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Psychosis is a known risk factor for developing metabolic syndrome (MetS). The 
risk is even greater in patients who are taking second-generation antipsychotics 
(SGAs). SGAs exacerbate metabolic abnormalities and lead to a 3-fold increased 
risk of severe weight gain, type 2 diabetes, and cardiovascular disease in patients. 
Mitochondrial dysfunction is a hallmark of MetS. Mitochondria process glucose and 
fatty acids into ATP. If these processes are impaired, it can result in dyslipidaemia, 
hyperglycaemia and an imbalance between nutrient input and energy output. 
This leads to increased adiposity, insulin resistance and atherosclerosis. It is 
unclear how SGAs induce MetS and how mitochondria might be  involved in 
this process. It has been found that SGAs impair cellular glucose uptake in liver, 
dysregulating glucose and fatty acid metabolism which leads to an accumulation 
of glucose and/or lipids and an increase reactive oxygen species (ROS) which 
target mitochondrial proteins. This affects complexes of the electron transport 
chain (ETC) to reduce mitochondrial respiration. While there is a suggestion that 
SGAs may interact with a variety of processes that disrupt mitochondrial function, 
some of the results are conflicting, and a clear picture of how SGAs interact with 
mitochondria in different cell types has not yet emerged. Here, we outline the 
current evidence showing how SGAs may trigger mitochondrial dysfunction and 
lead to the development of MetS.
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Introduction

Psychosis and the use of antipsychotic medication: the 
discovery of first-generation antipsychotics

The term psychoses describes a cluster of psychiatric disorders which include acute and 
transient psychotic disorder, schizophrenia, schizoaffective disorder, delusional disorder, bipolar 
affective disorder and psychotic depression (1). Schizophrenia and psychosis have a lifetime 
prevalence of 1% and a high global economic burden (1, 2). The aetiology of psychosis is 
multifactorial, including genetics, substance misuse, and medical conditions, like infections, and 
autoimmune disorders (3–6). Psychosis is primarily treated with antipsychotic medications 
(APs) but a variety of comorbidities associated with psychosis means antidepressants or anti-
anxiety medications are prescribed alongside (1). Prescription of antipsychotic medications 
doubled between 2000 and 2014 and the rate of first prescriptions of antipsychotics increased 
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between 2000 and 2019 by 2% each year (7, 8). Antipsychotics are 
divided into two subclasses, first-generation antipsychotics, also 
known as typical antipsychotics, and second-generation or 
atypical antipsychotics.

First-generation antipsychotics (FGAs), were discovered due to 
their sedative effects and by chance were found to reduce the positive 
symptoms, hallucinations and delusions, of psychosis (9). FGAs such 
as chlorpromazine and haloperidol, were some of the first drugs to 
be developed and utilised in treating mental illnesses (10). Shortly 
after their use in clinical practise, extrapyramidal symptoms (EPS) 
such as tardive dyskinesia, parkinsonism and dystonia, were classed 
as side effects of FGA treatment (9). These symptoms were provoked 
by the dopamine receptor antagonism of FGAs, particularly their 
affinity for the D2 receptor (11). Following this, second-generation 
antipsychotics (SGAs) were developed, which reduce EPS as they have 
more diverse receptor affinities.

Clozapine: the first second-generation 
antipsychotic

Clozapine was the first SGA to be  developed by Wander 
Laboratories in 1959; it was discovered due to its similar structure to 
tricyclic antidepressants (12). When clozapine was found to have 
antipsychotic properties but no motor side effects, it became apparent 
that EPS were not necessary for the efficacy of antipsychotics (12). 
Clozapine has a more diverse receptor profile than FGAs, with an 
affinity for multiple serotonergic receptors, alpha-1 adrenergic 
receptors, D3 and D4 receptors and a lower affinity for D2 receptors 
(13, 14). The era of SGAs as superior alternatives to FGAs started in 
the 1970s, however it was cut short as within 6 months of clozapine 
administration to patients during clinical trials, cases of fatal 
agranulocytosis were reported (15). There were 17 cases in ~3,000 
patients, which led to eight fatalities (16). While the risk is low, 0.8% 
of patients develop clozapine-induced agranulocytosis and low 
neutrophil levels shortly after starting clozapine treatment (17). In the 
mid to late 1980s, clozapine was tested against the commonly 
prescribed FGA chlorpromazine for tolerability and efficacy in 
patients (18). Clozapine showed increased efficacy in patients who 
were unresponsive to a previous antipsychotic, with particular focus 
on improving negative psychotic symptoms such as apathy and asocial 
behaviour, as well as positive symptoms (19, 20). Consequently, 
treatment with clozapine was reintroduced but now requires patients 
to undergo weekly blood testing and in recent years it has been 
reserved for patients who are deemed ‘treatment-resistant’. Treatment-
resistant patients are defined by those who have not responded to two 
or more previously prescribed antipsychotics (1).

