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Backgrounds: Tobacco smoking is an important risk factor for coronary artery 
disease (CAD), but the genetic mechanisms linking smoking to CAD remain 
largely unknown.

Methods: We analyzed summary data from the genome-wide association study 
(GWAS) of the UK Biobank for CAD, plasma lipid concentrations (n =  184,305), and 
smoking (n =  337,030) using different biostatistical methods, which included LD 
score regression and Mendelian randomization (MR).

Results: We identified SNPs shared by CAD and at least one smoking behavior, 
the genes where these SNPs are located were found to be significantly enriched 
in the processes related to lipoprotein metabolic, chylomicron-mediated lipid 
transport, lipid digestion, mobilization, and transport. The MR analysis revealed 
a positive correlation between smoking cessation and decreased risk for CAD 
when smoking cessation was considered as exposure (p  =  0.001), and a negative 
correlation between the increased risk for CAD and smoking cessation when CAD 
was considered as exposure (p  =  2.95E-08). This analysis further indicated that 
genetic liability for smoking cessation increased the risk of CAD.

Conclusion: These findings inform the concomitant conditions of CAD and 
smoking and support the idea that genetic liabilities for smoking behaviors are 
strongly associated with the risk of CAD.
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Introduction

Tobacco smoking is one of the most important public health problems world-wide, 
accounting for 9% of deaths (1). Several epidemiologic studies have proved that tobacco smoking 
is a major risk factor for many diseases such as lung cancer and cardiovascular and respiratory 
diseases (1). Lung cancer is the most prevalent smoking-associated cause of death, followed by 
ischemic heart disease and chronic airway obstruction. Tobacco smoking and its impact on the 
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respiratory system caused an estimated 8 million deaths per year, with 
more than 10% of these deaths related to second-hand smoke (2). In 
the United  States, tobacco smoking is associated with 30% of all 
CAD-related deaths each year (3) and also doubles the risk of 
premature cardiovascular deaths (4).

Several epidemiologic studies have revealed that tobacco smoking 
increases the incidence of fatal CAD and associates with various 
cardiovascular diseases (5–8). Extensive clinical evidence has 
supported the idea that tobacco smoking causes multiple genetic and 
epigenetic abnormalities in the respiratory epithelium (9, 10). In a 
previous study, Sabater-Ileal and colleagues identified a genetic locus 
that influences both lung function and CAD (11), although the 
findings were not genome-wide in scale and were underpowered due 
to a small sample size.

Tobacco contains more than 4,000 chemicals (12), and the exact 
toxic components and the mechanisms involved in tobacco-related 
CAD and cardiovascular dysfunction are still unknown. Recently, a 
genetic predisposition to the development of atherogenesis in 
individuals exposed to cigarette smoke has been reported. The 
commonly documented examples are CYP1A1 MSP polymorphism 
and certain endothelial NO synthase intron 4 polymorphisms. Both 
increase the susceptibility to cigarette smoke exposure-related 
atherosclerotic diseases including multi-vessel CAD and myocardial 
infarction (MI) (13, 14). Given that much of the available data were 
derived from observational studies, which are unable to account fully 
for confounding and reverse causation, the genetic correlation and 
causal relations between smoking and cardiovascular diseases remain 
to be determined.

The principle of Mendelian randomization (MR) relies on the 
basic laws of Mendelian genetics, segregation, and independent 
association. When these principles hold at a population level, the 
influence of confounding factors can be reduced because religion, 
growth, environment, and other confounding factors are considered 
to be  random (15). Given that alleles are randomly allocated and 
become fixed at conception, MR studies are less susceptible to reverse 
causality than are observational studies.

In this study, we  examined the pleiotropic effect of tobacco 
smoking and CAD using publicly available GWAS summary statistics. 
Then, we used bidirectional MR method to reveal the nature of the 
causal relations between CAD and tobacco smoking. Finally, 
we determined the biological processes or pathways involved in the 
comorbidity of these two diseases.

