
TYPE Original Research

PUBLISHED 08 December 2023

DOI 10.3389/fpsyt.2023.1280326

OPEN ACCESS

EDITED BY

Lejun Gong,

Nanjing University of Posts and

Telecommunications, China

REVIEWED BY

Petar Radanliev,

University of Oxford, United Kingdom

Mingkuan Sun,

Nanjing Medical University, China

*CORRESPONDENCE

Nina de Lacy

nina.delacy@utah.edu

RECEIVED 20 August 2023

ACCEPTED 13 November 2023

PUBLISHED 08 December 2023

CITATION

de Lacy N and Ramshaw MJ (2023) Selectively

predicting the onset of ADHD, oppositional

defiant disorder, and conduct disorder in early

adolescence with high accuracy.

Front. Psychiatry 14:1280326.

doi: 10.3389/fpsyt.2023.1280326

COPYRIGHT

© 2023 de Lacy and Ramshaw. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Selectively predicting the onset of
ADHD, oppositional defiant
disorder, and conduct disorder in
early adolescence with high
accuracy

Nina de Lacy1,2* and Michael J. Ramshaw1,2

1Huntsman Mental Health Institute, Salt Lake City, UT, United States, 2Department of Psychiatry,

University of Utah, Salt Lake City, UT, United States

Introduction: The externalizing disorders of attention deficit hyperactivity

disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD)

are common in adolescence and are strong predictors of adult psychopathology.

While treatable, substantial diagnostic overlap complicates intervention

planning. Understanding which factors predict the onset of each disorder

and disambiguating their di�erent predictors is of substantial translational interest.

Materials and methods: We analyzed 5,777 multimodal candidate predictors

from children aged 9–10 years and their parents in the ABCD cohort to predict

the future onset of ADHD, ODD, and CD at 2-year follow-up. We used deep

learning optimized with an innovative AI algorithm to jointly optimize model

training, perform automated feature selection, and construct individual-level

predictions of illness onset and all prevailing cases at 11–12 years and examined

relative predictive performance when candidate predictors were restricted to only

neural metrics.

Results: Multimodal models achieved ∼86–97% accuracy, 0.919–0.996 AUROC,

and ∼82–97% precision and recall in testing in held-out, unseen data.

In neural-only models, predictive performance dropped substantially but

nonetheless achieved accuracy and AUROC of ∼80%. Parent aggressive and

externalizing traits uniquely di�erentiated the onset of ODD, while structural MRI

metrics in the limbic system were specific to CD. Psychosocial measures of sleep

disorders, parent mental health and behavioral traits, and school performance

proved valuable across all disorders. In neural-only models, structural and

functional MRI metrics in subcortical regions and cortical-subcortical connectivity

were emphasized. Overall, we identified a strong correlation between accuracy

and final predictor importance.

Conclusion: Deep learning optimized with AI can generate highly accurate

individual-level predictions of the onset of early adolescent externalizing disorders

using multimodal features. While externalizing disorders are frequently co-morbid

in adolescents, certain predictors were specific to the onset of ODD or CD vs.

ADHD. To our knowledge, this is the first machine learning study to predict the

onset of all three major adolescent externalizing disorders with the same design

and participant cohort to enable direct comparisons, analyze >200 multimodal

features, and includemany types of neuroimagingmetrics. Future study to test our

observations in external validation data will help further test the generalizability of

these findings.
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Introduction

Attention deficit hyperactivity disorder (ADHD), oppositional

defiant disorder (ODD), and conduct disorder (CD) are common

mental health conditions in adolescence, often collectively referred

to as externalizing disorders. Among the most common youth

mental health conditions, externalizing behaviors are the most

frequent reason for referral to mental health services and a

strong predictor of adult psychopathology (1). In school-age youth

(K-12), 10–24% meet the criteria for externalizing disorders,

with ADHD and ODD being the most common; (2) ADHD

affects 7–10% of youth <18 years of age (years), with prevalence

showing a strong uptick in early adolescence, peak in mid-late

adolescence, and decline into adulthood. Some ∼2% of children

≤5 years are affected (vs.) ∼10% at 6–11 years and ∼13% at 12–

17 years, with ∼4% of adults having clinical ADHD (2–4). In

contrast, ODD and CD (collectively the disruptive externalizing

disorders) affect ∼5% of youth ≤17 years, growing to ∼10–

12% of adults, where in the latter, they are associated with

increased risk for later co-morbid mental health and substance

use disorders (5–8). Among youth with ADHD, ∼30–50% may

also exhibit disruptive externalizing behaviors consistent with

ODD and CD, with this association growing with increasing

age and linked to later poor academic and life outcomes such

as school dropout, substance abuse, and involvement with the

justice system (9–13). Thus, early adolescence is a period of

considerable interest in understanding which risk factors predict

the onset of externalizing disorders and disambiguating those

that may differentially predict the development of ADD vs. ODD

and CD.

Adolescent externalizing disorders have attracted a range

of research approaches. Historically, these have predominantly

been cross-sectional studies quantifying group-level associations,

frequently assessing neuroimaging metrics. More recently,

machine learning (ML) classification techniques have been applied

increasingly to large-scale datasets. Such approaches offer the

advantages of providing individual-level case predictions from

high-dimension and/or multimodal data, thereby bridging from

extant work focused on identifying statistical associations at a

group level to a pathway toward personalized medicine (14, 15).

Appropriately constructed ML algorithms can simultaneously

analyze hundreds or thousands of candidate predictors and

enlarge the solution space. Such work has been further fueled by

the increasing availability of large-scale, open science datasets

incorporating multimodal variables. In peri-adolescence, the

flagship initiative of this type is the ongoing population-level,

longitudinal ABCD study (n = 11,800) used in the present study

that enrolled children at ages 9–10 years and collected data from

many knowledge domains, including multiple neuroimaging

types (16–18). While a number of ML predictive studies have

been performed in adolescent externalizing disorders, these

have largely (though not exclusively) been cross-sectional

and focused on predicting prevailing cases at a particular

age in a single disorder. Few ML studies have predicted

the future onset of disease in longitudinal data or applied a

consistent analytic architecture across the three major adolescent

externalizing disorders in the same population cohort to enable

direct comparisons.

In the present study, we extend prior work with an ML design

that analyzes a large number of multidomain candidate predictors

to predict new onset cases of ADHD, ODD, and CD in early

adolescence in the same design and youth cohort. We aimed to

identify the best-performing predictors and compare these across

these three related disorders to understand whether there were

shared or unique predictors underpinning ADHD, ODD, and

CD. Given the large prior literature related to brain structure

and function motifs in externalizing disorders, we also wanted

to compare the relative predictive ability of models composed

purely of neuroimagingmetrics derived fromMRIwithmultimodal

models. By leveraging an AI algorithm that jointly optimizes ML

model training and performs automated feature selection, we were

able to analyze 5,777 candidate predictors spanning demographics,

developmental and medical history, white and gray matter brain

structure, neural function (cortical and subcortical connectivity,

three tasks), brain volumetrics, physiologic functions (e.g., sleep,

hormone levels, pubertal stage, and physical function), cognitive

and academic performance, social and cultural environment (e.g.,

parents, friends, and bullying), activities of everyday life (e.g.,

screen use and hobbies), living environment (e.g., crime, pollution,

and educational and food availability), and substance use. We used

features assessed at 9–10 years (107–132 months) to predict future

new onset cases of ADHD, ODD, and CD at 11–12 years with

deep learning with artificial neural networks, which incorporates

non-linear relationships among predictors and is resistant to

multicollinearity. Since extant work is more focused on predicting

prevailing rather than new onset cases, we performed additional

experiments to predict all prevailing cases at 11–12 years to provide

comparisons with the existing literature. Our AI approach allowed

us to render fully interpretable predictions, quantify relative

predictor importance at both the group and individual levels, and

examine the relationship between model accuracy and predictor

importance across all models. All results presented are from testing

for generalization in holdout, unseen data.

Materials and methods

Terminology and definitions

Terms used in the quantitative analysis may be shared

among different fields with variant meanings. Here, we use ML

conventions throughout (19–21). “Prediction” means predicting

the quantitative value of a target variable by analyzing patterns

in input data. The set of observations used to train and validate

models is referred to as the “training set” and the unseen holdout

set of observations is termed the “test set”. We refer to the set of all

input data used in training as containing “features” or “candidate

predictors” and those identified in final, optimized models after

testing in held-out data (presented in Results section) as “final

predictors”. We use “generalizability” to refer to the ability of a

trained model to adapt to new, previously unseen data drawn from

the same distribution, i.e., model fit in the test set. “Precision”

refers to the fraction of positive predictions that were correct,

“Recall” refers to the proportion of true positives that were correctly

predicted, and “Accuracy” refers to the number of accurate

predictions as a fraction of total predictions. Receiver Operating
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Characteristic curves (ROC curves) are provided that quantify

classification performance at different classification thresholds

plotting true positive vs. false positive rates, where the Area

Under the Curve (AUROC) is defined as the two-dimensional area

under the ROC curve from (0,0) to (1,1). This paragraph defining

terminology usage is adapted from our prior study.

Data and data collection in the ABCD study

We use data from the ABCD study, an epidemiologically

informed prospective cohort study that recruited 11,880 children

(52% male; 48% female) aged 9–10 years in 21 sites across the

United States, intending to follow this youth for the next decade.

Participants in the cohort included 800 twin pairs (n = 800)

and/or non-twin siblings. These data are made available to qualified

researchers at no cost from the National Institute of Mental Health

Data Archive and are released periodically. The present study

uses data from Release 4.0, the 42-month follow-up date. Fuller

descriptions of the overall design of the ABCD study, as well

as recruitment procedures and the participant sample, may be

found in the studies by Jernigan et al., Garavan et al., and Volkow

et al. (22–24). This study has been reviewed and deemed not

human subjects research by the University of Utah Institutional

Review Board.