The refinement of second-generation 
antipsychotics

Following the incidences of clozapine-induced agranulocytosis, 
analogues of clozapine were explored to find a drug with similar 
efficacy in treating psychosis, a reduced propensity for EPS but one 
that did not affect neutrophil levels in the blood. Olanzapine was 
developed by Eli Lilly and Co., with a similar receptor binding profile 
to clozapine but a slightly different chemical structure and presented 

a promising development in the field of antipsychotic medication (21). 
Olanzapine has shown to be  efficacious in treating first-episode 
psychosis with a lower discontinuation rate than haloperidol and 
distinctly does not induce agranulocytosis like clozapine (21). Clinical 
trials in the late 1990s showed olanzapine treatment produced a 
greater reduction in positive and negative symptoms of schizophrenia 
and an improved response in a variety of psychiatric symptom scales 
in patients, compared to treatment with haloperidol (22).

Further SGAs have been developed since olanzapine was 
discovered including quetiapine (AstraZeneca) and risperidone 
(Janssen Pharmaceuticals Inc.), which differ slightly in their receptor 
binding affinities (23). Aripiprazole is an SGA that was developed by 
Otsuka Pharmaceutical Co., Ltd. and approved for use in the early 
2000s (24). It is unique from the other SGAs as it is a partial agonist 
of D2 and 5-HT1A receptors and an antagonist of 5-HT2A receptors 
(14). Aripiprazole has been labelled a ‘dopamine stabiliser’ as its 
partial agonistic properties allow for treatment of hypodopaminergia 
and hyperdopaminergia of different brain regions that contribute to 
negative and positive symptoms (25). Despite aripiprazole’s alternative 
mode of action, it has been found to have a similar efficacy to D2 
receptor antagonists and a lower efficacy when compared to 
olanzapine, although it is better tolerated by patients (26).

The risk of developing metabolic syndrome 
is 3-fold in patients taking antipsychotic 
medication

While SGAs do not have adverse motor symptoms, they are not 
without other side effects which reduce a patient’s tolerability of the 
drug. SGAs can have a sedative effect on patients, they can cause 
endocrine issues such as sexual dysfunction as well as prominent 
metabolic side effects (27). The incidence of metabolic syndrome 
(MetS) is significantly higher in patients taking SGAs (32–68%) than 
in SGA-naïve patients (3.3–26%) (28). MetS describes a co-occurrence 
of morbidities such as hypertension, obesity, dyslipidaemia and 
peripheral insulin resistance which are predictors of type 2 diabetes 
and cardiovascular disease (CVD) (29, 30). Psychosis alone is a known 
risk factor for developing MetS (31). Treatment with SGAs exacerbate 
metabolic symptoms which, along with lifestyle changes and genetic 
predisposition, increase the risk of CVD (31, 32). The main cause of 
mortality in schizophrenia patients is CVD, suggesting treatment with 
SGAs contribute to a patients decline in cardiovascular health and 
increased risk of CVD-related mortality (33).

Olanzapine and clozapine are the most efficacious antipsychotics, 
proven to be the only antipsychotics to reduce the risk of suicidality 
in patients (34, 35), but they are also associated with the most severe 
risk of MetS. From a meta-analysis, clozapine was shown to 
be associated with the highest amount of weight gain in patients, and 
olanzapine with the greatest degree of BMI increase in patients (36). 
Aripiprazole is associated with the lowest risk of weight gain and 
metabolic abnormalities (36, 37). The mechanisms behind the 
increased propensity for SGAs to trigger MetS are largely unknown. 
Due to their diverse receptor binding profiles, there is the potential for 
SGAs to bind to receptors in the periphery or alternative off-target 
binding sites which leads to metabolic disturbances. This off-target 
binding may include receptors or proteins in the liver, pancreas, 
kidneys or adipose tissue.
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Mitochondrial stress and 
antipsychotic-associated metabolic effects

