokines IL-1α, TNF-α, and the complement component C1q (29). 
Such stimulated astrocytes are often referred to as A1 reactive 
astrocytes, while A2 reactive astrocytes are considered more 
neuroprotective, mirroring the nomenclature used for activated 
myeloid cells (94). However, as mentioned above, binary division of 
glial cell states does not necessarily correspond to glial phenotypes in 
vivo and may significantly mask the complexity of their malleability 
and should therefore be  avoided (95). Indeed, a recent study 
performing CRISPR droplet sequencing of iPSC-derived astrocytes 
treated with IL-1α, TNF-α and C1q identified two distinct 
transcriptomic clusters of reactive astrocytes which were characterized 
by IL-1/IL-6 or TNF/IFN driven signaling, respectively (31). While 
the presence of these two clusters was validated across different 
models and species using publicly available transcriptomic data, if and 

how these cell states are functionally divergent remains to 
be determined. Initial studies examining astrocyte activation were 
performed using animal models and postmortem brain tissue. Despite 
significant inter-species differences in astrocyte function (96, 97), 
iPSC-based models of human astrocytes consistently validate that 
reactive astrocytes secrete proinflammatory cytokines, display 
decreased phagocytosis, reduced glutamate uptake, impaired support 
of neuronal function, and heightened neurotoxicity (29, 31). These 
phenotypic changes are generally also observed when other 
pro-inflammatory cytokine cocktails are used for glial activation, 
although the dynamics and strengths of astrocyte polarization may 
vary (73–75). Interestingly, astrocyte activation includes upregulation 
of molecules involved in antigen-presentation (72, 75), supporting 
that astrocytes may play a crucial role in recruitment and activation 
of peripheral immune cells (98). iPSC-derived astrocytes have also 
been instrumental in identifying surface markers for human astrocytes 
[CD49f as pan-astrocyte marker (29) and VCAM1 as reactive 
astrocyte marker (31, 72)] which will undoubtedly propel future 
studies by permitting isolation and further characterization of specific 
cell subsets. Additionally, surface markers facilitate staining and 
ensuing quantification of cell populations, for example demonstrating 
that VCAM1+ astrocytes are enriched in human postmortem brain 
tissue from patients with hypoxic–ischemic encephalopathy but not 
AD (31). Lastly, iPSC-based models of astrocyte activation provide a 
platform to screen compounds with therapeutic potential in 
neuroinflammation (69, 75).

Despite all the above summarized evidence for gliosis and 
neurotoxicity induced by cytokines, it is worth noting that homeostatic 
cytokine signaling is essential for neuro-immune crosstalk and 
survival of brain cells and modulation of neuronal function (99). 
Indeed, iPSC-based models of glia cell development rely on the 
addition of cytokines to achieve successful differentiation into the 
desired cell types. Increasingly, stem cell models are developed to 
characterize the homeostatic and beneficial roles of cytokines. For 
example, using a microfluidic device containing iPSC derived 
microglia on one side and iPSC derived neurons and astrocytes on the 
other side, McAlpine et al. elegantly demonstrated that IL-3 secreted 
by astrocytes induces increased migration of microglia; this IL-3 
dependent activation provided benefits in a mouse model of AD 
through reduced plaque burden (100).

3.3. Neuroinflammation in iPSC-based 
models of substance use disorders

Induced pluripotent stem cell models are also being developed to 
study molecular effects of substances of abuse on neuronal function. 
Several substances of abuse induce inflammatory responses in brain 
organoids supporting a role for neuroinflammation in long-term 
health outcomes of substance use disorders. For example, treatment 
of brain organoids with methamphetamine led to upregulation of 
immune response pathways and cytokine signaling, including 
production of IL-6 and astrogliosis (77). Similarly, exposure to 
oxycodone led to induction of type I interferon response pathways in 
a brain organoid model, particularly in cells annotated as choroid 
plexus cells (76). Ethanol exposure as a model of alcohol use disorder 
led to NLRP3 inflammasome activation in NPCs (101). Lastly, 
treatment of iMG with a synthetic μ-opioid receptor agonist induced 
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pro-inflammatory responses including inflammasome activation, 
cytokine secretion and morphological remodeling (102). Interestingly, 
these effects could be partially reversed with a cannabinoid receptor 2 
agonist. Given the increasing number of states legalizing cannabis and 
the well documented association between cannabis consumption and 
SCZ, further studies will be required to determine mechanisms of the 
CNS immune response to cannabinoids and other substances of abuse 
and assess whether neuroinflammation could be a suitable target for 
treating substance use disorders.

