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Purpose: Autonomic dysfunction and a chronic low-grade inflammation are 
supposed to play a role in the etiology of major depressive disorder (MDD). The 
vagus nerves (VN) form a major part of the parasympathetic nervous system and 
of the gut-brain axis. They are supposed to exert anti-inflammatory and epithelial 
barrier protective effects in the gut. A reduced vagal activity was described in 
patients with MDD. We aimed to examine the VN in patients with MDD with high-
resolution ultrasound (HRUS) and hypothesized that the cross-sectional area 
(CSA) and the echogenicity of the VNs were altered in comparison to healthy 
controls.

Materials and methods: The echogenicity (gray scale mean) and the CSA of 
the cervical VNs at the level of the thyroid gland and both median nerves were 
examined with HRUS in 50 patients with MDD and 50 matched healthy controls.

Results: The left VN-CSA was significantly larger in the MDD group compared 
to the control group (1.7  ±  0.4  mm2 versus 1.5  ±  0.4  mm2; p =  0.045). The CSA of 
the right VN and both median nerves (MN) were similar between groups. In MDD 
subgroup analyses, recurrent depressive disorders were the main contributing 
factor for the left VN-CSA enlargement. Echogenicity was not altered in the VN 
and MN between groups.

Conclusion: The enlargement of the left VN-CSA in patients with MDD, and 
especially in these patients with recurrent depressive disorders, might turn out as 
a promising imaging biomarker. Longitudinal studies are warranted to examine 
whether the VNs-CSA change in the course of MDD.
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Introduction

As the vagus nerves (VNs) are of particular importance in psychiatric and neurological disorders, 
sonographic research has witnessed a growing interest (1–3). The VNs constitute a crucial part of the 
parasympathetic autonomic nervous system (ANS). The functional imbalance between reduced VN 
activity and the sympathetic system results in autonomic dysfunction, comprising symptoms like 
palpitations, impairment of sleep, appetite, and gastrointestinal functioning in neuropsychiatric 
disorders, e.g., major depressive disorder (MDD) (4). Currently, antidepressant treatments, such as 
vagus nerve stimulation (VNS), where the left VN is used as a target for electrical stimulation, 
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emerged as an option in treatment-resistant depression (5). Meta-analyses 
also demonstrated a negative association between vagal activity and 
inflammatory markers (6). A lack of vagal inhibition of systemic 
inflammatory processes seems to play a key role in the low-grade 
inflammation pathogenesis approach of MDD (7). Moreover, the VNs 
form a central part of the gut-brain axis by linking the gut and abdominal 
organs with the central nervous system, thus, enabling a bidirectional 
communication (8). Disturbances of the microbiota and the gut-brain 
axis are also supposed to contribute to the etiology of depression and 
anxiety disorders (8, 9).

High-resolution ultrasound (HRUS) allows the reliable 
examinations of the VNs in vivo (10). Previous findings showed that 
sonomorphological VN alterations and autonomic function may 
correlate in healthy probands (11). Morphological alterations of the 
cervical VNs were described in different neurological disorders. An 
atrophy was found in patients with Parkinson’s Disease (PD) [e.g., (1, 
12)], while an enlargement of the VN-CSA was associated with 
autonomic dysfunction in patients with Guillain-Barré-Strohl 
syndrome (13).

So far, although there is cumulating evidence for a relevant role of 
the VNs in the etiology of MDD, there are no morphological 
examinations of the VNs in these patients in vivo. Thus, we aimed to 
examine the VNs in patients with MDD with HRUS and hypothesized 
that the CSA and the echogenicity of the VNs were altered in 
comparison to healthy controls.

Materials and methods

This study was performed according to the ethical standards laid 
down in the 1964 Declaration of Helsinki and its later amendment. It 
was approved by the local Ethics Committee of the Medical Faculty at 
the University of Leipzig (reference number 425/19-ek). All 
participants gave informed and written consent for participation in 
medical research.