Materials and methods

GWAS summary data sets

The GWAS summary data for CAD and plasma lipid 
concentrations have been described in a previous report (16). Briefly, 
the summary statistics of a large GWAS meta-analysis comprising 
more than 120,000 CAD cases and 339,115 controls were obtained 
from CARDIoGRAMplusC4D Consortium website (http://www.
cardiogramplusc4d.org/data-downloads/). A total of 9,149,595 
variants were included either in the CARDIoGRAMplusC4D 1,000 
Genomes–imputed GWAS or the MIGen/CARDIoGRAM Exome 
chip study. The smoking data were obtained from the large GSCAN 
summary statistics (17). The GSCAN investigated four 

smoking-related phenotypes, including age at initiation of regular 
smoking (AgeSmk; n  = 341,427), whether an individual had ever 
smoked regularly (SmkInit; n = 1,232,091), cigarettes smoked per day 
(CPD; n = 337,334), and smoking cessation (SmkCes; n = 547,219). 
The GWAS summary statistics for different smoking phenotypes can 
be found at https://conservancy.umn.edu/handle/11299/201564.

Further, we obtained published GWAS meta-analysis association 
data for lipid concentrations from the Center for Statistical Genetics, 
which was a joint analysis that examined 188,577 individuals whose 
genomic DNA samples were genotyped with two platforms from 
multiple studies (18). Complete GWAS summary statistics were 
downloaded from webpage http://csg.sph.umich.edu/willer/public/
lipids2013/.

Estimation of genetic correlation by LD 
score regression (LDSC)

The genetic correlations (rg) between CAD and smoking behaviors 
were estimated by LDSC (19). Pairwise LD r2 among SNPs was 
conducted using pre-computed LD scores with the 1,000 Genomes 
Project reference panel of subjects of European ancestry. Quality 
control steps were adopted from LD scores default procedures, 
including imputation quality >0.9 and minor allele frequency > 0.1. 
Moreover, all SNPs retained for further analysis were merged with 
SNPs in the HapMap 3 reference panel. Correlation was considered 
significant at a corrected p value of <0.05 by Bonferroni correction.

Mendelian randomization (MR)

We extracted the effect estimates and standard errors (Ses) from 
relevant GWAS and employed TwoSampleMR (v. 0.4.22) R package to 
clarify the potential causal effect for both smoking and CAD (20). The 
following strategies were used to identify genetic instruments. First, 
we filtered GWAS summary datasets to require shared susceptible loci 
in both smoking and CAD. The variants showing genome-wide 
significance (p < 5 × 10−8) in GWAS for CAD were considered to 
be candidate variants, and then we checked the significance of these 
genetic loci separately in four other smoking behaviors: smoking 
initiation age, smoking cessation, CPD, and age of initiation in GSCAN 
studies. The common SNPs were harmonized using default parameters 
within the built-in “harmonize data” function and then trimmed by 
PLINK (v. 1.07) to obtain independent risk variants for each disease (21).

To start, the MR analysis was performed by generating 
instrumental variable estimates for each SNP. The averaged causal 
estimate of each SNP was calculated using the inverse–variance-
weighted (IVW) method, i.e., specifically defined as the beta 
coefficient associated with SNP-CAD divided by the beta coefficient 
associated with SNP-smoking behaviors (22). In addition, we used a 
series of sensitivity analyses, which included weighted median and 
MR Egger, to evaluate the reliability of our results.

Gene and pathway analysis

The gene-based analysis that links SNPs to genes was conducted 
using MAGMA with default settings. To gain biological insights into 
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shared genes, we used the WebGestalt tool (23) to assess enrichment 
of the identified shared gene set in the Gene Ontology (GO) biological 
processes with redundant GO terms been removed. Both analyses 
were based on shared genes that were identified from cross-trait meta-
analysis. Pathways with a false discovery rate (FDR) < 0.05 were 
considered significant.

Results

Susceptible loci shared by CAD and 
smoking behaviors

To investigate the genetic overlap between CAD and smoking 
behaviors, we used GWAS summary data from large-scale genome-
wide studies (Supplementary Table S1). We detected a great number 
of significantly associated SNPs overlapped between CAD risk loci 

and at least one smoking phenotype (Supplementary Table S2). Of 
the CAD GWAS loci, 2091 SNPs (35.01%) showed nominal 
significance in CPD, 526 SNPs (25.16%) showed nominal significance 
for smoking initiation, 317 SNPs (15.16%) for smoking cession, and 
85 SNPs (4.07%) for age at smoking initiation. Notably, 24 SNPs 
reached genome-wide significance (Figure 1).