4. Modeling the impact of genetic 
variation on neuroimmunity in 
neuropsychiatric disorders

While exposure to environmental stressors significantly 
increases the risk for neuropsychiatric disorders, the individual 
genetic architecture is important in disease etiology. Genetic 
architecture describes the sum and complex interaction of all genetic 
variations, such as single nucleotide polymorphisms and copy 
number variations that contribute to (disease) phenotypes (103). 
The heritability for psychiatric and neurodegenerative disorders is 
substantial (104, 105). The following sections will discuss the role 
iPSC models have played in furthering our understanding of genetic 
risk variants in neuroimmunity. Please refer to Tables 2, 3 for a 
comprehensive overview.

4.1. Understanding monogenetic risk 
factors for neuropsychiatric disorders

Many neurodegenerative and psychiatric disorders have complex 
underlying etiology. However, certain single gene mutations are 
known to significantly increase the risk for certain disorders. For 
example, while most cases of AD are sporadic, familial cases of AD are 
typically caused by mutations in APP, PSEN1, or PSEN2. Additionally, 
GWAS have identified allelic variation in APOE or SNPs in TREM2 
as strong genetic risk factors for AD (142).

4.1.1. Alzheimer’s disease
Apolipoprotein E (APOE) is a lipid transporter involved in 

cholesterol metabolism. Its allele ε4 (APOE4) is a significant risk 
factor for sporadic AD while APOE2 is considered protective in 
comparison to the common APOE3 variant (142). Therefore, several 
studies have used CRISPR-Cas technology to generate iPSC with 
isogenic pairs of APOE2, APOE3, and APOE4 variants. These studies 
consistently demonstrated that compared to APOE3, APOE4 carrying 
microglia and astrocytes had disrupted lipid metabolism with higher 
number of lipid droplets, increased intracellular cholesterol content 
and reduced uptake of LDL (106–109). Additionally, APOE4 carrying 
iMG displayed reduced oxygen consumption and glycolytic activity 
(110). Importantly, the impact of APOE allelic variation may be more 
subtle in neurons and brain microvascular endothelial cells (108), 
highlighting the importance of glial cell dysfunction in AD. Indeed, 
unbiased transcriptomic and proteomic analyses have revealed 
significant differences in immune response pathways between APOE3 
and APOE4 glia. Specifically, inflammatory signatures are already 
elevated at baseline in APOE4 carrying astrocytes or microglia and 

treatment with pro-inflammatory stimuli induces excessive 
pro-inflammatory cytokine secretion in APOE4 compared to APOE3 
glia, while APOE2 or APOE KO astrocytes have reduced cytokine-
responses (106, 111, 108, 110). APOE allelic variation has also been 
shown to impair neuronal support functions of glia. Direct co-culture 
or addition of microglia conditioned medium onto APOE3 neuronal 
cultures led to reduced calcium flux and impaired neuronal network 
activity when the microglia harbored the APOE4 variant compared to 
the APOE3 genotype (109). Importantly, APOE4 glia also showed 
reduced phagocytic uptake of Aβ42 (106, 111). Using iPSC from a 
patient afflicted by spontaneous AD carrying the APOE4 risk variant, 
Lin et al. (111) demonstrated that editing to APOE3 genotype was 
sufficient to improve microglial Aβ42 uptake.