Based on studies that examined the size of the VNs in 
predominantly neurodegenerative disorders where the differences 
in the CSA of the asymmetric VNs varied between 10% (in case 
of the right VN) and 20% (in case of the left VN) (1), we calculated 
that, using a two-tailed test, 53 patients with MDD had to 
be  examined to detect a difference in the CSA of 15% with a 
power of 0.8. The entire cohort comprised 100 adult subjects (50 
patients with MDD and 50 healthy controls) and was balanced 
according to sex and age (Table 1). Participants were recruited 
from 06/2020 to 09/2021 from the inpatient ward of the 
Department of Psychiatry and Psychotherapy, University of 
Leipzig Medical Center.

All patients had to fulfill the clinical criteria of depression 
(F32.1–F32.2 and F33.1–F33.3) as defined by the International 
Statistical Classification of Diseases and Related Health Problems, 
10th Revision. Diagnoses were confirmed during the treatment 
by psychiatric consultants.

Exclusion criteria were a medical history of polyneuropathy, 
epilepsy, neurodegenerative disorders, use of illegal substances, any 
addictive diseases, any psychiatric diagnoses in the control group, 
organic or psychotic psychiatric comorbidities, any relevant anxiety 
and / or obsessive compulsive disorders in the MDD group, a history 
of head injury, or acute somatic diagnoses during the time of 

examination. All participants underwent a profound neurological 
examination to exclude persons with clinically apparent yet hitherto 
unknown polyneuropathy or parkinsonism.

At the time point of study participation, all patients in the MDD 
group were on antidepressants and had psychotherapy. We did not 
assess how long and how often patients had psychotherapy before 
their participation in this study nor which kind of psychotherapy they 
had in before. We also did not assess the history of antidepressant 
intake before study participation.

To evaluate the severity of depression at the time of participation, 
all participants completed the Beck Depression Inventory (BDI) and 
Patient Health Questionnaire-15 (PHQ-15) with focus on 
somatic symptoms.

The HRUS examination was performed with an Aplio i800 
(Canon Medical Systems, Neuss, Germany) with a 24 MHz linear 
transducer. Briefly, both VNs, at the level of the thyroid gland, and, for 
control purpose, both median nerves (MN), 10 cm proximal to the 
wrist, were examined according to established protocols (10, 14) 
(Figure 1). Three B-mode images of each nerve and side were recorded 
and optimized regarding brightness, depth, and focus. The identified 
nerve was marked roughly with the marking tool of the ultrasound 
device, and the images were stored for offline measurement of the 
CSA. Post-examination offline measurements were performed with 
ImageJ (National Institutes of Health, Bethesda, Maryland, 
United  States; version 1.53a). The CSA was determined with a 
precision of 0.1 mm2. Further statics were calculated with the median 
of the 3 CSA values of each nerve and side, which is less likely to 
be distorted by outliers.

In order to determine the echogenicity of the nerves, the image 
with the median CSA was converted into an 8-bit black and white 
image in which each pixel is assigned a grayscale. The grayscales 
ranged from 0 (black) to 255 (white). An average value of the 
grayscales of all pixels within the CSA was calculated (grayscale mean, 
GSM). To determine the echogenicity independently of brightness 
settings of the ultrasound device, the GSM of the VN was set in 
relation to the GSM of the blood in the ipsilateral common carotid 
artery (CCA), which is physiologically hypoechoic and shows little 
heterogeneity. The GSM ratio (GSM-VN / GSM-CCA) was used for 
further statistics.

All measurements were done by the same rater who was blinded 
to the side of the nerve (left vs. right) and to group affiliation (control 
vs. MDD).