Genetic correlations between CAD and 
smoking behaviors

We used the LDSC method to test for the genome-wide 
correlations between CAD and smoking behaviors. Significant 
genetic correlations were found between CAD and all the smoking-
related traits with the smallest p values <1 × 10−18 (Figure  2). 
We observed significant positive genetic correlations between CAD 
and CPD, smoking initiation, and smoking cessation (rg > 0.2), but a 

FIGURE 1

Genetic susceptibility map for CAD and smoking behaviors. Outer ring defines location of 22 human autosomes. Scatter plots in second and fourth 
rings demonstrate analogy of Manhattan plot for association results from CAD and smoking behaviors, respectively. Altitude of each dot represents 
statistical significance as −log10 (P). SNPs that reached genome-wide significance are colored red for CAD and green for smoking behaviors. Yellow 
bars in third ring mark 24 CAD risk loci at least nominally associated with smoking behaviors, and tag SNPs in these loci are labeled.
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negative genetic correlation between CAD and age at initiation 
(rg < −0.2).

Mendelian randomization analysis

Considering the presence of potential LD relations among those 
significant SNPs of interest, we  performed p value-informed LD 
pruning with the goal of obtaining independent GWAS SNPs. This led 
to the identification of 15, 63, 18, and 152 independent SNPs for Age 
of Initiation, CPD, Smoking Cessation and Smoking Initiation, 

respectively. Bi-directional MR analysis provided strong evidence that 
smoking initiation increased the risk of CAD (IVW: β  = 0.191; 
p = 2.59 × 10−6) with a consistent direction of effect in all three MR 
methods (Table 1). There also was evidence for a consistent but weaker 
genetic liability for smoking cessation on CAD (IVW: β  = 0.234; 
p = 0.001). The same findings were observed for age at initiation as the 
instrument on CAD (IVW: β = 0.295; p = 0.039).

On the other hand, we obtained negative correlations between 
CPD and CAD, although the statistic was less significant. Only the 
result of MR Egger was significant. When treating CAD as an 
instrument, strong evidence of decreased risk of smoking cessation by 

FIGURE 2

Heatmap showing patterns of genetic correlations across CAD and smoking. Red color indicates a positive correlation and yellow color indicates a 
negative correlation. CAD, coronary artery disease; HDL, high-density lipoprotein; AgeofInitiation, age of Initiation; CigarettesPerDay, cigarettes per 
day; SmokingCessation, smoking cessation; SmokingInitiation, smoking Initiation; LDL, low-density lipoprotein; TG, triglycerides; TC, total cholesterol.

TABLE 1 Effect of smoking behaviors on CAD using two-sample MR analysis.

Exposure Outcome No. SNPs Beta p-value Method

Age of initiation CAD 15 0.295 0.039 Inverse-variance weighted

15 0.295 0.026 Weighted median

15 −0.443 0.609 MR Egger

CPD CAD 63 −0.039 0.406 Inverse-variance weighted

63 −0.072 0.097 Weighted median

63 −0.175 0.025 MR Egger

Smoking cessation CAD 18 0.234 0.001 Inverse-variance weighted

18 0.234 0.001 Weighted median

18 0.091 0.559 MR Egger

Smoking initiation CAD 152 0.191 2.59E-06 Inverse-variance weighted

152 0.193 3.35E-06 Weighted median

152 0.419 0.052 MR Egger
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CAD was observed (IVW: β = −0.046; p = 2.95 × 10−8; Table 2). The 
effects of CAD on other smoking behaviors became even weaker and 
inconsistent across the different methods.

Biological pathway and enrichment 
analysis

We performed pathway analyses to identify biological pathways 
enriched for shared genetic loci related to smoking and CAD based 
on significant cross-trait meta-analysis results. For a detailed list of the 
overlapped genes and SNPs between CAD and smoking-related 
phenotypes, please refer to Table 3. Pathway analysis showed that the 
SNP-related genes were significantly enriched in lipoprotein 
metabolic, chylomicron-mediated lipid transport, lipid digestion, 
mobilization, and transport (Table 4). The GO analysis suggested that 
shared genes in CAD and smoking behaviors were enriched in 
triglyceride-rich lipoprotein particle clearance, blood vessel 
development, and very-low-density lipoprotein particle clearance 
(Table 5).