Homozygous TREM2 variants are associated with Nasu-Hakola 
Disease—a form of early-onset dementia—while heterozygous 
variants are linked to AD (142). Like APOE, TREM2 is involved in 
lipid metabolism and a particular role for TREM2 has been ascribed 
to glia. iPSC-derived microglia carrying AD-associated TREM2 
mutations generally display TREM2 mis-localization as well as 
reduced levels of mature and secreted TREM2 (117, 118, 120). 
Interestingly, TREM2 and APOE functions seem to be  tightly 
interlinked. TREM2 KO iMG showed reduced expression of APOE 
and multi-omic analyses identified APOE as a central regulatory 
node affected in TREM2 KO iMG (112, 122). Hence, it may not 
be surprising that TREM2 variant or TREM2 KO microglia mirror 
several aspects of APOE variant glia phenotypes, including altered 
lipid metabolism and reduced phagocytosis. Microglia carrying 
TREM2 risk variants or TREM2 KO demonstrated impaired 
cholesterol clearing (113), aberrant calcium signaling (112, 114, 116) 
as well as lower glycolytic and respiratory capacity (116, 119). TREM2 
KO iMG are also more susceptible to cell death and exhibit less 
complex branching than WT iMG (112–114, 118). Microglia with 
TREM2 KO or TREM2 risk variants consistently display reduced 
phagocytosis of disease-relevant particles such as Aβ fibrils, dying 
cells, myelin or synaptosomes (112, 113, 118, 119). Furthermore, 
microglial migration toward and clearance of amyloid plaques was 
impaired in vitro or when transplanted into AD mouse models (112). 
Interestingly, some studies found no difference in phagocytosis of 
E.coli particles (117, 118), highlighting the importance of tailoring 
experimental designs to the disease context. Difference in 
experimental setups may also explain the conflicting data on the role 
of TREM2  in cytokine production which has been shown to 
be inhibitory or activating in different studies (113, 118). Lastly, these 
models of AD neuroimmunity have served as a tool to identify 
potential therapeutic targets and validate candidate drugs in a 
clinically relevant model. For example, van Lengerich et al. (143) 
generated a modified anti-TREM2 antibody and undertook extensive 
characterization in mouse models to demonstrate its ability to cross 
the BBB and enhance TREM2 signaling. Importantly, key findings 
were validated using human iPSC-derived microglia suggesting its 
potential for pharmacological use in human AD patients.

Trisomy 21 (also known as Down Syndrome; DS) is another 
major genetic risk factor for the development of AD. In DS 
patients, Aβ deposition and tau pathology can appear in their 30 
and 40s, significantly earlier than in sporadic AD cases (144). Jin 
et  al. (125) developed an immune competent brain organoid 
model of DS by combining healthy control NPCs with primitive 
macrophage precursors from DS patients or controls. Comparable 
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numbers of microglia were observed after 4 weeks of co-culture. 
Higher numbers of PSD95+ puncta in the DS microglia 
containing organoids indicated excessive synapse pruning by DS 
microglia that was also apparent when DS or control microglia 

were transplanted into mouse brains. Additionally, DS microglia 
impaired neuronal network activity which could be  partially 
restored by blocking interferon signaling. Altered neuro-
immunity has also been observed in iPSC models examining 

TABLE 2 iPSC modeling genetic risk factors affecting neuroimmunity in neurodegenerative diseases.

Gene/genomic region 
and associated clinical 
phenotypes

Cellular 
function 
assessed

Effect of mutation in iPSC model References

Alzheimer’s disease

APOE: APOE4 increases risk for 

AD compared to APOE3; APOE2 

is protective

Phagocytosis Compared to APOE3 cells, microglia and astrocytes carrying APOE4 have reduced phagocytosis of Aβ42. (106, 111)

Cellular metabolism Compared to APOE3 cells, microglia and astrocytes carrying APOE4 have more lipid droplets, increased 

intracellular cholesterol content and reduced uptake of LDL. APOE4 microglia also have reduced oxidative and 

glycolytic metabolism.

(106–110)

Cytokine production Compared to APOE3 cells, microglia and astrocytes carrying APOE4 secrete higher levels of pro-inflammatory 

cytokines in response to stimulation. APOE knockout or APOE2 astrocytes secrete less cytokines.

(106, 108, 110, 111)

Neuronal support APOE4 microglia reduce calcium flux and neuronal network activity in co-culture models. (109)

TREM2: Homozygous variants 

associated with Nasu-Hakola 

disease; heterozygous variants 

linked to AD

Morphology TREM2 KO microglia have less complex branching. (112–114)

Chemotaxis TREM2 KO microglia have increased motility in response to ADP compared to WT cells. KO or inhibition of 

TREM2 also leads to reduced migration to Aβ or AD neurons and less clustering around Aβ plaques.

(114–116)

Phagocytosis TREM2 risk variant microglia have comparable phagocytosis of E. coli particles but reduced phagocytosis of 

dying cells, Aβ fibrils, myelin, synaptosomes. Neuronal debris accumulates in TREM2 KO microglia.

