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Application of graph frequency
attention convolutional neural
networks in depression treatment
response

Zihe Lu†, Jialin Wang†, Fengqin Wang* and Zhoumin Wu

College of Physics and Electronics Science, Hubei Normal University, Huangshi, China

Depression, a prevalent global mental health disorder, necessitates precise

treatment response prediction for the improvement of personalized care and

patient prognosis. The Graph Convolutional Neural Networks (GCNs) have

emerged as a promising technique for handling intricate signals and classification

tasks owing to their end-to-end neural architecture and nonlinear processing

capabilities. In this context, this article proposes a model named the Graph

Frequency Attention Convolutional Neural Network (GFACNN). Primarily, the

model transforms the EEG signals into graphs to depict the connections

between electrodes and brain regions, while integrating a frequency attention

module to accentuate brain rhythm information. The proposed approach delves

into the application of graph neural networks in the classification of EEG

data, aiming to evaluate the response to antidepressant treatment and discern

between treatment-resistant and treatment-responsive cases. Experimental

results obtained from an EEG dataset at Peking University People’s Hospital

demonstrate the notable performance of GFACNN in distinguishing treatment

responses among depression patients, surpassing deep learning methodologies

including CapsuleNet and GoogLeNet. This highlights the e�cacy of graph

neural networks in leveraging the connections within EEG signal data. Overall,

GFACNN exhibits potential for the classification of depression EEG signals, thereby

potentially aiding clinical diagnosis and treatment.

KEYWORDS

classification, depression treatment response, EEG, graph convolutional neural networks,

frequency attention

1 Introduction

Depression, a widespread mental disorder, is predominantly assessed for treatment

response using subjective clinical data. To overcome this constraint, the scientific

community has begun to investigate the potential of biomedical signals as supplementary

diagnostic instruments. Comparing to fMRI (1, 2), Electroencephalography (EEG) signals,

which are non-invasive, safe, and offer high-resolution, can depict the dynamic alterations

in brain neural activity. Nevertheless, the analysis of EEG data faces multiple obstacles, such

as the presence of noise and interference, individual variability, and non-stationary and

nonlinear signals, among others (3). To tackle these challenges, researchers are exploring

innovative methods and techniques to enhance the precision and efficiency of EEG signal

processing, ultimately delivering more objective and accurate guidance for diagnosing and

treating depression (3).

Graph convolutional neural networks (GCN) have garnered significant interest in recent

years as a powerful deep learning model for processing complex signals and classification

tasks across various fields. However, the utilization of GCNs for classifying EEG signals

remains limited. The most salient related work are as following, Song et al. (4) and
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Jang et al. (5) have shown the successful application of GCNs in

EEG emotion recognition and video identification, respectively,

while Li et al. (6) introduced an information aggregation method

to transmit information between graph convolutional layers.

Zhao et al. (7) proposed a linear graph convolutional network

for seizure identification, achieving an accuracy of 99.30% with

the use of focal loss to address data imbalance. Recently, to

improve depression detection, Zhu et al. (8) proposed a Graph

Input layer attention Convolutional Network (GICN), which

incorporated a learnable weight matrix in the input layer of the

GCN, achieving a 96.50% accuracy for recognition of depression

and normal with 10-fold cross-validation. Unlike recurrent neural

networks (RNNs), which are well-suited for sequential data, GCNs

demonstrate superior performance in processing nonlinear signals

by capturing their inherent nonlinear relationships. Moreover,

GCNs offer advantages such as the ability to effectively exploit node

relationships, accommodate variable-sized inputs, process multiple

data types simultaneously, and exhibit end-to-end characteristics.

These attributes contribute to enhanced classification performance,

enable the handling of unstructured data, provide greater flexibility,

and reduce information loss and error introduced during manual

feature extraction (9).

While traditional graph attention methods have demonstrated

remarkable outcomes in several applications by automatically

learning attention on data, they are limited in terms of network

connections, which are mostly confined to the time-domain

space, lacking connections based on the frequency domain.