ABCD collects a wide range of information from youth

participants and their parents, comprising phenotypic,

demographic, psychometric, physiologic, and developmental

data, as well as multiple modalities of MRI neuroimaging. Barch

et al. and Lisdahl et al. detail the phenotypic and substance

abuse assessment protocols, respectively (25, 26). Here, we utilize

data from assessments of physical and mental health, substance

use, neurocognition, school performance, quality, culture, and

environment performed for youth and their parents, as well as

biospecimens (e.g., pubertal hormone levels) and environmental

toxin exposure. A summary description of assessments performed

and environmental and school-related variables derived from

geocoding at age 9–10 years that we analyzed may be inspected in

Supplementary Table 1.

Brain imaging incorporates optimized 3D T1, 3D T2, diffusion

tensor imaging, resting state functional MRI (rsfMRI), and 3

task MRI (tfMRI) protocols harmonized across acquisition sites.

The tfMRI protocol comprises the monetary incentive delay

(MID) and stop signal tasks (SST) and an emotional version of

the n-back task, which collectively measure reward processing,

motivation, impulsivity, impulse control, working memory, and

emotion regulation. In the present study, we utilized ABCD-

provided fully processed metrics from each of these imaging types

that are computed after quality control. Detailed descriptions of the

requisite acquisition, pre-processing, quality control, and analytic

protocols used to generate metrics may be inspected by Casey et al.

and Hagler et al. (27, 28). We utilized all available processed metrics

that have passed quality control from diffusion fullshell; cortical

and subcortical Gordon correlations (connectivity); structural,

volumetric, and all three tfMRI tasks, as well as corresponding head

motion statistics for each modality. For certain modalities, such as

TABLE 1 Demographic characteristics of participant sample at ages 9–10

years.

Characteristic Number Percent

Sex

Male 2,771 51.7%

Female 2,584 48.3

Gender Identity

Male 2,768 51.7%

Female 2,577 48.1

Gender non-conforming 7 0.1

Do not know/did not

answer

4 0.1

Race

Black/African American 873 16.3%

Asian 353 6.6

White 4,236 79.1

Native American/Alaska

Native

187 3.5

Other 334 6.2

Ethnicity

Hispanic/Latino/Latinx 1,070 20.0%

Non-Hispanic 4,224 78.9

Not indicated 62 1.2

Sex refers to the sex assigned at birth on the original birth certificate. Gender refers to the

youth’s gender identification. Race and ethnicity refer to the parents’ view of the youth’s race

or ethnicity. More than one race or ethnicity identification may be selected and therefore

percentages may sum to >100%.

rsfMRI, multiple scans were attempted or completed. In such cases,

we use metrics computed from the first scan.

Study inclusion criteria and sample
partitioning for machine learning

We included youth from the larger ABCD cohort in the present

study if they were (a) participants enrolled in the study at baseline

(9–10 years) who were still enrolled in the ABCD study at 2-year

follow-up at 11–12 years (n = 8,085) who had (b) complete data

for all neural imaging types for at least one scan in each modality

listed above that passed ABCD quality control (n = 6,178) and

were (c) youth participants unrelated to any other youth participant

in the study (n = 5,355). If a youth had sibling(s) present in the

cohort, we selected the oldest sibling for inclusion. Demographic

characteristics of this sample at age 9–10 years, the age which

corresponds to input data used to make predictions, are presented

below in Table 1.

Physiologic and cognitive characteristics of the same

participant sample at 9–10 years may be viewed in Table 2.

The final participant sample (n = 5,356 participants), after

inclusion criteria were applied, was randomly partitioned into a

training set comprising 70% of the sample (n = 3,749) and a
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TABLE 2 Physiologic and cognitive characteristics of participant sample

at ages 9–10 years.

Characteristic Range Mean Median

Age in months 107.0–132.0 119.9 120.0

Pubertal

development stage

1–5 2 2

Height (inches) 36.6–81.0 55.4 55.4

Weight (pounds) 11.0–255.0 82.3 76.8

Waist

circumference (cm)

17.0–61.0 26.4 25.5

Handedness

Writing −100.0 to

100.0

76.5 100.0

Throwing −100.0 to

100.0

67.1 100.0

Spoon −100.0 to

100.0

62.4 100.0

Vocabulary 51.0–208.0 109.0 109.0

Attention and

inhibition

65.0–171.0 96.5 97.0

Working memory 46.0–194.0 102.0 103.0

Executive function 68.0–181.0 98.0 94.0

Processing speed 20.0–185.0 95.2 95.0

Characteristics of the study sample at 9–10 years. Pubertal development is measured with

the Pubertal Development Scale (adapted from the Petersen scale) in a sex-specific manner.

Height is measured twice with the average of these values presented. We note a range of 11.0–

255.0 pounds for weight, which is the range present in the original ABCD data. Handedness

is assessed with the Edinburgh Handedness Inventory. Cognitive metrics are assessed with

the NIH Toolbox and are all age-corrected scores. Vocabulary is measured with the Picture

Vocabulary test; Attention and inhibition with the Flanker Inhibitory Control & Attention

Task; Executive Function with the Dimensional Change Card Sort Test; and Processing Speed

with the Pattern Comparison Processing Speed Test.

holdout, unseen test set comprising 30% of the sample (n = 1,607,

Figure 1). This partitioning was effected before pre-processing

either input features (candidate predictors) or predictive targets to

minimize bias.

Preparation of predictive targets

Predictive targets of ADHD, ODD, and CD cases were derived

from the Child Behavior Checklist for youth ages 4–18 years

(CBCL), known as the “ABCD Parent Child Behavior Checklist

Scores Aseba (CBCL)” in ABCD study nomenclature. The CBCL

is a standardized instrument in widespread clinical and research

use. It forms part of the Achenbach System of Empirically

Based Assessment (ASEBA), “designed to facilitate assessment,

intervention planning and outcome evaluation among school,

mental health, medical and social service practitioners who deal

with maladaptive behavior in children, adolescents and young

adults” (29). To score the CBCL, parents rate their child on a 0-

1-2 scale on 118 specific problem items such as “Acts too young

for age” over the prior 6 months. Answers are aggregated into

raw, T, and percentile scores for eight syndrome subscales (anxiety,

somatic problems, depression, social problems, thought problems,

attention problems, rule breaking, and aggressive behavior) derived

from principal components analysis of data from 4,455 children

referred for mental health services. The CBCL is normed in a U.S.

nationally representative sample of 2,368 youth ages 4–18 years

that take into account differences in problem scores for “males vs.

females”. It exhibits excellent test–retest reliability of 0.82–0.96 for

the syndrome scales with an average r of 0.89 across all scales.

Content and criterion validity are strong, with referred vs. non-

referred children scoring higher on 113/188 problem items and

significantly higher on all problem scales, respectively.

To form binary classification targets, we thresholded CBCL

subscale T scores for ADHD (“attention problems”), ODD

(“aggressive behavior”), and CD (“rule breaking”) using cut-points

established by ASEBA for clinical practice. Specifically, a T score

of 65–69 (95th to 98th percentile) is considered in the “borderline

clinical” range and scores ≥70 are considered in the “clinical

range.” Accordingly, we discretized T scores for each of the three

subscales under consideration by deeming every individual with a

T score ≥65 as a “case” or [1] and every individual with a score

<65 as “not case” or [0]. This process was performed separately in

the training and test sets for participant CBCL scores at 9–10 and

11–12 years.

Construction of participant samples for
cases with externalizing disorders and
controls

We formed two participant samples in each of ADHD, ODD,

and CD in the training and test sets (Figure 1). The first sample type

comprised all cases of ADHD, ODD, and CD present in the larger

sample at 11–12 years. The second sample type comprised only new

onset cases at 11–12 years. A new onset case was defined as a youth

who met the criteria for ADHD, ODD, or CD as defined by the

ASEBA CBCL cut-points at 11–12 years and who did not meet the

criteria for the requisite disorder at 9–10 years. Thus, six participant

samples in total were constructed. In all samples, we formed a

balanced sample of cases and controls. The latter were youth with

the lowest possible scores on the relevant syndrome scale selected

from the eligible study population (see: Baseline inclusion criteria

and sample partitioning for machine learning) and matched with

cases for age in months and sex/gender.

Preparation of candidate predictors (input
features)

We assembled a feature set for input into predictive algorithms

that comprised the majority of phenotypic, demographic,

psychometric, physiologic, and developmental variables available

from the ABCD study (including data collection site) and all

available neural metrics, including head motion statistics with the

exception of temporal variance measures (Supplementary Table 1).

We used only metrics collected at 9–10 years. In continuous

phenotypic features, we used subscale or total scores where

available, for example, subscale scores exemplifying different
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FIGURE 1

Formation of the study participant sample. Steps used to form the study sample are shown. After inclusion criteria were applied, the sample was

randomly partitioned into training and test sets, followed by separate pre-processing of targets and features. Subsequently, samples for each

experiment were formed as described in Preparation of predictive targets and Construction of participant samples for cases with externalizing

disorders and controls sections.

types of sleep-related disorders from the Munich Chronotype

Questionnaire. Metrics directly quantifying mental health

symptoms were excluded since we aimed to predict cases of

mental illness without using symptoms, as the latter tends to

inflate predictive performance and narrow the utility of findings.

