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Gut inflammation is thought to modify brain activity and behaviour via 
modulation of the gut-brain axis. However, how relapsing and remitting exposure 
to peripheral inflammation over the natural history of inflammatory bowel 
disease (IBD) contributes to altered brain dynamics is poorly understood. Here, 
we used electroencephalography (EEG) to characterise changes in spontaneous 
spatiotemporal brain states in Crohn’s Disease (CD) (n  =  40) and Ulcerative Colitis 
(UC) (n  =  30), compared to healthy individuals (n  =  28). We first provide evidence 
of a significantly perturbed and heterogeneous microbial profile in CD, consistent 
with previous work showing enduring and long-standing dysbiosis in clinical 
remission. Results from our brain state assessment show that CD and UC exhibit 
alterations in the temporal properties of states implicating default-mode network, 
parietal, and visual regions, reflecting a shift in the predominance from externally 
to internally-oriented attentional modes. We  investigated these dynamics at 
a finer sub-network resolution, showing a CD-specific and highly selective 
enhancement of connectivity between the insula and medial prefrontal cortex 
(mPFC), regions implicated in cognitive-interoceptive appraisal mechanisms. 
Alongside overall higher anxiety scores in CD, we also provide preliminary support 
to suggest that the strength of chronic interoceptive hyper-signalling in the 
brain co-occurs with disease duration. Together, our results demonstrate that a 
long-standing diagnosis of CD is, in itself, a key factor in determining the risk of 
developing altered brain network signatures.
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Introduction

Immune dysfunction and accompanying systemic inflammation is thought to play a key role 
in the development of mood and affective symptoms (1, 2). As part of this mechanism, the 
presence of pro-inflammatory cytokines is communicated to the central nervous system (CNS) 
via peripheral activation of receptors expressed on vagal afferents, or the production of molecular 
intermediates at the blood–brain interface (c.f., circumventricular organs and the choroid 
plexus) (3). The brain recognises inflammation as a molecular signal of sickness, inducing 
changes at the neurophysiological and neurotransmitter level within brainstem, limbic and 
prefrontal regions (3, 4). Together, these neural responses generate a repertoire of “sickness 
behaviours” that includes social avoidance, anhedonia, fatigue, and depressed mood (1, 5, 6). 
The brain-cytokine response has been demonstrated in healthy adults administered 
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lipopolysaccharides (LPS) (7) or typhoid vaccination (3, 8), who show 
transient alterations to cognitive-affective regions (involving the 
thalamus, amygdala, insula, and anterior cingulate), and a symptom 
profile that includes anxiety, poor mood, and impaired memory. These 
effects, however, embody the response of the resilient and adaptive 
CNS to an acute perturbation. Recent work investigating repeated 
exposure to immunogenic substances over an extended timeframe 
suggests more pervasive and enduring brain network abnormalities in 
chronic inflammation (9, 10).

Inflammatory bowel disease (IBD), a chronic, relapsing, and 
remitting intestinal disease, provides a unique and ecologically valid 
model to study the effects of inflammation chronicity on the brain 
(11). While IBD can occur at any age, disease incidence peaks in early 
adulthood (between 15 and 30 years) such that individuals experience 
a number of acute and recurrent inflammatory events that can endure 
for decades (12). As inflammation emerges within the gastrointestinal 
(GI) tract, the disease is well-placed to exert influence over the 
gut-brain axis (13). The gut-brain axis describes the communication 
pathways that exist between the gut and its microbiota and the brain. 
These pathways have not been fully elucidated, but are thought to 
involve complex, bidirectional links through vagal, immunological, 
and humoral pathways (14). Additionally, microbes produce and 
regulate gut peptides, hormones, short-chain-fatty acids, 
neurotransmitters, and inflammatory cytokines, all of which modulate 
CNS function. Together, these neurophysiological and neurochemical 
pathways are now recognised to play a role in regulating stress, mood, 
and anxiety-related behaviours (15). One of the key mechanisms 
involved in the gut-brain axis in IBS is the presence of inflammation. 
That is, the physical proximity of inflammation to the intestinal 
epithelium – a putative gut-brain interface – allows neural-related 
changes to be  conceptualised as dysfunctions to vagal, immune, 
microbial, or endocrine signalling pathways. Alongside the 
mechanisms by which inflammation reaches and impacts the brain, 
an important research endeavour is focused on identifying specific 
brain regions affected by chronic inflammation, and how this can 
manifest behaviourally.

Neuroimaging work has provided initial insights into altered 
functional brain connectivity underpinning IBD pathophysiology, and 
suggests that a re-organisation of large-scale brain networks, rather 
than localised deficits, more clearly recapitulates disease-related 
changes (16–20). Specifically, there is a growing consensus that 
individuals with IBD exhibit alterations to default-mode network 
(DMN) activity (17, 20). The DMN comprises a set of brain regions 
– largely involving the posterior cingulate cortex, ventromedial, 
anteromedial and dorsal prefrontal cortex, temporal pole, precuneus, 
and middle temporal gyrus – that exhibit coherent neural activity 
during rest, and deactivation during externally oriented cognitive 
tasks (21). Alongside its involvement in social, cognitive and affective 
processes, the network plays a critical role in endogenous thought, 
such as rumination, and self-referential processing (22, 23). Abnormal 
patterns of activation and deactivation within the DMN has been 
linked to the development of neuropsychiatric disorders, including 
depression (24) and anxiety (25). In IBD, functional connectivity 
changes have been reported between key regions of the DMN, 
including the posterior cingulate cortex, medial prefrontal cortex, and 
precuneus regions (17, 20). Aberrant connectivity between nodes of 
the salience network (SN) (16, 19), including the anterior cingulate 