Nonetheless, this approach lacks specificity and controllability,

as it typically computes attention weights based on intrinsic

features of data, without explicit guidance for particular tasks,

possibly highlighting irrelevant features and reducing the model’s

performance. Furthermore, traditional methods require extensive

trial-and-error and parameter adjustments to achieve better

attention, further limiting the model’s controllability. Therefore,

despite the ability of traditional graph attention methods to

learn attention on data automatically, they lack specificity and

controllability for particular tasks. To overcome this limitation,

we propose the Graph Frequency Attention Convolutional Neural

Network (GFACNN), which utilizes signal frequency information

as attention weighting information to guide the model towards

EEG rhythm information. This new deep learning model is

inspired by the channel frequency attention mechanism (10) and

aims to address this limitation.

2 Methodology

This section introduces the GFACNN model. Figure 1

illustrates the architecture of GFACNN.

2.1 Attention module

The parameter vector Ea in the GFACNN is a nonlearnable

attention mechanism for each node. It is a vector of weights

to determine the importance of each feature dimension in the

computation of attention coefficients.

First, the frequency of channel xi is obtained by the discrete-

time Fourier transform (DTFT) algorithm:

X(ω) =
∞
∑

n=−∞
xne

−iωn, (1)

where {xn}∞n=−∞ is the ith channel xi.

The power E of the spectrum is calculated as:

F
(

ejω
)

= a+ ib,
∣

∣F
(

ejω
)
∣

∣ =
√
a2 + b2,

E = 1
2π

∫ π

−π

∣
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(

ejω
)
∣

∣

2
dω.

(2)

The mean power Ē for the channel xi is then calculated and

indexed as i. And the average power values of all channels are

constructed into one attention vector according to their indexes.

Ea = [Ē0, Ē1, · · · , Ēn] (3)

Finally, the attention vector Ea is normalized to [0.1, 1] by max-

min normalization. It is applied to the input node features as the

weight in terms of the Hadamard product.

2.2 Graph frequency attention
convolutional neural network

GFACNN is a novel graph convolutional neural network

specifically designed for classification and object detection. The

network’s architecture comprises of an attention-based input layer

that processes the input data and extracts frequency relevant feature

representations (Section 2.1). This input layer employs an attention

mechanism to identify and learn the significance of different

regions in the EEG data, thereby enhancing the feature extraction

process’s efficacy. It represent the original graph data as a node

feature matrix X, where Xi,: represents the feature vector of the i-th

node.

The network also features two graph convolutional layers that

leverage graph convolution operations to extract the features from

the input data. These layers contain multiple graph convolution

units that update the node’s feature representation by aggregating

information from the neighboring nodes:

H(l) = σ

(

D̃− 1
2 ÃD̃− 1

2H(l−1)W(l−1)
)

(4)

where Ã = A+ I is the adjacency matrix A with self-loops added, D̃

is the diagonal matrix where each diagonal element D̃i,i =
∑

j Ãi,j,

σ is the activation function, andW(1) is the weight matrix at layer l.

Moreover, GFACNN consists of three fully connected layers,

which have a unique hourglass-shaped structure (11). These layers’

primary function is to map the features extracted by the graph

convolutional layers to the respective target categories.

Despite its relatively intricate structure, GFACNN offers the

advantage of end-to-end learning and feature extraction from input

data, facilitated by the graph convolutional neural networks. This

allows it to significantly enhance the effectiveness of depression

treatment response classification tasks.
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FIGURE 1

The architecture of GFACNN.

2.3 Training of GFACNN

The training procedure involves the computation of the

Hadamard product between the input data and the feature

representations pertinent to frequency, as expounded in

Section 2.1. Subsequently, this computed product traverses

through two layers of the graph convolutional neural network. At

each of these layers, a graph convolution operation is implemented.