The feature set was then partitioned into training and test sets

conforming at the participant level with case/control partitions

described above (Construction of participant samples for cases

with externalizing disorders; Figure 1). Pre-processing of features

was then performed separately in the training and test sets to

minimize bias. First, features with >35% missing values were

discarded, where prior research shows that good results may

be obtained with ML methods with imputation of up to 50%

missing data (30). Nominal or ordinal variables were one-hot

encoded to transform them into discrete variables. Continuous

variables were trimmed to [mean ± 3] standard deviations to

remove outliers, and all features were scaled in the interval

[0, 1] with MinMaxScaler. Missing values were imputed using

non-negative matrix factorization (NNMF), a mathematically

proven imputation method that minimizes the cost function

of missing data rather than assuming zero values. It captures

both global and local structures in the data effectively and is

particularly suitable for large-scale multimodal data, having been

demonstrated to perform well regardless of the underlying pattern

of missingness (31–33). Supplementary Table 2 shows the number

and percentage of observations in each variable trimmed and

filled with NNMF for the training and test sets. After imputation

with NNMF, phenotypic variables lacking summary scores were

reduced to a summary metric or index using feature agglomeration

to produce a final set of (n= 763) non-neural metrics. As described

above, neural metrics (n = 5,014) had already been processed and

underwent quality control by the ABCD study team and were,

therefore, not pre-processed with the exception of scaling with

the MinMaxScaler, again performed separately in the training and
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test partitions. There were no missing neural features. The final

combined, multimodal feature set, including all feature types,

contained 5,777 features.

Overview of predictive analytic pipeline

We used deep learning with artificial neural networks to predict

cases of ADHD, ODD, and CD at 11–12 years. In total, we

performed 12 experiments, predicting new onset and all prevailing

cases for each of the three disorders using (a) all available

multimodal features and (b) only neural features. Deep learning

models were implemented with k-fold cross-validation and trained

by an AI algorithm that jointly performed feature selection and

optimized across the hyperparameters in an automated manner.

Typically, ∼40,000 model fits were performed during training

in each experiment. Model training was terminated based on

the Bayes Information Criterion (BIC), an information-theoretic

metric. After training, final models obtained from the optimized

training process were tested for their ability to generalize in the

holdout, unseen test set and performance statistics of AUROC,

accuracy, precision, and recall, and ROC curves computed and

reported for these final, optimized models. We also computed

and reported the relative importance of final predictors to making

case predictions using the Shapley additive explanation (SHAP)

technique. Detailed explanations of these methods are provided

below. Code for predictive analytics may be accessed at the de

Lacy Laboratory GitHub: https://github.com/delacylab/integrated_

evolutionary_learning.

Coarse feature selection

We performed coarse feature selection individually for each

of the six experimental samples before beginning model training

to reduce the number of features entering the deep learning

pipeline in a principled, optimized manner. This identified subsets

of 5,777 features with non-zero relationships with the predictive

target. First, a simple filtering process was performed in which χ
2

(categorical features) and ANOVA (continuous features) statistics

and mutual information metric (all features) were computed to

quantify the relationship between all features and the target, where

the target (ADHD, ODD, and CD) was represented by a categorical

vector in [0, 1]. Any feature with a non-zero relationship (either

positive or negative) with the target was retained. Further feature

selection was then performed on these filtered feature subsets using

the Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm. This popular regularization technique based on linear

regression efficiently selects a reduced set of features by forcing

certain regression coefficients to zero. The LASSO algorithm has

a hyperparameter (commonly called the α) that governs the

degree of penalization (shrinkage) that will be imposed on the

features and thereby influences results. To optimize across this

hyperparameter, we implemented the LASSO with our AI meta-

learning algorithm integrated evolutionary learning (IEL) to tune

TABLE 3 Feature sets after coarse feature selection for each experiment.

Number of
features after

filtering

Number of
features after
selection

with LASSO

ADHD, new onset 11–12

years

4,272 54

ODD, new onset 11–12

years

4,314 76

CD, new onset 11–12

years

4,303 77

ADHD, all prevailing

cases 11–12 years

4,388 63

ODD, all prevailing cases

11–12 years

4,401 81

CD, all prevailing cases

11–12 years

4,460 59

The total set of 5,777 multimodal input features was reduced via coarse feature selection in a

two-step process of filtering followed by optimized regularization with the LASSO algorithm.

This table displays the number of remaining features after filtering and regularization for

each target (ADHD, ODD, and CD) and participant sample type (new onset cases and

all prevailing cases at age 11–12 years). Detailed tables showing the univariate coefficients

between each feature selected by LASSO-based regularization and each target may be viewed

in Supplementary Tables 3a–f.

TABLE 4 Hyperparameter settings optimized with integrated

evolutionary learning.

Hyperparameters Range Mutation
shift

Learning rate 0.00001–0.01 0.0001

Beta 1 0.9–0.999 0.001

Beta 2 0.9-0.999 0.001

Optimization across the hyperparameters of learning rate, Beta 1 and Beta 2 was conducted

for deep learning with artificial neural networks within the ranges shown.

the α hyperparameter in the same manner as described below in

Integrated Evolutionary Learning for deep learning optimization.

The number of features retained for each of the six

experimental samples after each step described above for the coarse

feature selection process may be seen in Table 3. Specific features

selected in the optimized LASSO regularization and the resulting

univariate coefficients between each of these features and the target

vectors (ADHD, ODD, and CD) for each participant sample (new

onset and all prevailing cases at 11–12 years) may be viewed in

Supplementary Tables 3a–f. Each feature set selected by the LASSO

then entered the deep learning pipeline.

Deep learning with artificial neural
networks

We used deep learning to predict cases of ADHD, ODD, and

CD in each type of participant sample (new onset and all prevailing

cases at 11–12 years). To predict only future cases of externalizing

disorders, candidate predictors collected at 9–10 years were solely

used to predict cases at 11–12 years. We further recapitulated

each experiment after restricting the set of candidate predictors to
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5,014 neural features to construct neural-only models to compare

their performance to that obtained with multimodal features. In

each case, we trained artificial neural networks using the AdamW

algorithm with three layers, 300 neurons per layer, early stopping

(patience = 3, metric = validation loss), and the Relu activation

function. The last output layer contained a conventional softmax

function. Learning hyperparameters (Table 3) were tuned with

IEL as detailed below. Deep learning models were encoded with

TensorFlow embedded in custom Python code.

Integrated evolutionary learning for
optimization across hyperparameters and
fine feature selection

ML algorithms typically have hyperparameters that control

learning, where their settings can strongly affect performance. In

many approaches, these hyperparameters are used at their default

settings or manually tuned using “rules of thumb” and a restricted

number of model fits are explored, introducing the possibility

of bias and potentially limiting the solution space (34–36). To

address this issue, we previously developed an AI technique called

Integrated Evolutionary Learning (IEL), which can improve the

performance of ML predictive algorithms in tabular data by up

to 20–25% vs. the use of default model hyperparameters (37). IEL

is a form of computational intelligence or metaheuristic based

on an evolutionary algorithm that instantiates the concepts of

biological evolutionary selection in computer code. It optimizes

across the hyperparameters of the deep learning algorithm by

adaptively breeding models over hundreds of learning generations

and selecting for improvements in a fitness function (here, the

Bayes Information Criterion, BIC).

For each experiment, the deep learning algorithm was nested

inside IEL, which initialized the first generation of 100 models

with randomized hyperparameter values or “chromosomes”.

Hyperparameter settings (Table 4) were subsequently recombined,

mutated, or eliminated over successive generations. In

recombination, “parent” hyperparameters were arithmetically

averaged to form “children”. In mutation, settings were shifted

with the range of possible values shown in Table 4. After the first

training generation, the BIC was computed for each of the 100

solutions. The 60 best models (highest BIC) were identified, and 40

of these recombined by averaging the hyperparameter setting after

a pivot point at the midpoint to produce 20 ‘child’ models. The

remaining 20 were mutated to produce the same number of child

models by shifting the requisite hyperparameter by the mutation

shift value (Table 4). The remaining 40 models were discarded.

The next generation of models was then formed by adding 60

new models with randomized settings and adding these to the

40 child models retained from the initial generation. Thereafter,

IEL continued to recombine, mutate, and discard 100 models

per generation in a similar fashion to minimize the BIC until

the latter fitness function plateaued. With 100 models fitted per

generation, IEL typically fits ∼40,000 models per experiment over

∼400 learning generations.

IEL jointly performs this optimization process across

hyperparameter settings with automated feature selection,

mitigates the risk of overfitting, and identifies predictors that

perform best. For each experiment, IEL selects among available

candidate predictors after coarse feature selection (Coarse feature

selection, Supplementary Table 3). A random number of features

in the range [2–50] was randomly seeded for each model in the

initial learning generation. After computing the fitness function,

feature sets from the best-performing 60 models were allocated

to child models, and other feature sets were discarded. As with

hyperparameter tuning, this process was repeated for succeeding

generations until the BIC plateaued.

IEL implements recursive learning to facilitate computational

efficiency. After training until the BIC plateaued, we determined

the elbow of the fitness function plotted vs. the number of features

and re-started learning with a warm start. The feature set available

after this warm start is constrained to that subset of features,

thresholded by their importance, corresponding to the fitness

function elbow. Learning then proceeds by thresholding features

available for learning at the original warm start feature importance

+ 2 standard deviations. In addition, the number of models per

generation is reduced to 50, 20 models are recombined, and 10

models are mutated. Otherwise, training after the warm start uses

the same principles as detailed above.