and insula cortex, further supports the possibility that IBD individuals 
experience altered interoceptive processing of visceral sensations (e.g., 
nociceptive, inflammatory, or microbial-related stimuli) (26). In a 
recent meta-analysis exploring the association between the human gut 
microbiota and functional connectivity, the highest level of 
consistency was found for the DMN, frontoparietal (FPN), and SN 
[particularly the insula and anterior cingulate cortex (27)]. Given the 
relationship between the DMN and SN in anxiety and depression, the 
reported alterations in patients with IBD may be of substantial clinical 
importance. Critically, these results are reported in quiescent IBD (17, 
18, 28–30), further supporting the argument that acute inflammation 
alone cannot account for the observed neural and behavioural 
impairments (9, 30, 31).

Among the two main IBD diagnoses, brain and behavioural 
abnormalities have more consistently been reported in Crohn’s 
Disease (CD) as opposed to Ulcerative Colitis (UC) (16, 17, 19, 20, 28, 
29, 32). Despite overlapping symptoms, CD is thought to exhibit a 
more pervasive and severe disease expression attributed in part to the 
extent of affected anatomical sites, transmural involvement, and 
genetic and immune factors involved (33, 34). Moreover, while the 
microbiome in UC cannot be differentiated from controls following 
successful treatment, dysbiosis (imbalance) in CD persists long after 
remission and responds poorly to faecal microbiota transplantation 
(35–37). Despite well-defined heterogeneity between UC and CD – 
with the latter thought to express a more chronic and systemic disease 
profile – only a limited number of studies (38, 39) have directly 
compared IBD sub-groups in the context of whole-brain signatures.

In this study, we investigated whether CD and UC were associated 
with alterations to spontaneous brain state dynamics. To do this, we fit 
a Hidden Markov Model (HMM) to resting-state 
electroencephalography (EEG) data which describes brain dynamics 
as a sequence of transient and distinct patterns of power and phase-
coupling within and between brain regions, respectively. We further 
explored these brain dynamics at a sub-network resolution, showing 
differential patterns of effective connectivity that are specific and 
selective to CD. Our results converge on the suggestion that long-term 
exposure to chronic gut inflammation confers a higher risk of altered 
brain and behavioural signatures, with the extent of these effects 
related to disease duration.

Methods

Participants

The study was approved by the Human Research Ethics 
Committee of QIMR Berghofer Medical Research Institute (P3436). 
Written informed consent was obtained for all participants in 
accordance with the Declaration of Helsinki. Twenty-eight healthy 
controls (34 ± 11 years; 16 female), 40 CD (43 ± 13 years; 20 female), 
and 30 UC (42 ± 11 years; 21 female) participants were recruited from 
the Brisbane (Australia) metropolitan area by gastroenterologist 
(GRS) and accredited practicing dietitian (CVH) 
(Supplementary Table S1). Exclusion criteria are presented in 
Supplementary Note 1. Study requirements involved (I) general health 
and clinical questionnaires; (II) neurocognitive assessments; (III) a 
resting state EEG recording; and (IV) a stool sample collected at home.
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General health and clinical questionnaires

A general health (Brisbane Health Area Survey) and diet 
questionnaire (Traditional Mediterranean Diet Adherence, TMD) was 
administered to all participants, while an additional clinical questionnaire 
was administered to individuals with IBD only (Supplementary Note 1).

Neurocognitive assessments

Neurocognitive assessments were performed by a clinical 
psychologist and accredited practicing dietitian, and were used to rule 
out previous or current history of a neurological or psychiatric illness 
(excluding anxiety-related disorders or depression). Assessments of 
anxiety and depression included the Hamilton and Montgomery 
Anxiety (HAM-A), Montgomery-Åsberg Depression Rating Scale 
(MADRS), Hospital Anxiety and Depression Scale (HADS), 
Depression Anxiety and Stress Scale (42-item) (DASS), and 
Generalized Anxiety Disorder (7-item) (GAD-7).

Sample collection and processing

Participants were provided with a stool nucleic acid collection and 
preservation tube (Norgen Biotek Corp., Thorold, Ontario, Canada) 
and were instructed to collect the sample within a window of 48 h 
before/after the study session. Each stool sample was labelled and 
stored in a -80°C freezer until sample processing. Tissue 
homogenization was performed using tubes containing 1.4 mm 
ceramic beads (Precellys Lysing Kit). DNA was extracted from 
samples and quantitated using Nanodrop 2000 (Thermo Scientific). 
PCR amplification was performed on the V3–V4 hypervariable region 
of the 16S rRNA gene, and sequenced on a MiSeq sequencer 
(Australian Genome Research Facility, Melbourne).