(112, 113, 116–119)

Cellular metabolism Microglia with TREM2 KO or TREM2 risk variants show lipid accumulation, reduced clearance of cholesterol, 

and lower glucose and oxygen metabolism. Other studies showed lower numbers of lipid droplets in vitro and 

reduced lipid accumulation in TREM2 variant microglia after transplantation into mouse brain.

(113, 116, 119–121)

Calcium flux TREM2 KO microglia have increased and more sustained calcium flux and more pronounced depletion of ER 

calcium stores in response to ADP, ATP, or UTP stimulation. They also have higher expression of ADP 

receptors P2Y12 and P2Y13. However, they show reduced calcium transients after stimulation with CXCL12.

(112, 114, 116)

Immune activation TREM2 risk variant microglia have reduced expression of antigen presentation and immune activation 

molecules.

(112, 120)

Cytokine production Different studies show that microglia with TREM2 risk variants or KO have comparable, reduced or increased 

secretion of cytokines after stimulation with LPS, LPS/ATP, LPS/IFN-γ, apoptotic cells, zymosan, or myelin.

(113, 117–119)

Viability TREM2 KO or risk variant microglia show reduced survival. (112, 113, 118)

PLCG2: variants associated with 

reduced risk for AD

PLCG2 KO microglia recapitulate many features of TREM2 KO microglia including altered lipid metabolism, 

reduced cell survival, reduced phagocytosis of myelin, and reduced pro-inflammatory cytokine secretion.

(113)

SORL1: risk variants associated 

with AD

Microglia with SORL1 risk variants have reduced uptake of Aβ and cluster less around Aβ plaques when 

transplanted into mouse brain.

(122)

PSEN1: mutations linked with 

rare, early onset familial AD

Microglia with PSEN risk variants have increased chemotaxis and reduced cytokine secretion in response to 

LPS/IFN-γ stimulation.

(110)

APP: mutations linked with rare, 

early onset familial AD

Microglia with APP risk variants have reduced calcium transient responses to ADP. They also show increased 

chemotaxis and reduced cytokine secretion in response to LPS/IFN-γ stimulation. NPCs with APP risk 

variants accumulate Aβ40 and pro-inflammatory cytokines in long-term in vitro cultures. In the presence of 

microglia, APP risk variant interneurons produce more C3 than control neurons.

(110, 123, 124)

Trisomy of chromosome 21 

(Down Syndrome) increases the 

risk for early onset AD

Microglia derived from patients with Down Syndrome show increased synapse pruning and impair neural 

network activity when transplanted into brain organoids or mice.

(125)

Amyotrophic lateral sclerosis

C9orf72: hexanucleotide repeat 

expansion increases risk for ALS

Phagocytosis C9orf72 mutant or KO microglia display reduced phagocytosis and autophagy. (126)

Immune activation In C9orf72 mutant microglia, NLRP3 and nuclear NF-κB are retained longer following LPS stimulation. 

Transcriptomic analysis also supports increased inflammation.

(126, 127)

Cytokine production C9orf72 mutant or KO microglia have increased cytokine secretion in response to TLR stimulation. (126)

Neuronal support C9orf72 mutation in microglia leads to significant neuronal death in co-culture model with motor neurons. (126, 127)

FUS: risk variants associated with 

ALS

Immune activation Transcriptomic analysis suggests increased inflammation in FUS variant microglia. (127, 128)

Cytokine production Limited data suggests cytokine production may be altered in FUS variant microglia but not astrocytes. (129, 130)

Calcium flux FUS mutant microglia show higher calcium flux in response to UDP. (128)
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other genetic risk factors for AD such as mutations in PLCG2, 
SORL1, PSEN1, or APP (110, 113, 122, 145).

4.1.2. Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is characterized by progressive 