Cross-validation

Deep learning models were fit within IEL using stratified k-fold

cross-validation, i.e., every one of the 100 models in each learning

generation within IEL was individually trained and validated using

cross-validation. As described above, IEL allows the number of

features used to fit each model to differ within each model in every

generation in the range [2–50]. Accordingly, k (the number of

splits) was set as the nearest integer above [sample size/number of

features]. Cross-validation was implemented with the scikit-learn

stratified K-fold function.

Testing for generalization in holdout,
unseen test data and performance
measurement

Finally, optimized models generated in the IEL-supervised

training process were tested on the held-out, unseen test set for

each sample and disorder by applying the requisite hyperparameter

settings and selected features to the test set. The area under the

receiver operating curve (AUROC), accuracy, precision, and recall

were computed for test set models using standard scikit learn

libraries. The most accurate models are presented in the Results

section. The threshold for prediction probability was 0.5, and

receiver operating characteristic (ROC) curves are also provided for

each experiment (Supplementary Figures 1, 2).

Feature importance determination

Shapley additive explanation (SHAP) values were computed

using the SHAP toolbox (https://shap.readthedocs.io/en/latest/) to
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TABLE 5 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of ADHD using multimodal and neural-only

feature types.

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUROC

(A)

New onset at age 11–12 years 86.1 81.7 83.7 0.919

All cases at age 11–12 years 93.7 91.8 91.6 0.985

(B)

New onset at age 11–12 years 79.1 73.9 74.4 0.841

All cases at age 11–12 years 63.7 59.5 49.5 0.654

Performance statistics of accuracy, precision, recall, and the AUROC are shown for the most accurate model obtained with deep learning optimized with integrated evolutionary learning using

(A)multimodal features and (B) only neural features. We used features obtained at 9–10 years of age to predict new onset cases of ADHD at 11–12 years of age, as well as all prevailing cases at

11–12 years of age. Corresponding ROC curves may be viewed in Supplementary Figures 1, 2.

determine the relative importance of each feature to predicting

cases in each experiment for ADHD, ODD, and CD. SHAP is a

game theoretic approach commonly used in ML to explain the

output of any ML model, including “black box” estimators such as

artificial neural networks, and is resistant to multicollinearity (38).

It unifies prior methods such as LIME, Shapley sampling values,

and Tree Interpreter.

Results

Overview

All study results detailed below are from testing the final

model obtained after IEL optimization for generalization in a

holdout, unseen test dataset for each experiment. We present

parallel sets of results for each disorder (ADHD, ODD, and CD)

in predicting new onset cases at 11–12 years and all prevailing

cases at 11–12 years. Only features collected at 9–10 years are

input to deep learning to make predictions. Therefore, all results

represent predictions of future case status. For each disorder,

results are presented for standard ML performance metrics and

quantification of feature importance for (a) multimodal models

constructed using all types of input features and (b) neural-only

models as follows:

• Performance statistics: accuracy, precision, recall,

and the AUROC. ROC curves may be viewed in

Supplementary Figures 1, 2.

• Final predictors are ranked in the order of importance

by their group-level SHAP score (average absolute

value across the participant sample) and the mean

predictor importance (group-level SHAP score) for the

requisite experiment.

• Summary SHAP plots that graph individual-level final

predictor importance (SHAP scores) for each member of the

participant sample. SHAP summary plots are also used to

determine the directionality of the relationship between the

predictor and case status.

ADHD

Using multimodal data obtained at 9–10 years, deep learning

optimized with IEL predicted future new onset cases of ADHD

at 11–12 years with ∼86% accuracy, 0.92 AUROC, and precision

and recall >80% (Table 5). When predicting all prevailing cases

at 11–12 years, performance improved to ∼94% accuracy, ∼0.99

AUROC, and precision and recall >90%. When only neural

features were used, performance fell by ∼6–9% in predicting new

onset cases and up to 40% in prevailing cases. Neural-only models

predicted new onset cases moderately well with 79% accuracy,

0.841 AUROC, and ∼74% precision and recall. Performance in

predicting prevailing cases with neural-only features was poor, with

∼64% accuracy, 0.654 AUROC, and <60% precision and recall.

The presence of a disorder of excessive somnolence was the

most important predictor of new onset case status in ADHD, with

parent–child conflict present to a lesser degree (Table 6). Themodel

that predicted all prevailing cases at 11–12 years was more complex.

Themost important predictors were whether the child had received

mental health or substance abuse services before assessment at 9–

10 years and the total level of parental behavioral problems. This

was followed by conflict between parent and child, the presence

of a sleep–wake transition or excessive somnolence disorder, and

the level of parental externalizing behaviors. For both new onset

and all prevailing cases, how well the child functioned at school

and specifically having excellent grades in school had an inverse

predictive relationship with ADHD case status. In prevailing cases,

this was joined by the child’s level of prosocial behaviors. In

multimodal models where all feature types were available, the

optimization process ran by IEL preferentially selected psychosocial

features with no cognitive, neural, or biological metrics present in

final, optimized models. Group-level importances for multimodal

model predictors (averaged across the participant sample) were

in the range [0.009, 0.20] and the mean importance for each

experiment was in the range [0.06, 0.12].

In interpreting the neural-only experiments, we observed little

overlap between the final, optimized models for new onset and

all prevailing cases of ADHD. The only common feature was

a negative relationship between case status and SST contrast in

Frontiers in Psychiatry 08 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1280326
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


de Lacy and Ramshaw 10.3389/fpsyt.2023.1280326

TABLE 6 Final predictors of cases of ADHD at ages 11–12 years.

(A) Age of case determination Ranked final predictors Importance

New onset at age 11–12 years Disorder of excessive somnolence 0.2038

Does very well at school 0.1423

Parent reports some conflict with child 0.0796

Youth gets excellent grades at school 0.0567

Mean 0.1206

All cases at age 11–12 years Child has received MH/SU services in last 6 months 0.1638

Parent total behavioral problems 0.1061

Parent reports some conflict with child 0.0725

Disorder of sleep-wake transition 0.0665

Youth performs very well in school 0.0617

Disorder of excessive somnolence 0.0375

Youth receives excellent grades in school 0.0234

Prosocial behaviors mean score 0.0147

Parent externalizing problems 0.0091

Mean 0.0617

(B) Neural data type Ranked final predictors Importance

New onset at age 11–12 years T1 intensity in brain stem ROI 0.0890

Correlation between ventral attention network and right ventral diencephalon

ROI

0.0532

SST any stop vs. correct go contrast in left pars opercularis ROI 0.0411

SST incorrect stop vs. correct go contrast in left lingual ROI 0.0364

T1 intensity WM for left lateral occipital ROI 0.0309

Cortical thickness in mm of right transverse temporal ROI 0.0304

MID loss anticipation vs. neutral contrast in right supramarginal ROI 0.0271

Average FA in GM right caudal ACC ROI 0.0147

Mean 0.0400

All cases at age 11–12 years GM FA in right caudal middle frontal ROI 0.0446

Cortical area in mm2 of left inferior parietal ROI 0.0259

MID small loss vs. neutral contrast in right inferior temporal ROI 0.0192

SST incorrect go vs. incorrect stop contrast in left lingual ROI 0.0134

Cortical thickness in mm of left pars triangularis ROI 0.0129

SST incorrect stop vs. correct go in left lingual ROI 0.0046

Mean 0.0200

Final predictors of all prevailing cases of ADHD at 11–12 years, as well as new onset cases only at 11–12 years of age, are shown for the most accurate models obtained using deep learning

optimized with IEL obtained with (A)multimodal features and (B) only neural features. Final predictors are ranked in the order of importance, where the relative importance of each predictor

is computed with the Shapley additive explanation technique and presented here averaged across all participants in the sample. Features in red indicate an inverse relationship with ADHD

verified with the Shapley method. MH, mental health; SU, substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy;

WM, white matter; GM, gray matter.
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the left lingual ROI, though the contrast effect differed between

incorrect stop vs. correct go (new onset) and incorrect go

vs. incorrect stop (prevailing cases). In new onset cases, the

most prominent positive predictor was the correlation between

the ventral attention network and right ventral diencephalon

ROI, followed by SST contrast in the left pars opercularis and

cortical thickness in the right transverse temporal ROI. Structural

differences in the brain stem, left lateral occipital white matter,

and right caudal ACC, along with MID contrast in the right

supramarginal ROI, were negative predictors of new onset case

status. The neural-only model of all prevailing ADHD cases

was less reliable, with an AUROC of 0.654, but we found that

structural features in the right caudal middle frontal and left pars

triangularis ROIs predicted case status with inverse relationships

with cortical area of the left parietal ROI and MID loss contrast

in the right inferior temporal ROI. Group-level importances for

neural-only model predictors were in the range [0.02, 0.04] and

the mean importance for each experiment was in the range

[0.0046, 0.089], both representing lower importance ranges than

multimodal models.

We further computed and plotted individual-level SHAP values

to quantify the dispersion of importances across individuals and

assess the directionality of the relationship between final predictors

and clinical case status (Figure 2). In these summary plots, each

data point represents an individual participant, and the colorization

reflects the original value of the predictor as an input feature. Thus,

discrete-valued features appear as red or blue, whereas a continuous

feature appears as a color gradient from low to high.

Individual-level importances in multimodal predictive models

of both new onset and prevailing cases of ADHD were typically

more widely dispersed than in neural-only models. Furthermore,

wider dispersions across the participant samples were observed for

the more important predictors.

Oppositional defiant disorder

In ODD, predictive models performed strongly using

multimodal features (Table 7). In new onset cases, we achieved

an accuracy of ∼97%, AUROC of 0.996, and precision and recall

of ≥94%, and a 96% accuracy, AUROC of 0.988, and precision

and recall of ≥95% when predicting all prevailing cases at 11–12

years. In neural-only models, we observed similar phenomena as

in ADHD: performance fell substantially, with relatively better

performance in predicting new onset vs. prevailing cases. When

only neural features were used, performance fell by ∼20% in

predicting new onset cases and up to ∼40% in prevailing cases.