16S data processing and analysis

Demultiplexed fastq files were processed using default settings 
within QIIME2 2020.21 (40). Amplicon Sequence Variants (ASVs) were 
generated by denoising with DADA2 (41). For taxonomic structure 
analysis, taxonomy was assigned to ASVs using a pre-trained Naïve 
Bayes classifier and the q2-feature-classifier plugin against the 
Greengenes 13_8 99% 16S rRNA gene sequencing database. Samples 
were rarefied to a read depth of 2,200 for diversity analyses. ANCOVA 
was used to test for group differences in Shannon diversity and Chao1 
measures accounting for the effects of age, sex, and body mass index 
(BMI). Beta-diversity, assessed using unweighted UniFrac distance (42), 
was used to compare groups, controlling for age, sex, and BMI using 
qiime2 plugins PERMANOVA and adonis. The metagenomic functional 
contribution of each sample was predicted using the computational 
modelling approach, Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States 2.0 (PICRUSt2 v2.2.0-b) (43), 
using the MetaCyc Metabolic Pathway Database (44). The multivariate 

1 https://qiime2.org

statistical framework, MaAsLin2 (45), implemented in R, was used to 
assess the relationship between group membership with (i) microbial 
abundance (collapsed at genus level) and (ii) functional pathway 
abundance. Covariates, including sex, age and BMI, were included as 
fixed effects. Features were included in if they had at least 10% non-zero 
values (across samples) and a minimum relative abundance threshold of 
0.0001, both validated parameter settings in MaAsLin2. Significant 
features were corrected for multiple comparisons using the Benjamini-
Hochberg FDR procedure, with corrected values of p < 0.05 and q < 0.25 
considered statistically significant.

Resting-state EEG recordings

Participants were fitted with a 64-channel EEG cap (Ant Neuro 
– EEGgo sports system), configured to the 10–20 international system. 
Signals were processed online using EEGgo with a sampling frequency 
of 2,000 Hz. Scalp impedance was reduced to a maximum of 20 k© in 
all electrodes with the application of conductive gel. EEG activity was 
processed online using eego software. All electrodes were referenced 
to the CPz electrode. Prior to recordings, participants were reminded 
to keep their eyes open and fixate on a white crosshair against a black 
background. Participants were encouraged to breathe and blink 
normally, and relax head and neck muscles to minimize signal 
artifacts. Resting-state signals were recorded continuously for 4 min.

EEG pre-processing

EEG data was pre-processed offline using EEGlab software 
(v2019.1) in MATLAB (vR2018b). The data were downsampled to 
250 Hz. EEG signals were visually inspected, and excessively noisy 
channels were removed before signals were re-referenced to the 
common average reference (excluding EOG, M1 and M2 electrodes). 
Signals were band-pass filtered into a frequency band of 1–45 Hz, and 
epoched into 5 s segments. Epochs were manually inspected and 
removed if they contained large artifacts that would otherwise not 
be detected by independent components analysis (ICA) (e.g., strong 
muscle artifacts). Artifacts that were characteristic of cardiac, ocular 
or minor muscular movements were subsequently removed using ICA 
(InfoMax) (46). As the HMM is sensitive to noise, a fairly stringent 
approach was adopted to remove potential sources of signal artifact. 
This approach represents a necessary trade-off to ensure that the 
HMM is inferred on neurobiologically meaningful data and not 
spurious noise sources (47). As such, if more than 20 ICs were marked 
as artefactual, the original time series prior to ICA was re-inspected 
for additional sources of artifact. If more than 50% of epochs were 
removed, or more than 20 ICs were excluded after the second ICA 
run, recordings were excluded from the analysis. Recordings from 11 
subjects (2 HC, 3 CD, and 6 UC) were not included in the 
HMM. Subsequent processing and analysis of EEG data were 
performed using toolboxes and software packages found within the 
Oxford Centre for Human Brain Activity (OHBA) Software Library 
(OSL) and SPM12. For source reconstruction, the forward model was 
generated using a symmetric boundary element method (BEM) and 
the inverse model was performed using a Linearly Constrained 
Minimum Variance (LCMV) vector beamformer. A 44-region 
weighted parcellation of the entire cortex was adapted from previous 
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work (48–50). Thirty-eight parcels were constructed from an ICA of 
fMRI data from the Human Connectome Project, while the remaining 
six parcels corresponded to the anterior and posterior precuneus, 
bilateral intraparietal sulci, and bilateral insula cortex. The inclusion 
of the insula cortex – specific to our analyses – was based on previous 
work supporting the contribution of this region to interoceptive 
processing in chronic and inflammatory conditions, including IBD 
(17, 18, 51–53). Time-courses were extracted by taking the first 
principal component, with voxel contributions weighted by the 
parcellation. Symmetric multivariate spatial leakage (volume 
conduction) correction was applied (49).

Time-delay embedded-HMM

We adopted the TDE-HMM implemented within the HMM-MAR 
MATLAB toolbox2 (47, 48). We used stochastic variational Bayes (48) to 
infer the TDE-HMM parameterized with 6 states and 41 time lags 
(corresponding to a window length of 160 ms) (Supplementary Figure S1) 
using 500 training cycles and initialization parameters according to 
previously established procedures (48, 54–56). Prior to HMM inference, 
we  concatenated time series across subjects from all three groups, 
producing a full dataset to obtain a common set of brain states across all 
participants. This approach facilitated a direct comparison of spatial and 
temporal statistics across groups (56, 57). Supplementary Note 2 provides 
a full description of the TDE-HMM and Supplementary Figure S2 
provides an overview of the analysis pipeline.

From the HMM we calculated the (subject-specific) temporal 
properties of each state using three parameters: (I) fractional 
occupancy, the proportion of total time spent in a state (K × 1); (II) 
interval time, the length of time between consecutive visits to the same 
state (K × 1); and (III) dwell time, the average length of time spent in a 
state before transitioning to another state (K × 1). We also computed 
subject-specific transition probability matrices representing the 
probabilities of transitioning from one state, to every other state (K × K). 
ANCOVA was used to test for significant differences in fractional 
occupancy, dwell times, and interval times between groups, controlling 
for the effects of age and sex. Permutation testing was used to reject 
the null hypothesis of equality between groups. As implemented in 
previous work (57), for each state we generated 5,000 permutations by 
shuffling group labels among participants. We  then repeated 
ANCOVAs on the permuted values, therefore generating an empirical 
null distribution of F-statistics for each state and temporal measure 
(fractional occupancy, dwell times, and interval times). We ascribed 
statistical significance (p < 0.05) to the temporal values by assessing the 
proportion of null statistics that were greater than or equal to the value 
of the statistic computed for the non-permuted data. For significant 
ANCOVAs, Tukey’s HSD post-hoc paired t-tests were used to identify 
where differences were expressed between groups. The Network-based 
Statistic (NBS) (58) was used to perform inference on the transition 
probability matrices between the three groups, again including age 
and sex as covariates. We used an F-test with the primary statistic 
threshold set to 3.0, and performed a total of 5,000 permutations 
(family-wise error rate controlled at 5%).