This operation encompasses the aggregation of information

emanating from neighboring nodes, subsequently influencing

the update of node features. Following each instance of graph

convolution operation, an activation function (illustrated in

Figure 1) is applied in an element-wise manner to the amalgamated

information. The anticipated outcome is generated through the

final quartet of fully connected layers, as depicted in Figure 1,

each comprising a configuration of neurons. The discrepancy

between the foreseen output and the factual target labels is gauged

through the medium of a designated loss function. To optimize

this process, the Stochastic Gradient Descent optimizer is brought

into play. This optimizer’s objective is the minimization of the

Mean Squared Error loss function with a learning rate of 0.01,

consequently contributing to the enhancement of the model’s

performance. This optimization endeavor is facilitated through the

continual refinement of the model’s parameters, a feat achieved via

the Backpropagation algorithm. This iterative process of training

persists until a specified termination criterion is satisfied (notably,

at Epoch 100, with a batch size of 30, and early termination

employing a Patience of 10). Upon the culmination of the training

phase, an evaluation of the model’s efficacy is conducted through

its deployment on an autonomous testing dataset. This assessment

offers an impartial estimation of the model’s capacity to generalize

to hitherto unseen data instances.

3 Results

The experiments in this section serve as a validation and

assessment of the classification of the proposed model. We first

introduce the dataset (see Section 3.1) after describing experimental

platform utilized in the experiments. Next, rhythmic information

in EEG of depression treatment response is visualized (see

Section 3.2). Finally, the classification of GFACNN is evaluated

using accuracy, sensitivity and specificity (see Section 3.3). The

experiments were conducted on a desktop with an Intel i7 CPU at

3.33 GHz, an Nvidia RTX 2080Ti GPU, 64GB RAM, and Windows

7. This system enabled consistent testing conditions.

3.1 Dataset

The EEG dataset was obtained from 17 patients with major

depressive disorder (MDD) at Peking University People’s Hospital.

The dataset was recorded simultaneously through 20 channels

(Fp1, Fp2, F3, F4, F7, T3, T5, C3, C4, Fz, Cz, Pz, F8, T4, T6,

P3, P4, O1, O2, ECG) at a sampling rate of 256 Hz using 19

electrodes and one electrocardiograph. MDD subjects receiving

antidepressant treatment were selected from the hospital. In this

study, all 17 patients received escitalopram oxalate tablets (10

mg), with 7 subjects being classified as non-responsive. The time

window was set to 1024 samples (4 s), resulting in a total sample

space of 20,851 segments (12482 treatment-responsive and 8369

treatment-resistant).

The adjacency matrix A ∈ Rn×n of the GFACNN is constructed

using the topological structure of brain electrical channels. In this

matrix, n represents the number of channels in the brain electrical
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signal and each element value Aij represents the connection

weight between channels i and j. The spatial relationship between

channels and brain regions is taken into account in the adjacency

matrix A. The Pearson correlation coefficient is used to obtain

the correlation coefficient Rij between two channels i and j,

while the Heterogeneous Matrix Similarity Measurement (HMSM)

method (12) is employed to determine the similarity Hij between

pairs of brain regions. The value of Aij is then calculated as Aij =
Rij + λHij, where λ represents a calibration constant greater than 0

(typically 0.5). The attention for each channel will subsequently be

applied to the adjacency matrix.

3.2 Frequency analysis of treatment
response

This section of the experiment aimed to evaluate the important

role of frequency information in assessing the response to

depression treatment and to explain why this study used frequency

information as the attention mechanism in a graph neural

network. First, the EEG data were preprocessed to remove artifacts,

pulse noise, and baseline drift. Continuous EEG data were then

segmented into multiple 4-second data segments for fast FFT

with time-frequency analysis. FFT transforms were calculated to

obtain the average power for pre-treatment and post-treatment

groups. The average frequency components and corresponding

power distribution in the δ (0.5–4Hz), θ (4-8Hz), α (8-13Hz),

and β (13–30Hz) frequency bands (Figure 2 for the treatment-

responsive group, Figure 3 for the treatment-resistant group)

were generated for different channels across groups to evaluate

depression treatment response.