Neural-only models predicted new onset cases moderately well

with 74% accuracy, 0.792 AUROC, and precision and recall ≥65%.

Performance in predicting prevailing cases with neural features was

poor, with ∼56% accuracy, 0.567 AUROC, and <55% precision

and recall.

Whether the youth had ever received mental health or

substance abuse services before assessment at age 9–10 years was

the most important predictor of new onset case status in ODD,

followed by the presence of a disorder of excessive somnolence or

sleep–wake transition (Table 8). Additional important predictors

were parental factors: the presence of nerves or a nervous

breakdown problem and levels of externalizing or aggressive

behaviors. Youth prosocial behaviors exhibited an inverse

relationship with case status. Features that predicted all prevailing

cases at 11–12 years included a number of final predictors that

were the same or thematically similar: whether the child had

received mental health or substance abuse services in the last 6

months (the most important predictor), total sleep disturbances,

disorder of sleep–wake transition, parent externalizing behaviors,

and an inverse relationship with prosocial behaviors. The final

predictors that differed in this model were the youth’s mother

having a depression problem and whether either parent had sought

treatment for a mental or emotional problem. Of note, the latter

predictor had an inverse relationship with case status, suggesting

it was related to (an) untreated mental problem(s). In multimodal

models, where all feature types were available, the optimization

process run by IEL preferentially selected psychosocial features

with no cognitive, neural, or biological metrics present in final,

optimized models. Group-level importances for multimodal model

predictors (averaged across the participant sample) were in the

range [0.003, 0.18] and the mean importance for each experiment

was at∼0.07.

In neural-only models, the future onset of ODD at 11–12 years

was predicted by a model (with moderately strong performance

at AUROC = 0.79) containing only rsfMRI-derived correlations.

Strikingly, every final predictor represented a correlation metric

between a cortical network and subcortical ROI, emphasizing

networks involved in salience, executive function, spatial memory,

and task performance. Of note, all neural features with positive

relationships with the onset of ODD were in the left hemisphere

and those with inverse relationships with case status in the right

hemisphere. As noted above, the neural-only model predicting all

prevailing cases of ODD at 11–12 years exhibited poor performance

(AUROC=∼0.567) and cannot be considered reliable. It consisted

of two structural gray matter features: fractional anisotropy of

the right lateral orbitofrontal ROI and cortical area of the left

inferior parietal ROI. Group-level importances for neural-only

model predictors (averaged across the participant sample) were

in the range [0.0007, 0.075] and the mean importance for each

experiment was in the range [0.0026, 0.0410].

As observed in ADHD, individual-level importances in

multimodal predictive models of both new onset and prevailing

cases of ODD were typically more widely dispersed than in

neural-only models (Figure 3). Furthermore, wider dispersions

across the participant samples were observed for the more

important predictors.

Conduct disorder

Deep learning optimized with IEL predicted future new onset

cases of CD at 11–12 years with ∼90% accuracy, 0.92 AUROC,

and precision and recall >85% using multimodal features assessed

at 9–10 years (Table 9). In predicting all prevailing cases at 11–

12 years, performance improved further to ∼96% accuracy, ∼0.99

AUROC, and precision and recall ≥95%. This strong predictive

performance represented the best overall performance among the
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FIGURE 2

Individual-level importance of final predictors of ADHD in early adolescence. Summary plots are presented of the importance of each final predictor

(computed with the Shapley additive explanation technique) on an individual subject level to predicting ADHD with new onset at 11–12 years with (A)

multimodal features and (B) only neural features, and in all prevailing cases of ADHD at 11–12 years with (C) multimodal features and (D) only neural

features. The color gradient represents the original value of each feature (metric) where red = high and blue = low. Discrete (binary) features appear

as red or blue, while continuous features appear as a color gradient.

three externalizing conditions. When only neural features were

used, performance fell by ∼10% in predicting new onset cases and

up to 20% in prevailing cases. However, this is in the context of

neural-only models achieving moderately strong performance in

predicting new onset cases with 80% accuracy, 0.808 AUROC, and

precision and recall >70%. Performance in predicting prevailing

cases with neural-only features was also moderately strong with

∼78% accuracy, 0.816 AUROC, and >70% precision and recall.

The interpretation of predictive models for CD was particularly

intriguing (Table 10). Unlike ADHD and ODD, final predictors

of both new onset cases and all prevailing cases at 11–12 years

using multimodal data did include neural features. New onset

cases of CD were predicted by psychosocial features also found

in ADHD and ODD (tenor of parent–child relationship, sleep

disturbances, and mental health treatment before the age of 9–10

years) but here these psychosocial factors interacted in an inverse

relationship with structural disturbance in the left hippocampal

ROI. Similarly, final predictors of all prevailing cases of CD at

11–12 years comprised psychosocial features common to ADHD

and ODD (prior mental health treatment, tenor of parent–child

relationship, sleep disturbances, and school performance), but

these interacted with structural features in the left transverse

temporal white matter and left caudal anterior cingulate cortex

gray matter (inverse relationship). A further interesting facet of

this latter model was that parent somatization traits were a driver

of CD, where parent aggressive traits had an inverse relationship

with case status. Somatization refers to the expression of mental

phenomena as physical (somatic) symptoms seek medical care for
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TABLE 7 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of ODD using multimodal and neural-only

feature types.

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUROC

(A)

New onset at age 11–12 years 96.8 96.8 93.5 0.996

All cases at age 11–12 years 96.2 94.8 95.5 0.988

(B)

New onset at age 11–12 years 74.2 69.4 64.5 0.792

All cases at age 11–12 years 56.1 53.9 27.2 0.567

Performance statistics of accuracy, precision, recall, and the AUROC are shown for the most accurate model obtained with deep learning optimized with integrated evolutionary learning using

(A) multimodal features and (B) only neural features. We used features obtained at 9–10 years of age to predict new onset cases of ODD at 11–12 years of age, as well as all prevailing cases at

11–12 years of age. Corresponding ROC curves may be viewed in Supplementary Figures 1, 2.

them and placement of an undue focus on the distress caused by

physical complaints.

In neural-only models, which performed relatively well in

CD, prominent predictors of new onset cases were structural

features in the right rostral middle frontal ROI, left hippocampus

(as also found in the multimodal model), and right caudate.

Less important features included the correlation between the

cinguloopercular network and the left amygdala (also observed

in ODD) and left transverse temporal ROI (also observed in the

multimodal model). Final neural-only predictors of prevailing cases

of CD were dominated by cortical-subcortical connectivity features

comprising the cinguloopercular network with the left amygdala

(also important to new onset prediction), auditory network with

right hippocampus, and default mode network with right ventral

diencephalon. This model was rounded out with structural gray

matter differences in the left caudal ACC, also observed in the

multimodal model. In both new onset and prevailing cases, there

was an emphasis on subcortical structural features and connectivity

between cortical networks and subcortical ROIs.

As observed in both ADHD and ODD, individual-level

importances in multimodal predictive models of both new

onset and prevailing cases of CD were typically more widely

dispersed than in neural-only models (Figure 4). Furthermore,

wider dispersions across the participant samples were observed for

the more important predictors.

The relationship between accuracy and
final predictor importance

We computed the mean predictor importance for each

experiment to explore the relationship between model accuracy in

testing in held-out, unseen data and final predictor importance

after optimized, automated feature selection, for example, the

average importance of final predictors of new onset ADHD

at 11–12 years (Table 6). These data may be inspected in

Supplementary Table 4. Furthermore, we computed the correlation

and R2 of the relationship between accuracy and mean predictor

importance for each experiment described in the present study.

Across all experiments, the correlation between accuracy and

predictor importance in final, optimized models tested in held-out,

unseen data was 72.7% and theR2 was 52.8%. This is summarized in

Figure 5, where mean final predictor importance is shown plotted

against log(accuracy) to improve scale interpretation, though

we note that the reported correlation and R2 were computed

with accuracy.

Discussion

General observations across externalizing
disorders

Using an AI-guided feature selection process, we were able

to distill ∼6,000 candidate predictors contributed by children 9–

10 years and their parents into robust, individual-level models

predicting the later (11–12 years) onset of ADHD, ODD, and

CD. This extended prior work in ML prediction of externalizing

disorders in adolescence by assessing ∼30× more candidate

predictors spanning a wider variety of knowledge domains

(cognitive, psychosocial, biological, and multiple neural types). By

imposing a common pre-processing and analytic design across

all three major externalizing disorders in the same participant

cohort, we were able to directly compare results, quantify the

relative predictive performance of multimodal vs. neural features,

and examine the relationship between predictor importance and

model accuracy across multiple experiments. To the best of

our knowledge, this is the first study using ML to predict the

onset of all three major adolescent externalizing disorders and

include many types of neural predictors (rsfMRI connectivity;

task fMRI effects; diffusion and structural metrics), analyze

>200 multimodal features, and quantify the relationship between

predictor importance and accuracy.

Comparing experiments, we found that relative predictive

performance varied according to disorder and predictor type

(psychosocial vs. neural). Overall, deep learning optimized with IEL

applied to multimodal features achieved strong performance with

∼86–97% accuracy, 0.919–0.996 AUROC, and ∼82–97% precision

and recall in testing in held-out, unseen data. With multimodal

features, performance was slightly stronger in predicting prevailing

over new onset cases in ADHD and CD but equivalent in ODD,

with the strongest performance overall in ODD, followed by CD

and then ADHD. Further targeted experiments specifically assessed
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TABLE 8 Final predictors of cases of ODD at ages 11–12 years.