2 https://github.com/OHBA-analysis/HMM-MAR

Candidate cortical regions

Using state-specific coherence values averaged across subjects, 
we calculated the eigenvector centrality (EC) measure for each region. 
EC calculates the centrality (degree) of each node and weights this 
according to the EC of the nodes that it connects to van den Heuvel 
and Sporns (59). EC was performed using the eigenvector_centrality_
und function within the Brain Connectivity Toolbox (60). The top 10% 
of EC scores taken from a single hemisphere were used to inform 
regions for a DCM.

Dynamic causal modelling

We used dynamic causal modelling (DCM) for cross-spectral 
densities (CSD) to selectively isolate those differences observed in the 
networks above (61, 62). Specifically, we  modelled the extrinsic 
(between-region) effective connectivity strengths between candidate 
regions. We adopted the convolution based local field potential (LFP) 
neural mass model which describes source activity as the result of 
interactions between populations of inhibitory interneurons, 
excitatory spiny stellate cells, and excitatory pyramidal cells (63). The 
data to which the DCM was fit comprised the processed time series. 
For each subject, we specified and estimated a single model with a 
fully-connected network of 7 regions. To obtain the most robust 
estimates, we  then re-estimated the DCM using an updated prior 
parameter space using the posteriors from an exemplar subject 
(Supplementary Figure S3). For each subject, we selected the iteration 
with the best fit (as assessed by free energy). One-way MANCOVA 
(Wilks’ Lambda) was used to assess group differences in the forward 
and backward connectivity parameters. Univariate tests were corrected 
for multiple comparisons (pFWE < 0.05, Bonferroni corrected). A 
multiple regression model was used to assess the contributions of 
behavioural (non-clinical) variables to effective connectivity strengths.

Results

Resting-state EEG recordings and 16S rRNA profiles were 
analysed for 40 CD, 30 UC, and 28 healthy participants. Demographic, 
behavioural, and clinical characteristics are presented in 
Supplementary Table S1. As IBD is a heterogeneous disease, 
we  observed differences in participant’s medication use, surgical 
history, and disease duration between UC and CD groups 
(Supplementary Table S1). As this study was designed as a naturalistic 
assessment of IBD brain state dynamics, we  did not exclude 
participants taking specific medications or surgical procedures. IBD 
and healthy control (HC) participants were matched in terms of 
general demographics with the exception of age, and the Hamilton 
and Montgomery Anxiety (HAM-A) scores (Supplementary Table S1).

Establishing distinct microbiota signatures 
in CD and UC

We first used 16S rRNA sequencing to compare microbiota 
profiles between the three groups. Our results show a significant 
difference in beta (unweighted UniFrac) and alpha (Shannon effective 
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species and Chao1 index) diversity measures in CD, compared to HC 
and UC (Figures 1A,B). While not reaching statistical significance, UC 
showed a trend towards lower alpha diversity and distinct beta 
diversity profiles compared to HC. Multivariate analyses also revealed 
a number of significant taxonomic and functional differences in CD 
and to a lesser extent, in UC (Figures 1C,D, enlarged visualisation 
shown in Supplementary Figure S4). The microbiota results converge 
in supporting the existence of a perturbed and heterogeneous 
microbial profile in CD (36). It is important to note that the small 
subset of CD participants exhibiting mild (n = 3) or moderate (n = 1, 
later excluded for poor quality EEG data) disease activity were not 
outliers in terms of their diversity scores (i.e., were distributed within 

the normal range for CD). Together, the clinical and microbiota results 
demonstrate clear distinctions between CD and UC sub-groups, 
providing a strong motivation to perform brain assessments in each 
group independently. Full statistical results for this assessment can 
be found in Supplementary Note 3.

Brain states expressed during resting-state 
EEG

The TDE-HMM posits that a time series can be decomposed into 
a number of discrete and recurrent hidden brain states, comprising 

FIGURE 1

Comparison of microbiota results between Crohn’s Disease (CD), Ulcerative Colitis (UC), and healthy control individuals (HC). Results from (A) beta 
(unweighted Unifrac) and (B) alpha diversity (Shannon effective species and Chao1 index) measures show significant differences between CD and UC, 
and CD and HC, assessed using one-way ANCOVAs. Multivariate analyses performed using MaAslin2 revealed significant differences in (C) taxonomic 
abundance (genus resolution) and (D) functional pathways in CD and to a lesser extent, in UC, when compared to HC. Enlarged figures for (C,D) are 
presented in Supplementary Figure S4. All microbiota assessments were controlled for the effects of age, sex, and BMI. * denotes p  <  0.05; *** denotes 
p  <  0.0005.
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several regions that co-activate together, such that at each time point, 
only one state is active (64) (Supplementary Note 2). Results showed 
that resting-state EEG data was best described by six short-lived and 
recurring brain states, each with unique spatial, spectral, and 
temporal  profiles (Figures  2A–F; Supplementary Figure S5; 
Supplementary Note 2). Our state selection is consistent with previous 
studies modelling M/EEG dynamics using the TDE-HMM, ranging 
between six and 16 states (47, 48, 65, 66). The spatial maps of power 
(i.e., the amount of activity) and coherence networks (i.e., the level of 
synchronisation or coupling between two regions) were averaged 
across a wideband frequency range (1–30 Hz). Power maps correspond 
to the mean power within each region and state (z-scored) and 
coherence networks show functional connections that are stronger 
(p < 0.01) compared to all other possible between-region connections 
for that state. Our spatial maps share characteristics with previous M/
EEG HMM studies, including a bilateral pattern of activity for some, 
but not all states (47, 48), and strong increases in power often 
accompanying increases in coherence (48).