Discussion

In this study, we  revealed the genetic correlation and causal 
relations between smoking and CAD, providing a comprehensive 
evaluation of the shared genetic etiology of tobacco smoking and 
cardiovascular diseases. Our findings have highlighted the discovery 
that different smoking behaviors have strong associations with CAD, 
specifically, the correlation between smoking initiation, smoking 
cessation, and CAD.

The approach to MR is based on the assumptions that: (1) the 
genetic marker is associated with the exposure; (2) the genetic marker 
is independent of any confounding factors; and (3) there is no 
association between the genetic marker and outcome except through 
confounding factors. However, it should be acknowledged that these 
assumptions generally are not easy to evaluate. Results from the 
present MR study were based on data from the GWAS, which has 
corroborated the results obtained from conventional prospective 

observational studies that confirmed that tobacco smoking is a risk 
factor for CAD (5–8).

To our knowledge, this study represents one of a few large-scale 
genome-wide analysis to investigate the genetic overlap between 
smoking and CAD (24–26). Similar to the findings from these reports, 
our analyses also revealed strong associations between smoking 
initiation, smoking cessation, and CAD. Further, we  found a 
significant positive association between smoking initiation and CAD 
when smoking initiation was considered as exposure (inverse–
variance-weighted: β  = 0.191; p = 2.59E-06; weighted median: 
β = 0.193; p = 3.35E-06), suggesting that smokers are more susceptible 
to CAD. In addition, we found a negative correlation between CAD 
and smoking cessation when CAD was considered as exposure 
(inverse–variance-weighted: β  = −0.046; p = 2.95E-08; weighted 
median: β  = 0.193; p = 3.35E-06). This indicates that patients with 
CAD are less likely to quit smoking, possibly because of tobacco 
addiction. Together, these findings demonstrate the presence of shared 
genetic etiologies between tobacco smoking and CAD.

Moreover, we  found strong evidence of a genetic correlation 
between CAD and serum high-density lipoprotein (HDL) and 
low-density lipoprotein (LDL) as well, which is consistent with the 
results reported previously (27–29). We observed a positive correlation 
between LDL and CAD when LDL was considered as the exposure 
(inverse–variance-weighted: β = 0.387; p = 4.96E-43; weighted median: 
β = 0.406; p = 7.41E-39), and a negative correlation between HDL and 
CAD when HDL was considered as the exposure (inverse–variance-
weighted: β  = −0.245; p = 1.19E-14; weighted median: β  = −0.188; 
p = 2.66E-10). As is well documented in the literature, LDL is a strong 
risk factor for CAD (27–29) whereas HDL is an anti-atherosclerotic 
plasma lipoprotein and a protective factor against CAD (30–32).

Further, we found that smoking has significant associations 
with HDL and LDL. A positive correlation between CPD and LDL 
was observed when CPD was considered as exposure (inverse–
variance-weighted: β =0.06; p = 0.01; weighted median: β = 0.06; 
p = 0.02), and a negative correlation between CPD and HDL when 
CPD was considered as exposure (inverse–variance-weighted: 
β = −0.06; p = 0.005; weighted median: β = −0.06; p = 0.02). There 
also is a positive correlation between LDL and smoking cessation 
when LDL was considered as exposure (inverse–variance-weighted: 

TABLE 2 Effect of CAD on smoking behaviors using two-sample MR analysis.

Exposure Outcome No. SNPs Beta p-value Method

Age of initiation 68 0.012 0.013 Inverse-variance weighted

CAD 68 0.012 0.03 Weighted median

68 −0.001 0.932 MR Egger

68 −0.047 0.075 Inverse-variance weighted

CAD CPD 68 −0.063 0.018 Weighted median

68 −0.055 0.366 MR Egger

Smoking cessation 75 −0.046 2.95E-08 Inverse-variance weighted

CAD 75 −0.046 4.29E-06 Weighted median

75 −0.079 6.10E-04 MR Egger

Smoking initiation 68 0.004 0.584 Inverse-variance weighted

CAD 68 0.003 0.637 Weighted median

68 −0.019 0.299 MR Egger
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TABLE 3 The overlapped genes and SNPs between CAD and smoking-related phenotypes.