A comparison of spectral power graphs (Figures 2, 3)

reveals that the power (amplitude illustrated in figures) of the

treatment-resistant group is significantly higher than that of the

treatment-responsive group. This observation may be attributed

to several factors: (1) Abnormal brain electrical activity: Patients

with depression often exhibit abnormal brain electrical activity,

characterized by either heightened or diminished excitability

relative to healthy individuals. This can result in increased power

within certain frequency bands. In treatment-resistant patients,

these abnormalities may be more severe, leading to further

increases in spectral power (13). (2) Spectral line amplification:

Increased amplitudes of select frequency components within

certain bands can result in an overall increase in energy. This

phenomenon may be associated with enhanced synchronization or

oscillation activity of brain waves (14). (3) Effects of therapeutic

drugs: Antidepressants can modulate abnormal brain electrical

activity by targeting neurotransmitter systems (15, 16). However,

in treatment-resistant patients, these drugs may be treatment-

resistant or produce unexpected side effects, leading to further

changes in the brain electrical spectrum.

Another phenomenon in the figures is that all channels in the

treatment-responsive group show an “impulse response” in the α

frequency band especially for channels F3, C4, Fz, P3, and P4,

while it is not found in the treatment-resistant group. The reasons

for this may be as follows: First, α waves are related to attention

and alertness (17). Treatment-responsive can improve the patient’s

attention and alertness, causing a temporary drop in α wave power

after the stimulus appears, that is, an “impulse response”. Patients

with treatment-resistant have difficulty improving their attention,

so this phenomenon does not occur. Second, α waves are related to

emotional regulation (18). Antidepressant treatment can improve

emotional regulation. When an external stimulus occurs, α waves

will temporarily decrease to adjust the emotional state and produce

an “impulse response”. Patients with treatment-resistant treatment

have more severe emotional regulation disorders. The regulatory

mechanism of α waves is impaired and it is not easy to produce this

phenomenon. Finally, α waves are related to functional connections

between brain regions (19). Treatment-responsive can enhance

functional connections and synchrony between brain regions.

When external stimuli occur, α waves between brain regions will

temporarily lose coordination and then quickly recover, producing

a significant “impulse response”. For the treatment-resistant group,

it is difficult to repair the connection between brain regions and it

is not easy to produce this phenomenon.

3.3 Performance of depression treatment
response

In this section, we assessed the ability of GFACNN to

discriminate between treatment responses in patients receiving

antidepressant therapy at Peking University People’s Hospital.

We employed a 5-fold cross-validation approach to train our

classifier and evaluated its performance on an independent test

set. To monitor the training process, we utilized learning curves

and assessed the model’s predictive capabilities using receiver

operating characteristic (ROC) curves and the area under the

curve (AUC). Our results, depicted in Figures 4A, B, demonstrate

that our classifier exhibited stable learning without overfitting

or underfitting. This suggests that our approach is generalizable.

Furthermore, our classifier performed exceptionally well on the

test set, indicating its high discriminative power for treatment

responses. Taken together, our findings suggest that GFACNNmay

serve as a valuable tool for evaluating the efficacy of antidepressant

therapy.

Finally, the model’s classification performance was assessed

on the hold-out test set. Our approach attained 98.92% accuracy,

99.52% sensitivity, and 98.73% specificity, as summarized in

Figure 4C. In comparison to the foundational classifiers, which

encompass GCNN (the GFACNN variant without the frequency-

channel attention module), capsule networks, and GoogleNet,

our proposed methodology has evidenced a marked advancement

in terms of performance. The attention mechanism module

in GFACNN leads to an approximate 2% enhancement in

performance. Furthermore, the GFACNN displays a reduced

standard deviation, suggesting a heightened concentration of

performance values around its mean and a decreased level

of dispersion.

4 Discussions and conclusions

In this section, we offer an extensive examination of

EEG channels utilized in the construction of our GFACNN.
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FIGURE 2

Time-frequency analysis of di�erent channels in the treatment-responsive group for depression treatment response.