Brain states correspond to resting-state 
association maps

We quantified the functional overlap between the HMM states 
with established resting-state association networks from the meta-
analysis database, Neurosynth (67). Specifically, we assessed the spatial 
overlap (voxel-wise correlation) between our power maps (z-scored, 
unthresholded) with canonical maps of prefrontal, parietal, 
sensorimotor, visual, DMN, and temporal fMRI association maps 
(Supplementary Figure S6). For ease of interpretation, states were 
named according to the spatial patterns of activation to which they 
were most strongly correlated. States 1 (prefrontal) and 2 (integrated 
prefrontal) were defined by higher and lower power in prefrontal and 
visual regions respectively, with more extensive prefrontal coherence 
in State 2. States 3 (right sensorimotor-parietal) and 5 (left sensorimotor) 
were characterised by higher power in right and left sensorimotor 
regions, respectively, with coherence patterns closely following power 
in State 3. State 4 (visual) was characterised by high power and 
coherence in visual regions, while State 6 (DMN-parietal) reflected 
power and coherence in regions associated with DMN and parietal 
regions. Each state also exhibits frequency-specific differences in 
power and coherence, which can be visualized as an average across 
regions over the full spectrum (1–30 Hz) (Supplementary Figure S5). 
There is a strong distinction between the DMN-parietal, characterised 
by power in the slower frequencies (delta/theta) and the visual state, 
characterised by stronger power in the alpha frequency. All states 
exhibit higher coherence within the alpha frequency band, with the 
strongest occurring in right sensorimotor-parietal, visual, and 
DMN-parietal states.

Temporal brain state dynamics are 
differentially expressed in IBD

At each time point in the time series, the HMM estimates the 
probability that each brain state is active, referred to as the state time 
course. The state time courses estimated from the HMM were used to 
investigate between-group differences in three temporal statistics: (a) 

fractional occupancy, the proportion of overall time spent in a state; 
(b) dwell time, the length of each state visit; and (c) interval time, the 
length of time between consecutive visits to the same state. One-way 
ANCOVAs identified a significant main effect of group on fractional 
occupancy in the visual (F (2,82) = 4.31, p = 0.018) and DMN-parietal 
(F(2,82) = 7.40, p = 0.002) states, and a main effect of group on interval 
times in the DMN-parietal (F(2,82) = 4.41, p = 0.001) (Figures 2D,F). 
Relative to HC, individuals with CD resided for less time overall in the 
visual state (pFWE = 0.04) (Figures 2D.I), but spent a longer time overall 
(pFWE = 0.002) and had shorter interval times between consecutive 
visits to the DMN-parietal state compared to UC (pFWE = 0.01) 
(Figures  2D.I,II). While HC spent more time in the visual state 
compared to UC, and less time in the DMN-parietal state compared 
to CD, these effects did not survive Bonferroni correction (UC, 
pFWE = 0.08; CD, pFWE = 0.06).

We next used the probabilities associated with the state time 
courses to identify significant between-group differences in the 
transitions between brain states [Network-based Statistic (58), 
pFWE < 0.05] (Figure  3). Bold, coloured lines indicate transitions 
included in the significant NBS component while thin black lines 
show the top  20% most probable state transitions for each group 
(Figures 3B,D,F). Firstly, individuals with UC were more likely to 
transition to the prefrontal state compared to HC and CD 
(Figures 3E,F). Secondly, individuals with CD and UC were more 
likely to transition from the left sensorimotor to the integrated 
prefrontal state, while the inverse was true for HC. Finally, HC 
individuals were more likely to transition to the visual state, specifically 
from the DMN-parietal or right sensorimotor-parietal states.

Taken together, our results suggest that: (a) CD and UC 
individuals spent less time in, and are less likely to transition to the 
visual state; (b) individuals with UC are more likely to transition to, 
and may spend more time in the prefrontal state (although not 
reaching significance); and (c) individuals with CD reside for longer 
in, and spent less time between consecutive visits to the 
DMN-parietal state.