Gene Gene function SNPs

ABI2 ABL Interactor 2 rs116426890

ADAMTS7 ADAM metallopeptidase with Thrombospondin type 1 

motif 7

rs7182642; rs4887096; rs55834964; rs7174367; rs12916326; rs12916648; rs1809419; rs1809409; 

rs11635870; rs11635931; rs1807006; rs12286; rs1807007; rs8043119; rs11633351; rs6495267; 

rs1809420; rs4886591; rs2904223; rs4887102; rs35934157

ALDH2 Aldehyde dehydrogenase 2 family member rs11513729

APOB Apolipoprotein B rs503105

APOC1 Apolipoprotein C1 rs12721051; rs56131196; rs4420638; rs12721046; rs111789331; rs66626994; rs10414043; 

rs7256200

APOC1P1 Apolipoprotein C1 pseudogene 1 rs111789331; rs66626994

APOE Apolipoprotein E rs429358; rs10414043; rs7256200; rs769449

ATXN2 Ataxin 2 rs4766578;rs10774625;rs653178;rs597808;rs7137828;rs11065979; rs11065987

BRAP BRCA1 associated protein rs11065979; rs11065987; rs11065991

C19orf38 Chromosome 19 open reading frame 38 rs11881156; rs12973042; rs12979495; rs67987899; rs11881438; rs7260254; rs35443547

CARF Calcium responsive transcription factor rs140244541; rs72928613; rs72936866; rs72932559; rs114702158; rs72928620; rs72932566; 

rs72928610; rs114123510; rs72928609; rs72932560; rs72926798; rs141002954; 

rs72932554;rs72932561; rs9749722; rs74421437; rs72936872; rs72936873

CARM1 Coactivator associated arginine methyltransferase 1 rs12971616; rs4804547; rs17616105; rs12976693; rs35991287; rs74179956; rs12977506; 

rs73009538; rs4804142; rs11880628; rs35734575; rs11879571; rs36045835; rs7256879; 

rs34857893; rs2053064; rs1971038; rs8105092; rs2053065; rs1541595; rs1971039; rs2304089

CDKN2B-AS1 CDKN2B antisense RNA 1 rs568447; rs545226; rs1333045; rs10217586; rs10738604; rs10811641; rs3217992; rs3218020; 

rs2891168; rs4977574; rs10757274; rs504318; rs10757264; rs7028268; rs567453; rs496892; 

rs490005; rs10757272; rs10738606; rs10120688; rs10738607; rs10811645; rs10811643; 

rs10738610; rs7035484; rs7049105; rs1591136; rs10811647; rs3218012; rs10115049; 

rs10811656; rs10757266; rs10757279; rs10811650

CELSR2 Cadherin EGF LAG seven-pass G-type receptor 2 rs11102967; rs611917

CHRNB4 Cholinergic receptor nicotinic beta 4 subunit rs56354501; rs8031513; rs56195905; rs1809412; rs1814880; rs11072799; rs1809414; 

rs11856441; rs12901228; rs2219939; rs1825086; rs1383635; rs1383634; rs58717592; 

rs59671175; rs1809415

CNNM2 Cyclin and CBS domain divalent metal cation transport 

mediator 2

rs12414777

COL4A1 Collagen type IV alpha 1 chain rs12866570

COL4A2 Collagen type IV alpha 2 chain rs55940034; rs9515201

CYP20A1 Cytochrome P450 family 20 subfamily A member 1 rs72938351; rs72938315; rs115600411; rs114863726; rs114407963; rs116443099

DMRTA1 DMRT like family A1 rs10738610; rs10811656; rs10757279; rs10757277; rs1333046; rs1333049; rs10757278; 

rs1333048; rs4977575; rs7857118; rs1333047

DNM2 Dynamin 2 rs117159625; rs11880613; rs117786851; rs8111962; rs1109375; rs2287029

EDNRA Endothelin receptor type A rs7668383

FAM117B Family with sequence similarity 117 member B rs146289328

FES FES proto-oncogene, tyrosine kinase rs2521501

GGCX Gamma-glutamyl carboxylase rs7568458; rs35215812; rs10198569; rs10187424; rs12473819; rs6547624; rs6757263