(A) Age of case determination Ranked final predictors Importance

New onset at age 11–12 years Youth has ever received MH/SU services 0.1581

Disorder of excessive somnolence 0.1290

Disorder of sleep-wake transition 0.0968

Either parent has nerves or nervous breakdown problem 0.0871

Prosocial behavior scale score 0.0516

Parent externalizing problems 0.0290

Parent aggressive behavior problems 0.0032

Mean 0.0694

All cases at age 11–12 years Child has received MH/SU services in last 6 months 0.1856

Parent reports getting along very well with child 0.0951

Total sleep disturbance score 0.0827

Mother has depression problem 0.0819

Either parent has been to doctor or counselor due to emotional/mental problem 0.0420

Parent externalizing problems 0.0367

Prosocial behavior mean score 0.0358

Disorder of sleep-wake transition 0.0347

Mean 0.0743

(B) Neural data type Ranked final predictors Importance

New onset at age 11–12 years Correlation between salience network and left caudate ROI 0.0750

Correlation between retrosplenial temporal network and right caudate ROI 0.0743

Correlation between default network and left hippocampal ROI 0.0509

Correlation between cinguloopercular network and left amygdala ROI 0.0262

Correlation between cinguloopercular network and right putamen ROI 0.0256

Correlation between fronto-parietal network and left caudate ROI 0.0207

Correlation between sensorimotor hand network and left amygdala ROI 0.0158

Mean 0.0410

All cases at age 11–12 years Average FA in GM in right lateral orbitofrontal ROI 0.0044

Cortical area in mm2 of left inferior parietal ROI 0.0007

Mean 0.0026

Final predictors of all prevailing cases of ODD at 11–12 years, as well as new onset cases only at 11–12 years of age, are shown for the most accurate models obtained using deep learning

optimized with IEL obtained with (A)multimodal features and (B) only neural features. Final predictors are ranked in the order of importance, where the relative importance of each predictor

is computed with the Shapley additive explanation technique and presented here averaged across all participants in the sample. Features in red indicate an inverse relationship with ODD verified

with the Shapley method. MH, mental health; SU, substance use; ROI, region of interest; GM, gray matter.

the standalone predictive ability of multiple neural feature types

derived from MRI. After restricting the candidate predictors to

4,777 neural features, we observed that predictive performance

dropped substantially across all three disorders, most prominently

when predicting all prevailing cases. The small number of

prior ML studies in adolescent externalizing disorders that have

directly compared the utility of psychosocial vs. neural predictors

have obtained similar results and performance differentials (14).

However, we would highlight that neural-only features were for

the most part able to predict new onset cases with accuracy and

AUROC of∼80%.While not as strong as with multimodal features,

this performance compares favorably with the existing literature

using ML and biobehavioral features to predict externalizing

disorders in adolescents. Table 11 provides an overview of selected

comparable studies.

To the best of our knowledge, this is the first study to

provide directly comparable predictive models of all three major

externalizing disorders. In adolescence, ADHD, ODD, and CD

frequently co-occur in the population, and in adulthood, they

are increasingly co-morbid with mental health conditions such

as internalizing and personality disorders and substance use. It

is, therefore, challenging to assemble a longitudinal cohort where

participants have only ADHD, ODD, or CD without any co-

morbidities, and we are not aware that such a sample exists in
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FIGURE 3

Individual-level importance of final predictors of Oppositional Defiant Disorder in early adolescence. Summary plots are presented of the importance

of each final predictor (computed with the Shapley additive explanation technique) on an individual subject level to predicting ODD with new onset

at 11–12 years with (A) multimodal features and (B) only neural features and in all prevailing cases of ODD at 11–12 years with (C) multimodal

features and (D) only neural features. The color gradient represents the original value of each feature (metric) where red = high and blue = low.

Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient.

adolescence with sufficient participants to enable rigorous ML

analyses. Moreover, allowing naturalistic sample overlap among

the externalizing conditions may improve translational relevance

because it reflects the clinical population. Here, we adopted a

design where all three disorders are predicted in the same cohort

using the same methods to allow head-to-head comparison of final

predictors and enable the identification of common vs. specific

predictors across ADHD, ODD, and CD in the same population.

We found that each set of final predictors was a unique combination

of features and differentiated both (a) ADHD, ODD, and CD from

each other and (b) future new onset from all prevailing cases.

However, there were cross-cutting themes. In predicting case onset,

sleep disorders (excessive somnolence, sleep–wake transition, and

total disturbances) were common, prominent predictors across

ADHD, ODD, and CD. Sleep disturbances may affect up to

∼40% of elementary school-age children and youth, with both

internalizing and externalizing disorders at elevated risk (43, 44).

Sleep disturbances have been shown to “precede, predict and

significantly contribute” to behavioral issues in ADHD and worsen

disruptive behaviors, ODD, and CD in adolescence, though links

with sleep latency and duration have been variable (45–48). Here,

our findings add to a growing body of work suggesting that sleep

disturbances may be important intervention targets in elementary

school-age youth to reduce the later onset of clinical ADHD, ODD,
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TABLE 9 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of conduct disorder using multimodal and

neural-only feature types.

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUROC

(A)

New onset at age 11–12 years 90.0 85.4 92.0 0.922

All cases at age 11–12 years 96.3 95.1 95.0 0.990

(B)

New onset at age 11–12 years 80.0 75.7 72.0 0.808

All cases at age 11–12 years 77.5 71.7 75.0 0.816

Performance statistics of accuracy, precision, recall, and the AUROC are shown for the most accurate model obtained with deep learning optimized with integrated evolutionary learning using

(A) multimodal features and (B) only neural features. We used features obtained at 9–10 years of age to predict new onset cases of CD at 11–12 years of age, as well as all prevailing cases at

11–12 years of age. Corresponding ROC curves may be viewed in Supplementary Figures 1, 2.

and CD. Moreover, we found that daytime somnolence and sleep–

wake transition were emphasized in predicting the externalizing

disorders in adolescence and not sleep latency or duration. Other

themes were shared by two of the three disorders: conflict between

parent and child was shared in ADHD and ODD, and in the

more behaviorally severe disorders (ODD, CD), youth appeared

to have come to clinical attention before age 9–10 years. In our

models for all prevailing cases, shared themes were recent mental

health treatment for the youth, sleep disturbances and parental

burden of various types of behavioral problems, and parent–child

conflict. Unsurprisingly, therefore, there are thematically common

predictors across all three externalizing disorders that also reflect

the extant literature. These may present opportunities to leverage

both conventional interventions and newly emerging therapies,

such as digital therapies using mobile devices and applications

in early adolescents at risk for externalizing disorders (49–54).

However, disorder-specific predictors did exist that may aid in

disambiguating the onset of these conditions. Most strikingly, CD

was marked by the importance of structural brain features that

interacted with psychosocial predictors and appeared in neither

ADHD nor ODD in multimodal models. As well, neural-only

models achieved their best performance in CD over ADHD or

ODD. This highlights a potential role for structural neuroimaging

in identifying youth at risk for CD, the most severe and disabling

of the three disorders, vs. ADHD or ODD. In terms of the latter

two conditions, school performance was a prominent predictor of

the onset of ADHD vs. an emphasis on lower levels of prosocial

behaviors and parent mental health issues in ODD.

Recent studies sugges t that inflated effect sizes in neuroimaging

studies of psychopathology and cognitive traits may be responsible

for generalization failure, particularly in group-level association

studies and smaller participant samples (55). While there is no

exact equivalent to group-level effect size in the individual-level

models provided by deep learning with artificial neural networks,

predictor importance in the context of accuracy is conceptually

similar. We, therefore, investigated predictor importance at both

the group and individual level and its relationship with model

performance in generalization testing, finding a moderately

strong relationship (R2 ∼53%) between predictor importance and

accuracy. Psychosocial predictors in multimodal models had larger

importance and wider inter-individual dispersions than those in

neural-only experiments, even after extensive optimization and

principled feature selection. Collectively, these results suggest

that the smaller importance of neural features and their more

restricted inter-individual variability were at least related to their

weaker performance in predicting cases. Future work will be

required to determine whether these phenomena are seen in

other disorders and participant samples or if other types of

neural features might perform differently in predicting cases of

externalizing disorders.

Predicting the onset of ADHD in early
adolescence

ADHD affects up to 10% of school-age children and is

characterized by inattention, impulsivity, and hyperactivity. It

is a developmental disorder that shows markedly increasing

prevalence from late elementary school through adolescence

and is treatable. Thus, the early detection of children at risk

for new onset is of substantial interest. There have been a

number of ML multimodal predictive studies in adolescent

ADHD, predominantly cross-sectional. National-level cohorts have

offered large sample sizes to enable ML but typically a smaller

range of psychosocial/demographic candidate predictors. For

example, Garcia-Argibay et al. analyzed 22 candidate predictors

in Swedish registry data (n = 238,696), achieving moderate

performance with deep learning (accuracy: 69%, AUROC: 0.75)

and identifying top predictors of having a parent with criminal

convictions or relative with ADHD, male sex, number of academic

subjects failed, and speech/learning disabilities (39). In a Japanese

sample (n = 45,779), Maniruzzaman et al. identified family

structure, insurance age, sex, medical conditions, and mental

health symptomatology as significant among 19 psychosocial

candidate predictors (accuracy: 86%, AUROC: 0.94) (40). Using

a British school-based cohort, Ter-Minassian et al. were able

to access a wider range of 68 candidate predictors and found

school attendance, social-emotional development level, writing

performance, male sex, and problem-solving/reasoning to be most

important in predicting ADHD (AUROC: 0.72) (41). Analyzing

∼6,000 candidate multimodal predictors, we found that the onset

of ADHD in early adolescence was robustly (accuracy: ∼86%,

AUROC: 0.919) predicted by a simple model comprising the
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TABLE 10 Final predictors of cases of conduct disorder at ages 11–12 years.