Altered connectivity patterns between key 
brain regions differentiating groups

To identify the key drivers of these differences, we performed a 
refined sub-network analysis on communication between specific 
nodes within the visual and DMN-parietal states. We identified seven 
candidate regions exhibiting higher influence within each state’s 
spatial profile (See Candidate Regions in Methods). The posterior 
precuneus (Pprec), medial prefrontal cortex (mPFC) and left inferior 
parietal lobule (IPL) were identified within the DMN-parietal state, 
while the inferior occipital gyrus (IOG), mid occipital gyrus (MOG), 
and left insula (insula) were identified within the visual state 
(Figure 4A; Supplementary Table S2). The posterior cingulate (PCC) 
had strong involvement within both states, supporting previous work 
recognising its “flexible” participation across a number of dynamic 
networks and associated cognitive processes (68, 69). Using the time 
series from each candidate region, we  calculated the strength of 
directed (effective) connectivity, using dynamic causal modelling 
(DCM) (Figure  4B) (See DCM in Methods and 
Supplementary Figure S2 for details). Taking the expected values of 
the estimated connectivity parameters from all subjects, we identified 

https://doi.org/10.3389/fpsyt.2023.1250268
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Hall et al. 10.3389/fpsyt.2023.1250268

Frontiers in Psychiatry 07 frontiersin.org

FIGURE 2

Brain states identified using Hidden Markov Modelling represent networks of power and spectral coherence. (A-F) Left panel shows wideband (1–
30  Hz) power maps (top) and coherence networks (bottom) displayed for each state. Power maps are relative to the state average (z-scored) where 
blue colours reflect power that is lower than the state average and red/yellow colours reflect power that is higher than the average within that state. 
Coherence networks show statistically significant (p  <  0.01) connections that stand out from a background level of connectivity within that state. Nodes 
are coloured based on which fMRI association map/s they anatomically correspond to, and the size of each node reflects the centrality (degree) score. 
(A.I–III) Comparison of temporal statistics between healthy controls (HC), Crohn’s Disease (CD) and Ulcerative Colitis (UC) individuals for each state, 
after adjusting for age and sex. Fractional occupancy (%) represents the proportion of overall time spent in a state; interval time (ms) represents the 
length of time between consecutive visits to the same state; and dwell time (ms) is the length of each state visit. Permutation tests were performed to 
assess the null hypothesis of equality in temporal measures between groups and Tukey’s HSD post-hoc tests were used to identify where significant 
pair-wise differences were expressed. * denotes pFWE  <  0.05; ** denotes pFWE  <  0.005.
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a significant multivariate association between backward connectivity 
parameters and group membership (Wilks’ Lambda = 0.16, F (84, 82) = 
1.52, pFWE = 0.03). Univariate F tests identified a significant difference 
between groups in the connectivity from the left insula to mPFC (F 
(2,84) = 8.57, pFWE = 0.017) (Figures 4C,D). Specifically, individuals with 
CD showed significantly stronger connectivity from the left insula to 
mPFC compared to HC (p = 3.63 × 10−4) and UC (p = 0.03). There were 
no significant differences between UC and HC for any connections.

Insula to mPFC connectivity linked to 
disease duration in CD

Our results demonstrated a highly selective enhancement of 
connectivity between the left insula to mPFC in the CD group. With 
the exception of three individuals with mild disease activity, all CD 
individuals were in clinical remission. Thus, these findings provide 
support to our hypothesis that between-group connectivity differences 
may be driven by chronic, rather than acute inflammation. Our final 
aim was to specifically test whether inter-individual variability in the 
strength of insula to mPFC connectivity in CD was linked to long-
standing disease features, thus testing for a more pronounced 

relationship of how CD chronicity (disease duration) links to 
depression, anxiety, and stress scores (DASS-42). The DASS-42 is 
based on a dimensional, rather than categorical, assessment of 
psychological symptoms, and provides higher inter-subject variability 
in sub-clinical populations. While the HAM-A and MADRS, and 
HADS-A and HADS-D, tend to produce anxiety and depression 
scores that are highly correlated, the DASS-42 is able to more clearly 
distinguish between anxiety and depression (70). Critical to our study, 
the anxiety scale assesses key components of interoceptive processing, 
including autonomic arousal, situational anxiety, and the subjective 
experience of anxious affect. While results did not show an overall 
multivariate relationship, we  did find a significant independent 
regression coefficient linking longer CD duration (adjusted for 
participant age) with stronger insula to mPFC connectivity (β = 0.01, 
t (34) = 2.19, p = 0.036) (Figure 4E).

Discussion

In this study we  assessed whether IBD – a model of chronic, 
relapsing, and remitting systemic inflammation – is associated with 
alterations in the spatiotemporal dynamics of spontaneous brain 

FIGURE 3

Representation of the transition probabilities between the six brain states in the three groups. (A) We computed subject-specific transition probability 
matrices representing the likelihood of transitioning from one state, to every other state (K × K). Diagonal matrix elements represent self-transitions 
(i.e., the probability of remaining in that state) and were set to zero to aid visualisation. (B) Directed transition diagram showing the top 20% most 
probable state transitions, where each arrow represents a transition. The thin black lines do not represent significant between-group differences, but 
represent transitions that were more probable on average for that group. Bold, coloured lines indicate a significantly higher probability of this transition 
in that group. The network-based statistics (NBS) was used to identify significant between-group differences in state transitions (pFWE <  0.05). (C–F) 
Same as (A,B) but for Crohn’s Disease and Ulcerative Colitis. State 1: Prefrontal (Pre), State 2: integrated prefrontal (IntPre), State 3: right sensorimotor-
parietal (RSen-Par), State 4: visual (Vis), State 5: left sensorimotor (LSen), and State 6: DMN-parietal (DMN-Par). Healthy control (HC), Crohn’s Disease 
(CD), and Ulcerative Colitis (UC).
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states. In particular, we directly compared CD and UC to delineate 
whether known distinctions in clinical, microbiome, and physical 
manifestations of gut inflammation also extends to variability in brain 
dynamics. Our findings extend upon previous work by showing a 
CD-specific brain signature implicating regions involved in cognitive-
interoceptive appraisal mechanisms. The HMM assessment converges 
with these findings at a broader scale, demonstrating that IBD 
individuals exhibit alterations in the temporal properties of brain 
states supporting computations linking internal and external milieus. 
Together, our study supports a description of IBD as a dysfunction of 
the gut-brain axis, moving away from clinical definitions that 
compartmentalise effects in the gut from the CNS.