loss of motor neuron function. A significant proportion of patients 
also display symptoms of frontotemporal dementia (FTD) (146). 
Several studies have employed iPSC to illuminate the role of ALS/FTD 
associated risk variants in neuro-immune crosstalk. Hexanucleotide 
repeat expansion in the intronic region of C9orf72 is the highest 
genetic risk factor for ALS/FTD. Comparing iMG derived from ALS 
patients with the C9orf72 mutation to their isogenic (reverted to 
normal C9orf72) counterparts, Banerjee et al. observed that mutant 
C9orf72 led to reduced C9orf72 protein expression (126). Indeed, 
C9orf72 mutant iMG were comparable to C9orf72 KO iMG in many 
aspects: compared to control iMG, pro-inflammatory cytokine 
secretion was elevated in response to TLR stimulation while 
phagocytosis and autophagy were reduced. Independent studies also 
suggested that microglia derived from ALS-patients or carrying 
ALS-associated mutations in FUS, are more pro-inflammatory than 
controls (129, 130). Importantly, this in vitro phenotype may 
contribute to the motor neuron death observed in affected patients as 
the C9orf72 mutation in microglia led to significant neuronal death 
in a co-culture model of iMG and motor neurons (126). Lastly, a 
recent cross-species meta-analysis found that astrocytes in ALS 
animal models as well as astrocytes derived from ALS patients or 
engineered to have ALS-associated mutations in VCP, FUS, SOD1, or 
C9orf72 shared transcriptomic signatures of increased inflammation 
and reduced neuronal support functions (127).

4.1.3. Rare monogenetic disorders
Induced pluripotent stem cell models have also been incredibly 

successful in providing insight into rare monogenetic disorders. 
The following paragraph will highlight a few of these studies. 
Pluvinage et al. generated iPSC-derived microglia carrying NPC1 
mutations that are known to cause Niemann-Pick type C 
disease—a rare lysosomal storage disorder affecting multiple 
organs including the CNS with symptoms comprising ataxia, 

dementia, and seizures (147). Compared to WT microglia, NCP1 
mutant cells had limited lysosome formation and lipid droplet 
accumulation (148). By combining cell line, animal and iPSC 
models with postmortem human brain data, the authors were able 
to identify anti-CD22 antibody treatment as a potential 
therapeutic avenue for Niemann-Pick Disease as it was able to 
restore lysosome and cholesterol metabolism in NCP1 mutant 
microglia without affecting functionality of human iPSC-
derived oligodendrocytes.

Giordano et al. assessed the impact of TREX1 or RNASEH2B loss 
on astrocyte function. Mutation in either of these two genes leads to 
Aicardi-Goutières syndrome (AGS) an inflammatory disorder 
characterized by increased type I  interferon activity leading to 
neurodevelopmental delays (149). Compared to WT astrocytes, 
TREX1 or RNASEH2B KO cells show signs of excessive inflammation, 
with activation of STING and NLRP3 related pathways and increased 
secretion of pro-inflammatory cytokines such as CXCL8. These 
heightened interferon responses were likely induced by excessive DNA 
damage in the KO astrocytes. This phenotype is also mirrored in 
iPSC-derived astrocytes from AGS patients. Importantly, interferon 
pathway upregulation seems to be cell type specific as HC and AGS 
neurons are largely comparable, at least on the transcriptomic level. 
Supporting a disease-causing role for astrocytes in AGS, conditioned 
medium from TREX1/RNASEH2B KO or AGS patient astrocytes 
induces DNA damage and cell death in neuronal cultures. This could 
be prevented by using neutralizing antibodies against TNF-α, IL-1β, 
or CXCL8, suggesting potential therapeutic avenues.

Allison et al. examined the role of glia in spinal muscular atrophy 
(SMA) which is caused by loss of function mutations in SMN1 (150). 
Compared to astrocytes derived from healthy controls, astrocytes 
generated from SMA patient iPSCs express higher levels of the 
transcription factor GATA6 (151). Increased expression of GATA6 in 
turn drives upregulation of the transcription factor NF-κB as well as 
secretion of IL-6 and complement cascade members C1q and C3. 
Hyperinflammation was also observed in SMA patient-derived 
microglia. Importantly, SMA astrocyte conditioned medium induced 
neurotoxicity in iPSC derived motor neurons that could be prevented 
by knockdown of GATA6 in astrocytes.

TABLE 3 Patient derived stem cell models of neuro-immunity in psychiatric disorders.

Cell type Effect of patient genetic background in iPSC model References

Schizophrenia

Microglia SCZ patient derived microglia have increased phagocytosis, cytokine production, expression of drivers of inflammation and a 
transcriptomic signature consistent with immune activation.

(131, 132)

Astrocytes SCZ patient derived astrocytes have increased cytokine production and a transcriptomic signature consistent with immune activation 
including increased antigen presentation. Compared to control astrocytes, they induce less migration of regulatory T cells.