Mitochondrial dysfunction is a hallmark of metabolic 
dysregulation and the development of MetS (38). Fundamentally, the 
disparity between energy production and utilisation can lead to 
metabolic disorders (39). Mitochondria are responsible for energy 
production via ATP synthesis, the main energy source for cells. 
Disruption of this energy production, potentially by inhibition of 
mitochondrial proteins responsible for ATP synthesis, is likely to 
either lead to metabolic disorders or may be a consequence of such. 
Oxidative stress in mitochondria may be at least partly responsible for 
the pathogenesis of insulin resistance, weight gain and CVDs (40). 
Other disruptions to regular mitochondrial functioning include 
scarcity of substrates required to fuel glycolysis or oxidative 
phosphorylation (OXPHOS) which are processes by which ATP is 
generated. This may be  due to a reduced capacity for uptake of 
nutrients into cells or inhibition of enzymes involved in the synthesis 
of substrates (41) (summarised in Figure 1). Therefore, one theory is 
that SGAs impair mitochondrial function which leads to the 
development of metabolic disorders by disrupted energy 
metabolism (42).

Antipsychotics induce dysregulation of 
glucose and fatty acid metabolism

Glucose metabolism is shown to be impaired in patients taking 
SGAs independent of adiposity and age. In one study, the highest 
blood glucose and insulin resistant levels were found in patients taking 
olanzapine and clozapine, while risperidone and FGA-treated patients 
did not show increased insulin resistance but did have elevated glucose 
levels (43). As patients were matched by adiposity and age, this decline 
in cardiovascular health and changes in glucose metabolism can 
be primarily attributed to treatment with olanzapine and clozapine. 
Further evidence for this was shown when mice were administered 
olanzapine and they showed an increase in body weight and adiposity 
that was not concurrent with the rate of food consumption (44).

Antipsychotics have also been shown to disrupt fatty acid 
metabolism (45, 46). Fatty acid oxidation yields more ATP than 
glucose but consumes more oxygen (47). A series of studies in mice 
and rats found that olanzapine lowered plasma free fatty acid (FFA) 
concentrations and lowered respiratory exchange ratio (RER) prior to 
fasting, suggesting that olanzapine treatment triggers a shift towards 
fatty acid oxidation to produce fuel substrates for respiration (45, 46). 
This switch to fatty acid oxidation as a fuel source rather than glucose, 
leads to accumulation of glucose and glucose intolerance. C57BL/6 
mice were treated a single dose of olanzapine, clozapine, risperidone 
and aripiprazole (doses between 1 and 10 mg/kg) and the general rate 
of oxygen consumption and RER was measured using indirect 
calorimetry (45). Olanzapine, clozapine and risperidone reduced the 
rate of oxygen consumption and RER dose-dependently, and in 
olanzapine-treated mice this was associated with an increase in plasma 
glucose concentration, while aripiprazole showed a much more 
reduced effect on RER lowering. Similar results were found in 
Sprague–Dawley rats who were given 10 mg/kg of olanzapine over 
24 h (46).

The effects of SGAs on AMP-activated protein kinase (AMPK) 
signalling has been investigated as an explanation for increases in 
plasma glucose levels and weight gain (48–52). AMPK senses energy 
in response to the AMP/ATP ratio and an increase in AMP suggests 
that ATP is being used up for energy processes in cells at a faster rate 
than it is being synthesised. AMPK regulates cellular metabolism and 
in its active form, phosphorylated AMPK, it stimulates glucose uptake 
and fatty acid oxidation in the liver but AMPK signalling in the 
hypothalamus reduces glucose uptake and lipid metabolism (53, 54). 
The differential downstream effects of AMPK, according to the 
effected tissue, may provide an insight into the off-target metabolic 
effects of SGAs. SGAs have been shown to have a varying effect on 
AMPK expression (summarised in Table 1), depending on the tissue 
studied. Overall olanzapine, clozapine and quetiapine increase AMPK 
signalling in brain regions such as the hypothalamus and frontal 
cortex (49–52). As for the effect of SGAs on AMPK signalling in 
peripheral tissues such as the liver and adipocytes, the results are 
conflicting (44, 48, 55, 56).