Our sub-network DCM dissected the relevant properties of the 
global brain state assessment. Specifically, this analysis provided a 
refined interpretation of global neuronal dynamics grounded in 
physiological and biophysical properties of the brain. These results 
showed a highly selective enhancement of connectivity from the 
insula to the mPFC in CD individuals (Figure 4C). The insula is a key 
interoceptive hub, thought to be  responsible for integrating 
information from the internal and external milieu to generate an 

awareness of the current emotional and internal state (71–73). During 
rest, information about the internal milieu likely emerges from 
gastrointestinal and cardiorespiratory stimuli before converging in the 
NTS and higher cortical regions, including the insula (26). 
Anatomically, the insula shares afferent and efferent connections with 
the mPFC (74) which together provide a contextual evaluation of 
emotional and affective states (75). The finding that CD individuals 
exhibit stronger bottom-up signalling from the insula to mPFC 
converges with a model describing altered interoceptive processing. 
As a function of persistent worry and rumination over anticipated 
visceral discomfort, many patients with GI disorders develop strong 
and rigid beliefs (i.e., hyperprecise priors) about the state of the body 
(76, 77). While the perception of abdominal pain in a healthy 
individual may not be considered alarming, the same signal may elicit 
hypervigilance in IBD. The perceived hypervigilance to visceral 
sensations has previously been cast within a predictive coding 
framework (78, 79). That is, the persistent inability to accurately detect 
afferent viscerosensory signals may produce a mismatch between 
top-down predicted states and the actual interoceptive input reaching 
the insula and prefrontal regions. This hypothesis is in line with a 

FIGURE 4

Targeted analyses of effective brain connectivity (Dynamic Causal Modelling, DCM). (A) Candidate regions were selected from the HMM brain states for 
a DCM analysis. (B) The Local Field Potential (LFP) convolution-based neural mass model was selected, modelling three subpopulations with five 
intrinsic connections. Extrinsic afferents are conceptualised as (A) forward connections arriving at the input spiny stellate population; (B) backward 
connections arriving at both the output pyramidal and interneuron populations. (C) Extrinsic (between-region) efferents project from the output 
pyramidal population to distant targets. (C,D) Results from MANCOVA post-hoc tests, showing significantly stronger effective connectivity from the left 
insula to the mPFC in CD individuals. (E) Multiple regression in CD group testing whether disease duration and behavioural symptoms predict the 
strength of left insula to mPFC connectivity. * denotes p  <  0.05; *** denotes p  <  0.0005.
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recent fMRI study showing altered interoceptive processing in CD to 
uncertainty about anticipated visceral discomfort, compared to 
controls (29). The tendency of an individual to overestimate the 
likelihood of a future aversive bodily state provides a conceptual 
bridge between altered interoception, and the development of clinical 
anxiety and depression (78, 80). While a confluence of factors are 
likely to contribute to the high prevalence of anxiety and depression 
in IBD, models describing the persistence and reinforcement of 
negative biases towards self-relevant information is thought to be a 
key contributor. As such, psychological interventions such as 
mindfulness and meditation have been put forth as adjuvant treatment 
approaches in IBD to modulate the brain’s response to future aversive 
interoceptive stimuli (81, 82).

Recent work has demonstrated that long-term exposure to 
recurrent systemic inflammation impacts brain and behavioural 
responses in a more permanent and pervasive way as opposed to a 
single inflammatory event (9, 10). Both CD and UC participants were 
either in clinical remission or had a mild disease course, with no 
difference in cardiovascular risk compared to healthy participants. 
Our results strongly suggest that brain dynamic alterations do not 
represent the effects of acute inflammation or vascular events, but 
suggests a more permanent network reconfiguration. In our study, 
we showed that insula to mPFC hyper-connectivity strengthens with 
disease duration in CD (Figure 4E). The persistent and chronic effects 
from repeated exposure to inflammation are likely to result in a 
confluence of behavioural, biological, and neurophysiological changes, 
including alterations to interoceptive processing (e.g., heightened 
sensitivity to visceral inflammatory or nociceptive signals) (18, 29), 
hyper-activation of the hypothalamic–pituitary–adrenal axis (83), 
functional changes to the gut-brain interface, or altered serotonergic 
and glutamatergic neurotransmission (1, 84). In this study, we did not 
observe a relationship between effective connectivity and behavioural 
symptoms. However, it is possible that altered insula-mPFC hyper-
connectivity represents a vulnerability towards developing 
psychological symptoms. Our results provide a strong motivation to 
pursue longitudinal assessments – monitoring fluctuations in 
inflammatory activity, medication use, symptoms, surgical procedures, 
and behaviour – to identify the causal mechanisms contributing to 
altered network signatures in long-standing CD.