(133, 134)

Neurons SCZ patient derived cortical interneurons have persistent reduction in respiratory capacity after exposure to microglia conditioned 
media and display lower SYN1 density. Co-culture of SCZ patient derived microglia with neurons reduces neuronal spine density. If 
the neurons are derived from SCZ patients, synapse pruning is also increased. SCZ patient derived neurons secrete high levels of 
ICAM1 and have high expression of antigen presentation molecules.

(131, 132, 
135–137)

Bipolar disorder

Astrocytes BD patient derived astrocytes have higher IL-6 production at baseline and following stimulation with IL-1β. They reduce neuronal 
network activity in an IL-6 dependent manner in a co-culture model.

(138)

Brain organoids BD patient derived organoids are smaller, have reduced respiratory activity and upregulation of immune response genes including 
interferon signaling and antigen processing pathways.

(139, 140)

Autism spectrum disorder

Microglia ASD patient derived microglia transplanted into mouse brains show higher soma size and thicker primary processes. (141)
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4.2. Modeling complex genetic interplay

The above-described studies assessing the impact of single gene 
mutations have been tremendously helpful in furthering our 
understanding of disease mechanisms and identification of potential 
therapeutic targets. However, most patients affected by 
neuropsychiatric disorders do not present with a known single 
disease-causing genetic mutation. This is particularly true for 
psychiatric disorders like MDD or SCZ where genetic contribution is 
typically assessed using polygenic risk scores comprising several loci 
across the human genome. Importantly, some of the associated loci 
have not yet been fully characterized and the mechanistic impact on 
disease development is unknown. Additionally, many of the risk loci 
are in non-coding regions of the genome, suggesting a complex 
genetic interplay beyond single gene gain-of-function or loss-of-
function mutations. Given that iPSCs recapitulate the complex genetic 
architecture of an individual, they present an ideal model system to 
study polygenic contributions to neuropsychiatric diseases.

4.2.1. Schizophrenia
Schizophrenia is characterized by chronic peripheral low-grade 

inflammation and microglial activation (6–9). Indeed, several studies 
have shown that microglia and astrocytes derived from SCZ patients are 
in a hyperactive state characterized by an inflammatory transcriptomic 
signature, elevated secretion of pro-inflammatory cytokines and increased 
phagocytosis (131–133). These phenotypic alterations in microglia have 
important implications for neuronal function. Indeed, co-culture of 
neurons with SCZ derived iMG leads to significant reduction in neuronal 
spine density compared to co-culture with control microglia (131, 132). 
Importantly, studies have demonstrated that the crosstalk between 
neurons and microglia is impacted by the genetic SCZ background in 
both cell types. Indeed, a co-culture model of neurons and microglia 
revealed that risk variants associated with SCZ in the complement 
component C4 increased microglial phagocytosis of synapses when 
present in neurons while it did not have an effect when only present in the 
microglia (132). Additionally, although exposure to conditioned media 
from activated microglia leads to metabolic remodeling in both healthy 
control and SCZ derived cortical interneurons, HC neurons quickly 
recover while the reduced respiratory activity and capacity persists in SCZ 
neurons (137). Inflammatory stimulation also evokes distinct responses 
in SCZ iPSC derived brain organoids where treatment with TNF-α leads 
to a decrease in calretinin+ interneurons compared to an increase in HC 
organoids (152). Taken together, these data support a model where a SCZ 
genetic background increases sensitivity to inflammatory stimuli and 
simultaneously increases intrinsic inflammatory activation. Interestingly, 
iPSC models also suggest that SCZ specific alterations in CNS resident 
cells may alter recruitment of peripheral immune cells. Compared to 
controls, SCZ-derived neurons secreted high levels of ICAM1 (135). 
Elevated ICAM1 levels have been implicated in breakdown of the BBB 
and leukocyte infiltration to the brain and have also been associated with 
SCZ (153). Stimulation with IL-1β led to upregulation of inflammatory 
genes in both healthy and SCZ-derived astrocytes. Ensuing chemokine 
secretion also induced migration of regulatory T cells in an in vitro model 
(134). The migration of these generally anti-inflammatory cells was 
dampened when the astrocytes were generated from patients with SCZ, 
potentially due to limited secretion of chemokine CCL20 compared to 
healthy control cells. Lastly, SCZ organoids and glia were found to have 
transcriptomic upregulation of antigen presentation pathways (133, 136), 
which are important for activation of adaptive immune cells (154). 

Together, these data suggest that influx and activation of immune cells 
into the CNS may be generally increased in SCZ while recruitment of 
anti-inflammatory immune cells may be limited, skewing the balance 
towards an inflammatory milieu.