Antipsychotics increase reactive oxygen 
species and oxidise proteins involved in 
metabolism

Clozapine and olanzapine have been shown to increase production 
of reactive oxygen species (ROS) and oxidise key proteins involved in 
energy metabolism (57–61). ROS are produced by complex I and III 
during oxidative phosphorylation when leaked electrons react with 
oxygen to form superoxide ions (62). ROS damage protein structure 
and function by oxidation. Complex I of the electron transport chain 
has been shown to be particularly sensitive to ROS attack (63). An 
increase in the production of ROS leads to damage of mitochondrial 
elements, a positive feedback of ROS production and consequently, 
impaired metabolism. As antipsychotics interact with dopamine 
receptors, their interference with normal dopamine metabolism has 
been shown to favour the formation of hydrogen peroxidase through 
monoamine oxidase (58). Using 6-iodoacetamid fluorescein (IAF) 
labelling which is not incorporated into cysteine residues following 
protein oxidation, clozapine-treated neuroblastoma cell line SKNSH 
cells showed increased protein oxidation (57). The proteins were 
identified using HPLC-electrospray ionisation tandem mass 
spectrometry and were shown to be  a variety of mitochondrial 
enzymes including malate dehydrogenase, pyruvate kinase and 
3-oxoacid CoA. Malate dehydrogenase and pyruvate kinase were also 
found to be  oxidised by olanzapine using cDNA microarray 
technology on olanzapine-treated rat frontal cortices (59). These 
enzymes catalyse the oxidation of malate and production of pyruvate 
which are substrates in the Krebs cycle that facilitate the reduction of 
NAD+ to NADH to feed electrons into complex I.

Clozapine treatment induces morphological changes in 
mitochondria in neuroblastoma cells, insulin-responsive and obesity-
associated cell types when cultured with TMRM and visualised with 
confocal microscopy (60). The morphological changes, including 
mitochondrial swelling and depolarisation, observed with clozapine 
treatment were similar to those reported in obese rodent models and 
patients with MetS. It was suggested that the mitochondrial swelling 
may be in response to an increase in ROS production as a protective 
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mechanism and that the swelling led to depolarisation which was 
consistent with a depletion of ATP production.

Mitochondrial membrane potential (MMP) loss suggests 
components of the ETC are dysfunctional, potentially due to the 
accumulation and damage by ROS (64). In isolated rat hepatocytes, 
olanzapine induced overproduction of ROS as indicated by DCFH-DA 
dye, which hydrolyses to DCFH in the liver and fluorescent DCF 
when interacting with ROS. Fluorescent intensity was then measured 
using a spectrofluorometer revealing significantly increased 
fluorescence in olanzapine-treated hepatocytes (61). The cationic 
fluorescent dye rhodamine 123 was used to measure mitochondrial 
membrane potential (MMP). This dye accumulates in intact 
mitochondria and an increase in fluorescence indicates the loss of 
MMP. MMP loss was found in olanzapine-treated hepatocytes using 
this method. MMP is a result of the chemiosmotic proton gradient 
supported by complexes of the ETC and is important for ATP 
synthesis through ATP synthase.

The effect of antipsychotics on electron 
transport chain complexes: conflicting 
evidence

The effects of antipsychotics on complexes of the ETC has 
shown differing results. One study found a range of antipsychotics 
inhibited respiration through specific complexes (65). By 
measuring oxygen consumption of isolated pig brain 

mitochondria exposed to antipsychotics, they identified a range 
of antipsychotics that inhibited complex I-linked respiration. 
Haloperidol, risperidone, quetiapine and aripiprazole fully 
inhibited complex I-linked respiration over a range of doses and 
clozapine was reported to almost fully inhibit complex-I linked 
respiration. A smaller range of doses also inhibited the activity of 
complex II, III and IV. However, amongst these antipsychotics, 
olanzapine, one of the most potent APs associated with metabolic 
side effects, did not significantly inhibit mitochondrial 
respiration in this study. There is numerous evidence to support 
that Haloperidol and other FGAs inhibit complex I of the ETC 
and this has been implicated in the development of EPS (66). 
However, whether metabolic abnormalities triggered by SGA 
treatment is as a result of ETC complex inhibition has not been 
fully explored.