Our results suggest that a diagnosis of CD is, in itself, a key factor 
in determining the risk of developing altered brain network signatures. 
Previous work suggests that UC and CD exhibit distinct disease 
processes (33, 34, 36). UC is described as a mucosal disease with an 
acute onset, while CD is considered a chronic and systemic disease 
with a long premorbid phase and transmural involvement (85). 
Systemic involvement in CD may also be  reflected in the higher 
prevalence of extra-intestinal manifestations (86), with one study 
attributing low bone density to chronic and long-standing exposure 
to cytokines selectively in CD, but not in UC (85). Moreover, emerging 
work suggests that neurological effects related to IBD follows a 
differential pattern of involvement between sub-groups (87). That is, 
UC appears to exhibit extra-intestinal manifestations mostly in the 
peripheral nervous system, while CD is more closely associated with 
effects in the CNS (87). These observations are in line with a previous 
structural MRI (sMRI) and resting-state fMRI study comparing CD 
and UC sub-groups, showing that neural changes in CD may be more 
pronounced in patients exhibiting extra-intestinal manifestations (39). 
However in contrast to our results, this study, as well as another using 

near infrared spectroscopy (38), found that UC exhibited more 
pronounced neural changes overall compared to CD. Longitudinal 
and adequately powered studies will be critical to disentangle the 
nuanced alterations between CD and UC reported in this current 
study, and in previous work. Our results also showed that diversity, 
taxonomic, and functional microbiota profiles in CD are significantly 
different from UC and HC, despite the absence of major inflammatory 
activity (Figure 1). The failure to restore eubiosis in CD may indirectly 
serve as a marker of chronicity, representing an epiphenomenon 
caused by repeated inflammation and extensive bowel damage, as well 
as a risk factor for recurrent relapse (35–37).

Our results suggest that anxiety and depression-related symptoms 
in IBD reflect altered interoceptive processing of visceral sensations, 
and a preference to engage in repetitive, self-monitoring and 
rumination behaviours. As such, the value of integrative clinical 
approaches, including cognitive-behavioural therapy, interoceptive 
exposure therapy, mindfulness, and meditation may represent 
adjuvant treatments in IBD and other visceral-related conditions. 
Given the finding that disease duration in CD was associated with 
perturbed interoceptive networks, these approaches may be beneficial 
early on in the disease process, even in the absence of current anxiety 
and depressive symptoms. This underscore the broader significance of 
early diagnosis, and both rapid and effective control of gut and 
systemic inflammation in IBD patients.

A number of caveats need to be considered when interpreting the 
results from this study. The cross-sectional design and modest sample 
size are recognised as limitations. For example, our microbiota 
assessments of alpha and beta diversity did not detect significant 
differences between UC and HC. While these results are consistent 
with results from previous longitudinal 16S rRNA studies showing 
only diversity differences in CD compared to HC, but not in UC (36, 
88), our relatively modest sample size may have resulted in a type II 
error (i.e., the non-detection of smaller effects in UC individuals). 
Secondly, our cross-sectional design does not allow us to disentangle 
the relative contribution of long-standing GI symptoms versus 
chronic inflammation to observed brain-related effects. However, 
recent works comparing UC to a control group with irritable bowel 
syndrome (GI symptoms without underlying inflammation) provides 
further support that these changes are more specifically driven by 
chronic gut inflammation, rather than long-term GI symptoms (53, 
89). IBD is a heterogeneous disease, and even within CD and UC 
there is large variability in terms of surgical procedures, medication 
use, genetics, and inflammatory history. However, the main focus of 
this study was to characterise the large-scale brain effects from 
chronic, recurrent and relapsing gut inflammation within an 
ecologically valid and naturalistic setting. For example, a key source 
of heterogeneity was medication use in IBD. Specifically, there was a 
higher proportion of UC individuals taking aminosalcylates, 
analgesics, and corticosteroid medication (Supplementary Table S1). 
However, the fact that the CD group appear to be  less reliant on 
medications overall – specifically analgesics – highlights that they 
have well-controlled symptoms. Taken together, this further 
strengthens the interpretation of our CD results, supporting the idea 
that hyper-connectivity from the insula to mPFC is more closely 
linked to disease chronicity, rather than acute inflammation or 
symptom flare-ups. Our study provides the initial impetus to pursue 
future targeted work, including a focus towards creating larger, 
longitudinal databases including multimodal neuroimaging, clinical, 
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behavioural, and metagenomics data. While most IBD participants 
were in clinical remission, a number of participants were taking 
biologic agents, anti-inflammatory, or immunomodulatory 
medication. This suggests that some participants had experienced an 
acute inflammatory event at some point prior to the study. As we do 
not have longitudinal data about previous disease activity, we cannot 
directly assess their contribution to observed brain alterations. Unlike 
DCM, the TDE-HMM is a statistical method that is not grounded on 
biophysical models of neural activity. When inferring the HMM 
we recognize, like previous authors (48), that there is no biological 
“ground truth” with regards to the number of brain states selected. 
Instead, varying the number of states simply offers different 
resolutions (spatiotemporal detail) to study brain dynamics. Selecting 
six states represented a necessary trade-off, allowing us to examine 
brain states that overlap with established fMRI resting state maps but 
in the process, limiting our ability to detect more subtle dynamics. 
Our HMM brain states were inferred from resting-state data. Future 
investigations could extend this work by assessing how external task-
related demands modulate spatiotemporal dynamics in DMN and 
visual networks in CD and UC.

There is converging evidence showing the effects of acute 
inflammation on brain activity and behaviour (3, 7, 8). However, there 
remains a large gap in understanding how chronic and repeated 
exposure to systemic inflammation engenders change in spontaneous 
whole-brain dynamics. Using an ecologically valid model of peripheral 
inflammation, we demonstrate that CD individuals exhibit alterations 
in brain states and patterns of effective connectivity supporting 
computations within internal, interoceptive mental states. Our results 
provide motivation to pursue longitudinal assessments evaluating the 
impact of mood and affective disorders on the natural history of IBD, 
and vice versa. Understanding the extent and nature of gut-brain 
dysfunctions in IBD will help to optimise the monitoring and 
management of behavioural symptoms and critically, to prevent a gut 
disease from progressing to a comorbid psychiatric or 
neurodegenerative illness.
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