4.2.2. Bipolar disorder
Bipolar disorder (BD) is characterized by periods of depression 

and mania (155). Peripheral and CNS inflammation is present in BD 
and autoimmune diseases such as Systemic Lupus Erythematosus 
increase the risk for developing BD (156). Many different aspects of 
immune signaling are altered in BD, including elevated inflammasome 
activity, increased indoleamine 2,3-dioxygenase levels in turn 
promoting conversion of tryptophan to kynurenine and high levels of 
reactive oxygen species to name just a few (157). Several studies have 
observed upregulation of immune response genes in NPCs, brain 
organoids, or astrocytes derived from BD patients compared to 
controls (138–140). For example, NPCs from BD patients have higher 
expression of NLRP2 (158) and BD derived astrocytes produce more 
IL-6 at baseline and after exposure to a pro-inflammatory stimulus 
(138). Co-culture models further demonstrated that BD astrocytes 
interrupted homeostatic neuronal network activity, which was at least 
partially driven by high levels of secreted IL-6. Interestingly, BD 
patients also have higher plasma levels of IL-6, supporting the clinical 
relevance of the iPSC model (7). Following this line of thought, iPSC 
models have also been instructive in assessing mechanisms of 
clinically used pharmaceuticals. Treatment of brain organoids from 
BD patients with lithium – a commonly used compound in 
maintenance treatment of BD which is difficult to appropriately study 
in animal models (159) – led to increased organoid size and partial 
normalization of electrophysiological properties that had been 
impaired compared to control organoids (140). A detrimental role for 
IL-6 has also been found in iPSC models of ASD. As in BD, 
ASD-derived astrocytes secreted high levels of IL-6 compared to 
control cells and blockage of IL-6 partially restored the detrimental 
effects of ASD astrocytes on neuronal synaptogenesis (160).

4.2.3. Other neuropsychiatric disorders
Although ASD and MDD are strongly associated with maternal 

immune activation and peripheral inflammation (91, 161), to date 
surprisingly few studies have employed iPSC technology to assess 
neuro-immune crosstalk in these disorders (162). A recent study 
developed a xenotransplantation model of immunocompetent brain 
organoids into mice and found that microglia derived from ASD 
patients had larger soma and thicker primary processes compared to 
control microglia (141). Whether and how this will impact disease 
relevant neuronal processes remains to be determined. Additional 
potential exists to use iPSC-based models of neuro-immune 
interaction in less commonly studied disorders. For example, Tourette 
Syndrome, Anorexia nervosa or other eating disorders, Obsessive 
Compulsive Disorder or Attention Deficit/Hyperactivity Disorder 
may benefit from more thorough molecular studies using iPSC models.

5. Limitations and future potential for 
iPSC-based models of 
neuropsychiatric disorder

Despite all their advantages, iPSC-based models come with 
limitations. A major drawback is the loss of epigenetic information 
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during the reprogramming process of patient biospecimens into 
iPSC. This is particularly relevant to models of neurodegeneration as 
epigenetic hallmarks of aging are erased (163). Combined with the 
fact that many iPSC-based models, particularly brain organoids, 
recapitulate the timeline of human neurogenesis and therefore largely 
model neurodevelopment during embryogenesis and the early 
postnatal period, iPSC-based models do not perfectly capture states 
of neurodegeneration. One strategy to overcome this limitation is to 
generate neurons or glia directly from other cell types without prior 
conversion into iPSC (164). For example, neurons derived from 
fibroblasts were shown to retain key epigenetic information as well as 
aging-associated phenotypes such DNA damage (163). Several studies 
have also generated microglia-like cells immediately from peripheral 
blood mononuclear cells, which is cheaper and technically less 
complex than iPSC reprogramming and iPSC culture, allowing 
accessibility to many different labs. Such models have for example 
shown that hypersensitivity of patient-derived microglia to ATP 
stimulation correlated with symptom severity in fibromyalgia patients 
(165). Importantly, this approach can also quickly generate microglia 
from many donors, allowing high-throughput studies of genetic 
variation which may be  technically challenging using iPSC-based 
models (166). Conversely, the reprogramming of the epigenetic 
landscape may also be regarded as an advantage of iPSC-based models 
as it allows studies of homogenous cell populations without 
confounding variables. Genetic and environmental contributions to 
cellular function can be  assessed in a controlled environment. It 
should be  noted that after differentiation, iPSC-derived cell types 
typically recapitulate the epigenetic landscape of their in vivo 
counterpart. For example, the chromatin structure of iPSC-derived 
neurons strongly resembles the chromatin structure of fetal and adult 
human neurons, while iPSC display distinct signatures (167). Given 
the significant role of epigenetic modifications in neuropsychiatric 
disorders (168), several recent studies have examined the epigenetic 
landscape in iPSC-derived neuronal and glial cell types. Results 
highlighted significant differences in histone acetylation, DNA 
methylation and 5-hydroxymethylcytosine profiles comparing cells 
derived from healthy controls or those with neurodegenerative or 
psychiatric disorders (169–171). Additionally, iPSC-derived microglia 
models have been used to study AD-associated variants located in 
cis-regulatory elements (172). Undoubtedly, similar approaches will 
be  employed more frequently in the future to study epigenetic 
regulation of neuro-immune interactions in health and disease.