HECTD4 HECT domain E3 ubiquitin protein ligase 4 rs11066188; rs7953257

ICA1L Islet cell autoantigen 1 like rs11675462; rs4675290; rs2036927; rs12693975; rs10207567; rs1971819; rs934287; rs72932720; 

rs72932716; rs72932711; rs72932709; rs72932707; rs76122535; rs72932722; rs72932723; 

rs72932731; rs72932737; rs72934734; rs72932725; rs143911965; rs6435168; rs6732078; 

rs72932746; rs80087860; rs6705330; rs72932752; rs78128841

IL6R Interleukin 6 receptor rs6694258; rs6689393; rs4845625; rs12129500; rs6686750; rs4845619; rs7549338; rs6667434; 

rs7553796; rs4553185; rs59632925; rs7549250; rs4845371; rs11265612; rs6687726; rs4845618; 

rs6694817; rs11265611; rs6427658; rs12118721; rs10908838; rs12118770; rs12117832; 

rs6689306

(Continued)
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TABLE 3 (Continued)

Gene Gene function SNPs

KCNE2 Potassium voltage-gated channel subfamily E regulatory 

subunit 2

rs1018757; rs2211693; rs2211695; rs2211694; rs8128536; rs7279974; rs8129119; rs4817636; 

rs2096469; rs4817637; rs2096467; rs2834439; rs7280276; rs9982672; rs1023354; rs28451064; 

rs762158; rs9980618; rs743339; rs7277800; rs9982601; rs4817639; rs9974878; rs7281592; 

rs60687229; rs2834431; rs28591415; rs16991453; rs9978142; rs7283231; rs8132042; rs8131284

KCNK5 Potassium two pore domain channel subfamily K 

member 5

rs1155347; rs10456468; rs56015508; rs55902013; rs9394577; rs12211281; rs55856036; 

rs1544935

LDLR Low density lipoprotein receptor rs8103309; rs11666925; rs876794; rs10409001; rs10415811; rs11085757; rs8102273; 

rs11879026; rs73013202; rs73013198

LINC00310 Long intergenic non-protein coding RNA 310 rs1018757; rs2211693; rs2211695; rs2211694; rs8128536; rs7279974; rs8129119; rs4817636; 

rs2096469; rs4817637; rs2096467; rs2834439; rs7280276; rs9982672; rs1023354; rs28451064

LINC00841 Long intergenic non-protein coding RNA 841 rs2051120; rs6593388; rs2624688; rs6593393; rs4948800; rs2085797; rs7478408; rs898549; 

rs10899956; rs12359058; rs10899955; rs7924201; rs7088951; rs10899963; rs10899954; 

rs898551; rs10793515; rs66887775

LOC646938 TBC1 domain family member 2B pseudogene rs56354501; rs8031513; rs55834964; rs56195905; rs1809412; rs1814880; rs11072799; 

rs1809414; rs11856441; rs12901228; rs2219939; rs1825086

MAP3K4 Mitogen-activated protein kinase kinase kinase 4 rs117340856

MAPKAPK5-

AS1

MAPKAPK5 antisense RNA 1 rs11513729

MC4R Melanocortin 4 receptor rs523288; rs538656; rs571312; rs663129; rs6567160; rs34633411; rs11152213; rs66723169; 

rs1942872; rs12958167; rs12955983; rs12954782; rs11663816

MIA3 MIA SH3 domain ER export factor 3 rs1909196; rs34679168; rs34767248; rs2378584; rs17163301; rs4618978; rs4846769; rs4846384; 

rs4846770; rs17163345; rs17163313

MIR4422 Microrna 4,422 rs55694910; rs72664304; rs72664303

MORF4L1 Mortality factor 4 like 1 rs11634042; rs8034274; rs7168915; rs11852830; rs11857877; rs4439728; rs12232282; 

rs4420501; rs4438276; rs8037171; rs11637783

MRAS Muscle RAS oncogene homolog rs13324341; rs1199337; rs1199338; rs185244

MTAP Methylthioadenosine phosphorylase rs7041637

NAA25 N-alpha-acetyltransferase 25, NatB auxiliary subunit rs17696736

NBEAL1 Neurobeachin like 1 rs72932566; rs76461893; rs145299755; rs72932573; rs148707292; rs72932572; rs72932574; 

rs72932583; rs6728861; rs72932575; rs4675310; rs148812085; rs2351524; rs140750546; 

rs72934573; rs140168762; rs72934505; rs145538381; rs115654617

NOS3 Nitric oxide synthase 3 rs3918226

PHACTR1 Phosphatase and actin regulator 1 rs10807323; rs13209002; rs9381401; rs12202891; rs9395224; rs9472790; rs1571997; rs9381462; 