These EEG channels bear multifaceted implications across

biological, psychological, and psychiatric domains, enriching our

understanding of depression treatment response.

EEG channels: One of the pivotal aspects of this study

is the incorporation of channels that closely align with those

reported in existing literature. This alignment provides a robust

foundation for the exploration of neural mechanisms underlying

the response to depression treatment. Our findings are consistent

with the work of Ressler (20), who highlighted the pivotal role

of these channels in the modulation of neural activity associated

with mood regulation. Moreover, the neurophysiological patterns

observed in these channels in the rostral anterior cingulate

cortex (ACC) resonate with the antidepressant response (21),

corroborating the relevance of our channels to depression-related

neural processes.

Incorporating the EEG channels F3, C4, Fz, P3, and P4, which

primarily correspond to the prefrontal and frontal regions (22),

into the GFACNN architecture has yielded compelling evidence
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FIGURE 3

Time-frequency analysis of di�erent channels in the treatment-resistant group for depression treatment response.

of alignment with well-established neural pathways associated

with depressive conditions. Noteworthy research indicates the

involvement of prefrontal connectivity (23) and frontal EEG

connectivity (21) in emotional regulation and mood disorders

at the level of brain regions, thereby underscoring its relevance

in elucidating treatment outcomes for depression. Furthermore,

at a finer granularity of channel-level analysis, the investigation

revealed hypoactivity within the left frontal hemisphere for F3 and

F4, accompanied by a global elevation in alpha power in depressive

disorders, as highlighted by Horato et al. (18). Furthermore, in the

context of EEG signals from F3, P3, and P4, a robust correlation

emerged between Phase-amplitude coupling delta-beta (dPAC-DB)

and Mood Disorder Questionnaire (MDQ) scores, both pre- and

post-treatment, as detailed by Kesebir et al. (24).

The incorporation of these meaningful channels not only

adds to the robustness of our model but also enhances the

interpretability of our results. The utility of these channels

in classification is grounded in their ability to capture neural

activity patterns that are inherently linked to depression and

its treatment.
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FIGURE 4

Performance evaluation of the model in the e�cacy of antidepressant treatment. The number in parentheses represents the standard deviation. (A)

learning curve provide insight into the dependence of a classifier’s generalization performance on the training set and validation set. (B) ROC

(Receiver Operating Characteristic) curve illustrated the performance of a classification model at all classification thresholds. (C) Performance

comparison on Depression Treatment Response.

Clinical implications of classification: The implications of

our findings extend beyond the realm of research to the clinical

domain. By identifying and highlighting the neural patterns most

indicative of depression treatment response, our GFACNNs offer

clinicians an objective tool to aid in treatment planning and

decision-making. The accuracy and interpretability of our model’s

predictions pave the way for personalized treatment strategies,

ensuring that interventions are tailored to an individual’s neural

response profile.

Limitations: While our study presents promising insights,

we acknowledge the presence of several limitations that warrant

thorough consideration. Notably, one of these limitations

pertains to the sample size within our dataset, which, despite

meticulous curation, could potentially exert influence on the

generalizability of our findings. Furthermore, the absence of

longitudinally tracked follow-up data constrains our capacity

to evaluate the enduring effects of the administered treatment

regimen. It is also important to recognize that the utilization

of self-reported metrics for certain clinical parameters

introduces the prospect of recall bias. The conscientious

addressal of these limitations in forthcoming investigations

will undoubtedly enrich the holistic comprehension of the

intricate neural mechanisms that underlie the response to

depression treatment.

To summarize, the findings from our research suggest

that GFACNN possesses substantial promise in assessing the

effectiveness of antidepressant treatment. The potential clinical

applications of our model are extensive, paving the way for

more precise and efficacious interventions. Despite recognizing the

constraints of our study, we maintain a positive outlook that our

efforts provide a robust groundwork for future progress in this

crucial research domain.
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