Due to the cost and labor associated with iPSC generation and 
maintenance, many studies rely on very low sample numbers (e.g., 
iPSC derived from less than three patients) or do not include matched 
healthy control samples (173). While even studies with few biological 
replicates have yielded important insight into disease mechanisms, it is 
imperative that future research studies are adequately powered as 
interindividual variability might otherwise mask biologically relevant 
differences (108). This is particularly important for diseases with 
complex genetic architecture and unknown etiology where the patient-
to-patient variation is expected to be considerable. Additionally, iPSC 
are usually derived from a single cell clone and hence do not reflect the 
genetic mosaicism in the brain. As pathogenic somatic mutations have 
been associated with neuropsychiatric and neurodegenerative 
disorders (174), future studies modeling genetic mosaicism should 
be  of interest. Recent studies developed innovative approaches to 
increase genetic diversity and thereby statistical power in iPSC-based 

CNS models by pooling iPSC lines from various donors in one dish. 
Combined with single cell RNA sequencing, identification of eQTLs is 
possible (175–177).

The coming years will see technical advancements in modeling 
neuroimmunity. For example, novel protocols are employing three-
dimensional microfluidic devices to better mimic neuro-immune 
interactions (178), integrate vasculature like structures into brain 
organoids (179) or develop models of traumatic brain injury in brain 
organoids (180). Future studies will certainly also increase the number 
of cell types and states that can be modeled using stem cells. Indeed, 
current iMG models do not reflect the spatial heterogeneity of microglia 
in the brain and protocols for generating non-microglia CNS resident 
myeloid cells such as CNS-macrophages do not exist despite their 
distinct roles in brain homeostasis and disease (181, 182). When 
transplanted into mouse brains, human iPSC-derived hematopoietic 
progenitor cells migrated to various sites in the brain and acquired niche-
specific phenotypes including characteristics of meningeal, perivascular, 
or choroid plexus macrophages (43). Future studies employing similar 
approaches and the development of protocols to generate 
CNS-macrophages directly from iPSC will be essential in furthering our 
understanding of these cell types in human CNS disorders.

While most iPSC-based models of neuro-immune crosstalk have 
so far focused on key neurodegenerative (AD, ALS) and psychiatric 
disorders (SCZ, BD), the use of patient-derived stem cells will 
certainly be expanded to interrogate the interplay of genetics and 
neuroimmunity in a broader range of diseases. Key areas of interest 
include other neurodevelopmental and psychiatric disorders such as 
MDD or ASD, particularly since inflammation has been implicated in 
disease etiology (91, 161). The upcoming years will likely also see 
innovative solutions to model other environmental risk factors with 
iPSC such as the exposure to heavy metals or pollution (Figure 2). 
Models to investigate the gut-brain-immune axis in psychiatric 
disorders will also be of interest (183, 184).

Lastly, stem cell models hold great potential to identify disease-
relevant therapeutics targeting the neuro-immune axis. High-
throughput screening platforms have already been employed in iPSC-
derived neuronal cell types, for example to evaluate drugs suitable for 
repurposing as antivirals against ZIKV (84). In the case of 
neurodegenerative disorders, several drugs identified and tested in 
iPSC-based neuron and astrocyte models have now advanced to 
clinical trials (164, 185). Similar approaches will be useful to identify 
microglia targeting therapeutics.
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