rs6916397; rs2026458; rs6916421; rs7776079

PLG Plasminogen rs117340856

PMAIP1 Phorbol-12-myristate-13-acetate-induced protein 1 rs523288; rs538656; rs571312; rs663129; rs6567160; rs34633411; rs11152213; rs66723169; 

rs1942872; rs12958167; rs12955983; rs12954782; rs11663816; rs11664883; rs2045438; 

rs35476226; rs17175602; rs2045439; rs11660069; rs12957325; rs12970134

RAPH1 RAS association (RalGDS/AF-6) and pleckstrin 

homology domains 1

rs139644567; rs140274075

SAYSD1 SAYSVFN motif domain containing 1 rs1155347; rs10456468; rs56015508; rs55902013; rs9394577; rs12211281; rs55856036; 

rs1544935

SH2B3 SH2B adaptor protein 3 rs7310615; rs3184504; rs10774624

SH2D6 SH2 domain containing 6 rs6750847; rs7591175; rs6722691; rs11895399; rs11895401; rs1446669; rs2166529; rs6547620; 

rs6721924; rs6739015; rs2044474; rs13394343; rs6719046; rs6733913; rs17026396

SMARCA4 SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily a, member 4

rs8103309; rs60314748; rs60448955; rs73013159; rs7275; rs55677033; rs3786727; rs11666925; 

rs11670205; rs3786725; rs10417578; rs68010235; rs6511718; rs876794

SPECC1L-

ADORA2A

SPECC1L-ADORA2A readthrough (NMD candidate) rs5760347; rs62233136; rs5760359; rs5751841; rs5760368; rs62233133; rs5760350; rs2298379

(Continued)
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TABLE 3 (Continued)

Gene Gene function SNPs

SVIL Supervillin rs1774241; rs1774240; rs1832864; rs12259037; rs12779954; rs1418276; rs4749520; rs11007851; 

rs10826749

TAF1A-AS1 TAF1A antisense RNA 1 rs1909196; rs34679168; rs4618978

TMED1 Transmembrane p24 trafficking protein 1 rs73007593; rs11881156

TRAFD1 TRAF-type zinc finger domain containing 1 rs17630235

TTC29 Tetratricopeptide repeat domain 29 rs7668383

VAMP8 Vesicle associated membrane protein 8 rs35215812; rs10198569; rs10187424; rs6547624; rs6757263

WDR12 WD repeat domain 12 rs72934734; rs35212307; rs114395475; rs7582720; rs72936856; rs72934751; rs72934763; 

rs72934749; rs6738618; rs150788469; rs6725887; rs6435169; rs7560547; rs77931721; 

rs142603618; rs72936846; rs72936852; rs72936830; rs143035655; rs77268589

YIPF2 Yip1 domain family member 2 rs17850995

ZC3HC1 Zinc finger C3HC-type Containing 1 rs11556924; rs56179563

TABLE 4 Detected shared pathway between smoking and CAD based on pathway analysis.

Pathway ID Pathway name p-value q-value (FDR B&H) Genes included

PW:0000482 Lipoprotein metabolic 5.15E-06 9.66E-04 APOB, APOC1, APOE

1,270,005 Lipoprotein metabolism 4.57E-05 3.86E-03 APOB, APOC1, APOE, LDLR

1,270,006 Chylomicron-mediated lipid transport 5.74E-05 4.22E-03 APOB, APOE, LDLR

1,270,002 Lipid digestion, mobilization, and transport 2.54E-04 1.18E-02 APOB, APOC1, APOE, LDLR

M12950 Angiotensin-converting enzyme 2 regulates heart function 5.49E-04 1.62E-02 COL4A1, COL4A2

1,270,115 Metabolism of nitric oxide 1.60E-03 3.41E-02 NOS3, DNM2

1,427,851 VLDL interactions 1.75E-03 3.41E-02 APOB, APOC1

172,847 Protein digestion and absorption 1.83E-03 3.41E-02 KCNK5, COL4A1, COL4A2

1,270,008 LDL-mediated lipid transport 1.91E-03 3.41E-02 APOB, LDLR

TABLE 5 Detected shared pathways between CAD and smoking based on GO analysis.