(A) Age of case determination Ranked final predictors Importance

New onset at age 11–12 years Parent reports gets along very well with child 0.1126

Disorder of sleep wake transition 0.0996

Total sleep disturbances 0.0949

Child has ever received MH/SU services 0.0927

Average FA left hippocampus ROI 0.0642

Mean 0.0928

All cases at age 11–12 years Child has received MH/SU services in last 6 months 0.1593

Parent reports getting along very well with child 0.1442

Child is doing very well in school 0.0958

Disorder of sleep-wake transition 0.0806

Parent somatization behaviors score 0.0455

Youth receives excellent grades in school 0.0408

Parent aggressive behavior score 0.0235

T1 intensity WM left transverse temporal ROI 0.0130

Average FA GM left caudal ACC ROI 0.0123

Mean 0.0683

(B) Neural data type Ranked final predictors Importance

New onset at age 11–12 years Average FA GM right rostral middle frontal ROI 0.1628

Average FA left hippocampus ROI 0.1348

Average FA right caudate ROI 0.1043

Correlation between cinguloopercular network and left amygdala ROI 0.0531

T1 intensity WM left transverse temporal ROI 0.0490

Correlation between sensorimotor mouth network and left caudal ROI 0.0333

Mean 0.0890

All cases at age 11–12 years Correlation between cinguloopercular network and left amygdala ROI 0.0960

Correlation between auditory network and right hippocampal ROI 0.0456

Correlation between default network and right ventral diencephalon ROI 0.0444

Average FA GM in left caudal ACC ROI 0.0192

Mean 0.0513

Final predictors of all prevailing cases of CD at 11–12 years, as well as new onset cases only at 11–12 years of age, are shown for the most accurate models obtained using deep learning optimized

with IEL obtained with (A)multimodal features and (B) only neural features. Final predictors are ranked in the order of importance, where the relative importance of each predictor is computed

with the Shapley additive explanation technique and presented here averaged across all participants in the sample. Features in red indicate an inverse relationship with CD verified with the

Shapley method. MH, mental health; SU, substance use; ROI, region of interest; FA, fractional anisotropy; WM, white matter; GM, gray matter.

presence of a disorder of excessive somnolence, twometrics of poor

school performance and parent–child conflict.

Sleep disturbances are widely reported in ADHD, including

longer sleep latency, frequent awakenings, non-restorative sleep,

decreased sleep, and daytime somnolence (46, 56). Although many

children with ADHD are treated with stimulants, the evidence that

this disrupts sleep is inconclusive, though sleep disturbances are

thought to worsen neurocognitive outcomes (57). In the present

study, we included many types of sleep disorders and metrics

as candidate predictors (Supplementary Table 1) and identified

excessive somnolence as the most important predictor of the future

onset of ADHD at 11–12 years when measured in children with

ages 9–10 years who have not been diagnosed with ADHD or taken

stimulants. Thus, our findings extend prior work by suggesting

that excessive daytime somnolence rather than other sleep metrics

may be a helpful predictor of future ADHD case status. Excessive

somnolence could be caused by a variety of developmental or

environmental factors in school-age children, and future work may

provide a mechanistic explanation of how it predicts ADHD onset.

As noted above, poor school performance and family dysfunction

have previously been identified as a predictor of ADHD and are

well-associated with the disorder. Here, we add to this literature

by identifying poor school performance and parent–child conflict

as prospective predictors of ADHD onset in early adolescence.
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FIGURE 4

Individual-level importance of final predictors of conduct disorder in early adolescence. Summary plots presented the importance of each final

predictor (computed with the Shapley additive explanations technique) on an individual subject level to predicting CD with new onset at 11–12 years

with (A) multimodal features and (B) only neural features and in all prevailing cases of CD at 11–12 years with (C) multimodal features and (D) only

neural features. The color gradient represents the original value of each feature (metric) where red = high and blue = low. Discrete (binary) features

appear as red or blue, while continuous features appear as a color gradient.

Of note, final predictors of new onset ADHD were essentially a

subset of those that predicted all prevailing cases, whereas in the

latter parent, behavioral traits of total and externalizing problem

behaviors were also present.

We found that the prospective prediction of ADHD onset in

early adolescence was not improved by neural features. However,

our neural-only model of ADHD onset did achieve moderately

strong performance (accuracy: ∼79%, AUROC: 0.841) and is of

interest. The neural substrate of ADHD has been extensively

studied in group-level associative work. More recently, the

construction of ML classifiers with neural features was stimulated

by the formation of the aggregated ADHD-200 dataset and

associated Global Competition, thoughmany resultant studies have

been criticized for reporting “inflated” performance statistics based

on cross-validated training rather than testing for generalization

in held-out, unseen data (58). Among the latter, performance

has varied widely, with accuracy rarely surpassing 80% and most

studies analyzing ADHD-200 cross-sectional data with a wide

age span. We are not aware of other studies using ML for

prospective prediction of the onset of adolescent ADHD using a

comparably large number of neural features across multiple MRI

types in a standardized cohort. In new onset cases, we found the

most prominent predictor was the correlation between the ventral

attention network and right ventral diencephalon ROI, followed

by SST contrast in the left pars opercularis (Brodmann Area 44)

and cortical thickness in the right transverse temporal ROI (linked

with the processing of incoming auditory information). The ventral

attention network is one of the primary attention networks in the
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FIGURE 5

The relationship between accuracy and final predictor importance. Average variable importance computed with the Shapley additive explanations

technique is shown plotted against the log of prediction accuracy in testing in held-out data for each experiment in the study. The line of best fit

obtained with a linear regression is also displayed. The underlying data for this chart may be inspected in Supplementary Table 4.

TABLE 11 Overview of selected comparable studies.

Condition References Sample
size

Type Algorithm Accuracy Precision Recall AUROC

ADHD Garcia-

Argibay et al.

(39)

238,696 CS DL 69% NR 72% 0.75

ADHD Maniruzzaman

et al. (40)

45,779 CS RF 86% NR 86% 0.94

ADHD Ter-Minassian

et al. (41)

4,178 CS LR 81% 70% 66% 0.72

Disruptive

behaviors

Menon and

Krishnamurthy

(42)

1,100 CS CNN 72% NR 70% 0.74

CD Chan et al.

(14)

2,368 Long FNN 91% NR 93% 0.96

Summary of comparable studies using machine learning to predict externalizing disorders in youth that are reviewed in this manuscript. Numbers after the authors’ names correspond to the

citation reference. CS, cross-sectional; Long, longitudinal; DL, deep learning; RF, random forest; LR, logistic regression; CNN, convolutional neural network; FNN, feedforward neural network.

brain and directs attention to unexpected stimuli. It has been very

well-associated with ADHD symptomatology in both children and

adults, as have differences in subcortical structures (59–63). Among

subcortical structures, the diencephalon was historically less

studied in ADHD. However, the thalamus, a primary component of

the diencephalon that modulates and filters interfering stimuli, has

recently attracted much attention to structural thalamic differences

identified in youth with ADHD (64–66).

Predicting the onset of oppositional defiant
disorder in adolescence

Oppositional defiant disorder is characterized by a pattern

of uncooperative, defiant, and angry behavior toward authority

figures that causes significant problems at home or school.

Similar to ADHD, a proportion of youth with ODD “grow

out” of the condition, and ∼50% of youth with ODD have
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ADHD. Of those in whom ODD persists, CD may evolve, and

in adulthood, ∼40% go on to develop antisocial personality

disorder and/or other mental health or substance abuse problems.

Since the prevalence of ODD climbs markedly in elementary

school and empirically based treatment is available, identifying

specific prospective predictors of the disorder in late childhood

and early adolescence—particularly those that differentiate it

from ADHD—is of considerable importance. ODD and CD

are often grouped as “disruptive disorders”, and unfortunately,

few large-scale ML studies have approached ODD in isolation.

To the best of our knowledge, this study represents the first

to analyze a large number of multimodal predictors, including

multiple types of neuroimaging, to prospectively predict ODD

as distinct from CD in early adolescence. We found that deep

learning optimized with IEL prospectively predicted the onset

of ODD with strong performance using multimodal features

(accuracy: ∼97%, AUROC: 0.996) in held-out, unseen data.

While sleep disorders were the final predictors that ODD shared

with ADHD, ODD had a more complex predictive model that

additionally included several measures of parental mental health

problems (either parent has depression, i.e., nerves or nervous

breakdown problem; parent externalizing and aggressive problems)

but did not include the metrics of school performance that

predicted ADHD onset. Indeed, the most important predictor

was whether the child had already come to clinical psychiatric

attention before age 9–10 years. Here, our study is concordant

with extant group-based studies in ODD, which associate case

status with stress and conflict, parental depression, and other

parental factors such as hostility, support, and scaffolding,

and further suggest that symptoms are present in preschool

and “cascade” toward eventual diagnosis with parental mental

health problems significantly moderating treatment outcome (67–

71).