Lymphoblastoid cell lines (LCLs) isolated from schizophrenia 
patients taking clozapine, olanzapine, aripiprazole, quetiapine 
and healthy controls have also yielded metabolic information 
(42). LCLs treated with clozapine, olanzapine and quetiapine 
significantly reduced complex I  and II activity and decreased 
mitochondrial respiration, with olanzapine having the most 
severe effect (42). There was reduced (though not statistically 
significant) activity of complex I and II in untreated cells from 
schizophrenia patients compared to controls. This study 
produced very different results and suggests that metabolic 
dysfunction in schizophrenia patients may be associated with 
olanzapine reducing efficiency of mitochondrial respiration. It 

TABLE 1 Summary of the effects of SGAs on AMPK expression.

Author and 
year

Model cell/
organism

Tissue/
organ

Antipsychotic 
medication(s)

Effect on AMPK Downstream effects

Stapel et al. (55) PBMCs - Olanzapine and 

aripiprazole

Olanzapine down-regulated 

AMPK, aripiprazole had no effect

Reduced glucose uptake into cells

Ikegami et al. (50) ICR mice Hypothalamus Olanzapine Increased AMPK expression in 

olanzapine-treated mice

Glucose intolerance in mice, increase in 

plasma glucose levels and insulin levels

Schmidt et al. 

(44)

C57BL/6 J mice Liver Olanzapine Activated AMPK Enhanced glycolysis, increased hepatic 

lipid accumulation

Oh et al. (48). C57BL/6 mice Primary 

hepatocytes from 

Sprague–Dawley rats

Liver Olanzapine and 

clozapine

Olanzapine decreased AMPK 

signalling in primary hepatocytes. 

Clozapine treatment in mice 

slightly reduced AMPK 

phosphorylation

Reduced oxidation of fatty acids and 

promoted hepatic lipid accumulation

Li et al. (56) 3 T3-L1 adipocytes - Olanzapine Decreased phosphorylated AMPK Upregulation of SREBP pathway and 

adipogenesis

Kim et al. (51) Sprague–Dawley rats Frontal cortex Clozapine Activated AMPK Downstream inhibition of acetyl CoA 

carboxylase. Activation of CPT1c which 

transfers long-chain fatty acyl CoA to 

mitochondria for beta oxidation

He et al. (49) Sprague–Dawley rats Hypothalamus Olanzapine Increased AMPK expression via 

blockade of hypothalamic H1 

receptor

Hyperphagia in rats

Okada et al. (52) Primary astrocytes from 

neonatal Sprague–

Dawley rats Sprague–

Dawley rats

Hypothalamus Quetiapine Increased phosphorylated AMPK 

at therapeutic doses

-
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also suggests that schizophrenia patients may be predisposed to 
developing MetS and subsequent treatment with SGAs triggers 
further metabolic decline through inhibition of mitochondrial 
complexes. Indeed, a common genetic risk factor for 
schizophrenia, a deletion at chromosome 3q29, has been 
associated with mitochondrial dysfunction (67). There was a 
reduced ability to transition from glycolysis to OXPHOS during 
neuronal maturation in human cortical organoids, 
downregulation of complex II and IV of the ETC in mice brains 
with the 3q29 deletion and an overall increased ‘vulnerability to 
metabolic challenges’ in these models.

Conclusion

Here, we have reviewed whether the prominent metabolic side 
effects seen with SGA treatment, primarily with olanzapine and 
clozapine, are related to mitochondrial dysfunction that results in 
impaired metabolism. Considering the efficacy of clozapine and 
olanzapine in treating psychosis relative to drug alternatives and 
non-pharmacological interventions, determining the cause of the 
metabolic impairments is of significant interest. Establishing the best 
method for treatment through optimal polypharmacy or personalised 
medicine, will have a considerably beneficial outcome on psychosis 
patients’ quality of life in the short term. In the long term, the 

development of new antipsychotics with a reduced risk of metabolic 
side effects should be the aim.
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FIGURE 1

(A) List of second-generation antipsychotics and their propensity to cause metabolic syndrome, ranging from the highest risk (clozapine), to the lowest 
(aripiprazole). (B) Glucose and fatty acid metabolism to generate substrates that fuel oxidative phosphorylation (OXPHOS) and produce ATP in health 
mitochondria. (C) Disrupted glucose and fatty acid metabolism in mitochondria with metabolic syndrome. Reactive oxygen species (ROS) are 
increased and inhibit components of the Krebs cycle and OXPHOS, leading to a decline in ATP synthesis. Glucose and fatty acids concentrations are 
increased, leading to dyslipidaemia, hyperglycaemia, and insulin resistance.
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