Gene Ontology 
(GO) ID

Gene Ontology (GO) term p-value q-value
(FDR B&H)

Genes included

GO:0071830 Triglyceride-rich lipoprotein particle 

clearance

5.75E-09 7.17E-06 APOB, APOC1, APOE, LDLR

GO:0001568 Blood vessel development 1.94E-06 1.34E-03 APOB, APOE, NOS3, PLG, COL4A1, COL4A2, DNM2, EDNRA, 

MIA3, SMARCA4, IL6R, LDLR

GO:0034447 Very-low-density lipoprotein particle 

clearance

2.16E-06 1.34E-03 APOB, APOC1, APOE

GO:0001944 Vasculature development 2.95E-06 1.43E-03 APOB, APOE, NOS3, PLG, COL4A1, COL4A2, DNM2, EDNRA, 

MIA3, SMARCA4, IL6R, LDLR

GO:0072358 Cardiovascular system development 3.43E-06 1.43E-03 APOB, APOE, NOS3, PLG, COL4A1, COL4A2, DNM2, EDNRA, 

MIA3, SMARCA4, IL6R, LDLR

GO:0042159 Lipoprotein catabolic process 8.10E-06 2.53E-03 APOB, APOE, LDLR

GO:0030195 Negative regulation of blood coagulation 1.53E-05 3.72E-03 APOE, NOS3, PLG, SH2B3

GO:0048514 Blood vessel morphogenesis 2.76E-05 4.31E-03 APOB, APOE, NOS3, PLG, COL4A1, COL4A2, EDNRA, MIA3, 

SMARCA4, LDLR

GO:1990777 Lipoprotein particle 2.51E-06 2.30E-04 APOB, APOC1, APOE, LDLR

GO:0034358 Plasma lipoprotein particle 2.51E-06 2.30E-04 APOB, APOC1, APOE, LDLR

GO:0032994 Protein-lipid complex 3.09E-06 2.30E-04 APOB, APOC1, APOE, LDLR

GO:0034362 Low-density lipoprotein particle 6.77E-06 3.00E-04 APOB, APOE, LDLR

GO:0034364 High-density lipoprotein particle 4.26E-05 1.13E-03 APOB, APOC1, APOE
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β  = −0.03; p = 0.002; weighted median: β  = −0.04; p = 2.43E-5). 
Taken together, these findings provided a clear indication that 
smoking increases the risk of CAD by affecting the regulation of 
LDL and HDL, which needs to be further investigated.

We also performed GO enrichment and KEGG pathway analyses 
based on the genes where the SNPs overlapped between CAD and 
smoking-related phenotypes are located. We found several functions 
and pathways to be related to the lipoprotein metabolic and blood 
vessel development, which are all closely associated with CAD. It has 
been reported that the APOE–APOC1–APOC2–APOC4 cluster was 
significantly related to lipoprotein-associated phospholipase A2 mass 
and activity and CAD (33). Interestingly, the SNP rs4420638 located 
downstream of the APOC1 gene was found to be significantly related 
to smoking cessation (p = 7.4E-6) (34). Moreover, as a brain eQTL 
based on the information from BRAINEAC, rs4420638, this SNP has 
been linked to Alzheimer’s disease (35–40) and cognitive decline (41).

We used non-overlapping data sources in the context of 
summary-level MR analysis of exposure and outcome, which greatly 
improved the confidence in the causal effect estimates. In addition, 
through a range of sensitivity analysis methods, similar causal 
estimates and consistent causal inferences could be drawn. However, 
this study had limitations as well. First, there was a stark difference 
in sample sizes among different phenotypes, which might contribute 
to discrepancies in statistical power. Second, the information 
available on the summary-level GWAS data had limited us to divide 
samples into subgroups, which prevented us from studying the 
age-related heterogeneity.

In conclusion, this was a systematic analysis of the shared 
etiology and possible causal relations of smoking and CAD by 
employing large-scale GWASs. Genetic methods represent another 
option for assessing causality when there are too many 
confounding factors in randomized controlled traits, and our 
findings strongly support the hypothesis that smoking behavior is 
causally related to CAD risk. We found significant genetic overlap 
and correlations between CAD and smoking at the SNP level. 
Taken together, the data from this study enhance the 
understanding of the genetic etiology of the relations between 
CAD and smoking and might help to dissect smoking behaviors 
and develop preventive strategies to reduce the burden of 
cardiovascular disease in public health.
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