As with ADHD, we found that biological and physiologic

metrics were not selected in multimodal prospective prediction

of the onset of ODD and that neural-only models sacrificed

substantial performance. However, our neural-only model still

obtained moderately strong performance (accuracy: 74%, AUROC:

0.792) and a striking result worthy of examination. While

5,777 neural features across multiple neuroimaging types were

analyzed, ODD onset at 11–12 years was predicted by a markedly

homogenous combination of features that were all rsfMRI

metrics representing connectivity between cortical networks and

subcortical ROIs, in particular limbic regions of the amygdala

and caudate and putamen (dorsal striatum). Limbic regions in

the left hemisphere predicted case status, while those in the right

hemisphere had an inverse relationship with ODD. Moreover,

cortical networks selected as final predictors had intuitive

relationships with ODD symptomatology, being associated with

navigating and integrating learned social rules, hierarchies, and

contingencies (salience); empathy and introspection (default);

efficient task switching (cinguloopercular); and executive control

(fronto-parietal) (72–78). Many have known limbic nodes

where the latter structures are associated with fear and threat

detection and the autonomic “fight or flight” response (amygdala)

reinforcement learning and action selection (dorsal striatum)

(79–81). As noted above, few large-scale ML predictive studies have

focused exclusively on ODD or made head-to-head comparisons

among externalizing disorders, including neuroimaging studies.

Menon and Krishnamurthy predicted disruptive behaviors

(collapsing ODD and CD into one category) in children aged 9–10

years in the ABCD cohort using a convolutional neural network

applied to three types of neural features (diffusion, structural, and

seed-based rsfMRI connectivity) obtained at 9–10 years to examine

the relative predictive power of each type of imaging (42). They

obtained moderate performance (accuracy: 0.72, AUROC: 0.74)

without testing in held-out data and found that a combination of

modalities performed better than any single imaging type. The

right superior longitudinal fasciculus, middle frontal, postcentral,

middle occipital and middle temporal gyri, and inferior parietal

lobule were class discriminative in disruptive behaviors. Thus,

the current study suggests an intriguing jumping-off point for

neural prediction of ODD development in suggesting a focus on

cortical-subcortical relationships centered around connectivity

between cortical control networks and limbic loci performing

emotional response and action selection. In this, ODD contrasts

with the attention and language processing networks and areas

emphasized in ADHD onset.

Predicting the onset of conduct disorder in
early adolescence

While conduct disorder may be grouped with ODD as

the “disruptive” disorder, it is differentiated by the presence

of aggression and destructive behaviors directed toward people,

animals, or property, a serious violation of rules, and lack of

empathy. The CD is often considered the most severe and disabling

of adolescent externalizing disorders. While∼60–70% of youth will

lose the diagnosis in adulthood, those that do not have a relatively

poor prognosis are associated with the development of other

mental health and substance abuse disorders, antisocial personality

disorder, and life impairment, including involvement in the justice

system. In prior group-based longitudinal studies, the development

of CD has been associated with impulsivity, parental behaviors

such as poor supervision and punitive discipline, cold or antisocial

parental traits and parental conflict, family risk factors such as large

size or low income, contextual factors such as antisocial peers, and

adverse school or neighborhood environments (82). In the only

multimodal ML classification study previously performed in CD

specifically, Chan et al. also used data collected from children aged

9–10 years in the ABCD cohort to predict all prevailing cases of CD

at 11–12 years (14). This study employed artificial neural networks

and 52 candidate predictors comprising 20 graphmetrics computed

from rsfMRI, 16 psychosocial features selected empirically based

on prior literature, four basic demographic descriptors, and nine

cognitive metrics derived from psychometrics testing. In contrast

to the present study, CD, ADHD, and ODD symptomatology at

9–10 years were also allowed as candidate predictors. This design

achieved 91% accuracy and 0.96 AUROC compared to our 96%

accuracy and 0.99 AUROC in the prospective prediction of all

prevailing cases of CD at 11–12 years. They found that greater

ADHD and ODD symptomatology, frontoparietal efficiency, and

reports of family members throwing objects predicted future

CD, while lower crystallized cognitive and card sorting ability,
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subcortical efficiency, frontoparietal degree, family income, and

parental monitoring were inversely related to case status. This study

is comparable to our multimodal model predicting all prevailing

cases at 11–12 years, though we analyzed a larger number of

candidate predictors andmore types of neural metrics.We similarly

found parent–child conflict to be an important final predictor, but

otherwise, final predictors emphasized sleep disturbance (sleep–

wake transition), poor school performance, parent somatization

and aggressive traits, and structural brain differences in the left

transverse temporal and anterior cingulate cortex (ACC) ROIs.

When focusing on predicting new onset cases of CD with

multimodal features, we identified a more parsimonious model

with strong predictive performance (accuracy: 90%, AUROC:

0.922) where family conflict, sleep disturbances (sleep–wake

transition disorder and total disturbances), and whether the

child had come to clinical attention before 9–10 years were

important predictors. It is notable that among the three

adolescent externalizing disorders, CD is the only condition in

which neural predictors were selected as final predictors among

∼6,000 multimodal candidate predictors after extensive AI-guided

feature selection. In prospectively predicting the onset of CD,

structural differences in the left hippocampus ROI interacted

with psychosocial factors to drive the prediction of case status.

Prior group-based studies (including in the ABCD cohort) have

identified associations between CD symptomatology and structural

and functional differences in the limbic system (which includes

the hippocampus), ACC, orbito-frontal, prefrontal, and temporal

cortices, though not all studies segregate CD from ODD (83–86).

Extant work has also specifically identified aberrant volumes in

paralimbic structures, including hippocampal ROIs in incarcerated

adults and youth with psychopathic traits (87–89). Although the

hippocampus is known for its role in memory formation, it is

deeply interconnected with other limbic structures and plays a

prominent role in fear conditioning and affective processes (90).

While neural features proved more important in the

multimodal prediction of CD vs. ADHD and ODD, when

we restricted candidate predictors to only neural features,

performance dropped substantially. Similarly, Chan et al. found

that accuracy dropped to 77% and AUROC to 80% when only

neural features were used to make prospective predictions of all

prevailing CD cases at 11–12 years, a very comparable performance

differential. However, the moderately strong performance was still

obtained (accuracy: 80%, AUROC: 0.808), giving credence to these

findings. In the neural-only model, features in good concordance

with prior literature were identified, with differences in frontal,

temporal, and limbic (caudate, amygdala, and hippocampus)

structures and connectivity between the cinguloopercular network

and amygdala appearing as important predictors of CD onset in

early adolescence. While some regional ROIs, particularly limbic

structures, were common to ODD and CD, we found that neural

predictors of CD onset emphasized structural over connectivity

features and the hippocampus appeared as limbic structural

predictor that was specific to CD.

Conclusion

Taken together, our results suggest that highly accurate (>85%)

prediction of the onset of each of the early adolescent externalizing

disorders is possible using ML optimized with AI and that

individual-level prospective prediction of ADHD, ODD, and CD

benefits from the inclusion of multimodal features drawn from

multiple knowledge domains, particularly psychosocial predictors

related to sleep disorders, parent mental health and behavioral

traits, and school performance. In CD specifically—but not ADHD

or ODD—metrics derived from structural MRI interacted with

psychosocial features in predicting later case onset and these neural

features and may hold particular promise in identifying children at

risk for this highly disabling disorder. Cognitive features derived

from psychometric testing and other forms of physiologic data

(e.g., hormonal levels and biometric testing) were deemphasized

throughout our experiments. Among neural features, metrics

related to subcortical ROIs and connectivity between cortical and

subcortical ROIs were prominent and congruent with the existing

literature on externalizing disorders. In terms of MRI modalities,

structural gray and white matter features and rsfMRI-derived

connectivity were valuable prospective predictors across all three

disorders, with tfMRI only appearing in ADHD and no diffusion

MRI metrics featured. We achieved high performance across

all multimodal experiments and identified a strong correlation

between accuracy and final predictor importance, suggesting that

automated feature selection with AI techniques such as IEL

can facilitate the discovery of impactful predictors among high-

dimension data in a principled manner and generate robust

predictive models.

Limitations

This study uses secondary data from the ABCD study.We were,

therefore, unable to control for any bias during data collection,

and there is a mild bias toward higher-income participant families

of white race in the early adolescent cohort, though the ABCD

study strived for population representation. Similarly, externalizing

disorders have shown differences in population case ascertainment

associated with characteristics such as sex/gender, race/ethnicity,

and sociodemographic factors, which have varied over time and are

still the subject of ongoing research. We do not take a position on

these phenomena in this study and constructed balanced samples

based on case ascertainment using the CBCL. Cases were matched

with controls based on natal sex and age. However, sex, gender,

race, ethnicity, and many sociodemographic and cultural factors

were included as candidate predictors, as is standard practice in

large-scale ML studies and which does allow for the influence of

such factors to be revealed. Further work using a similar design

in participant samples stratified by sex/gender or race/ethnicity

could also elucidate differential effects. Data are not available before

baseline (age 9–10 years) assessment, and we cannot, therefore,

conclusively rule out that youth participants may have met criteria

based on the CBCL for ADHD, ODD, or CD before ≤8 years.

Thus, it is possible that certain cases coded as “new onset” at 11–

12 years of age could have met clinical criteria at ≤8 years but

not at 9–10 years. In the present study, we defined cases as an

individual meeting ASEBA clinical thresholds in CBCL subscale

scores pertinent to ADHD, ODD, and CD and did not exclude

participants who thereby met criteria for other conditions. Thus,

co-morbidity may be present in the experimental samples, as is

common in clinical populations and occurs inmost research studies
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in early adolescence. Our study is not exhaustive. It is possible

that different results could have been obtained if more or different

candidate predictors were included. We tested for generalization

in a holdout, unseen test set obtained by partitioning the data,

a gold standard method in ML. However, methods and results

should also be tested for replication in an external dataset other

than ABCD.
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