Statistical analyses were performed by using IBM SPSS Statistics 
(IBM Corporation, Armonk, New York, United States; version 27.0). 
To assess intra-rater agreement 20 images were re-measured 
(ICC-coefficient = 0.996, p < 0.001). CSA values of one rater were used 
for statistical analyses. For group comparison, the student’s t-test (for 
data with normal distribution) and Mann–Whitney U-test (for 
non-normal distribution) were used. Chi-square test was applied on 
group comparisons of nominally scaled data. Correlation coefficients 
were calculated using Pearson’s correlation (normal distribution, 
metric level), Spearman’s correlation (non-normal distribution, 
ordinal level) and Eta Coefficient (nominal and metric level). The 
subgroup analysis was performed using Kruskal-Wallis one-way 
ANOVA. Extreme outliers were excluded based on Tukey’s hinges 
(first quartile −3 * interquartile range (IQR) and third quartile +3 * 
IQR), visualized in boxplots (15). The significance level was set at 
p < 0.05.
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Results

Demographic data of patients with MDD and the control group 
were well-balanced in terms of sex, age, and height. Only the BMI was 
significantly higher in the MDD group. No significant differences for 
known cardiac arrythmia or diabetes mellitus in the medical history 
were found between both groups. BDI and PHQ-15 scores were 
significantly higher in the MDD group. In the MDD group, the 
current depressive episode persisted at the time of examination for a 
mean of 25 weeks (after exclusion of one extreme outlier of 400 weeks; 
Table 1).

In HRUS examinations, the left VN-CSA was significantly larger 
in the MDD group than in the control group (p = 0.045), while the 
right VN-CSA did not differ significantly between groups (Table 2). 
In the MDD group, no significant correlations were found between 
the duration of the depressive episode and the left VN-CSA (ρ = −0.12; 
p = 0.413) or right VN-CSA (ρ = 0.04; p = 0.785), the BDI score and the 
left VN-CSA (ρ = −0.184; p = 0.201) or the right VN-CSA (ρ = 0.009; 
p = 0.952), nor the PHQ-15 score and the left VN-CSA (ρ = −0.134; 
p = 0.353) or the right VN-CSA (ρ = 0.031; p = 0.833). The left and 
right MN-CSA were similar between the control group and the MDD 
group (Table 2).

FIGURE 1

Visualization of the vagus nerve (d) with embedded magnification. a: thyroid gland; b: common carotid artery; c: internal jugular vein; scale bar =  1  cm.

TABLE 1 Demographic data of patients with major depressive disorder (MDD) and healthy controls.

Characteristics MDD group (n =  50) Control group (n =  50) p-value

Male (n) 21 21 1.00°

Female (n) 29 29 1.00°

Age in years (mean, ± SD, range) 45 ± 16 (21–80) 46 ± 21 (22–80) 0.972#

Height in cm (mean, ± SD, range) 172 ± 10 (146–20) 173 ± 10 (153–192) 0.890+

BMI (kg/m2; mean, ± SD, range) 26.6 ± 5.7 (17.1–46.9) 24.5 ± 3.6 (19.5–38.0) 0.049#

Medical history of comorbidities

Cardiac arrythmia [n (%)] 5 (10%) 1 (2%) 0.092°

Diabetes mellitus [n (%)] 3 (6%) 1 (2%) 0.307°

Questionnaires

BDI score (median, range) 24.5 (6–46) 4 (0–20) 0.001#

PHQ-15 score (median, range) 13 (1–22) 4 (0–20) 0.001#

Duration of actual depressive episode in 

weeks (mean, SD, range)

25.39 ± 18.74*
0

4–80*

+Student’s t-test; #Mann–Whitney U-test; °Chi-square test; BMI, body mass index; BDI, Beck Depression Inventory; PHQ-15, Patient Health Questionnaire-15; SD, standard deviation. *One 
extreme outlier of 400 weeks duration was excluded.
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The MDD group was further stratified into two subgroups: first 
time diagnosis (FD; N = 18) and recurrent depressive disorder (RDD; 
N = 32; Table 3). Kruskal-Wallis one-way ANOVA revealed that the 
RDD subgroup contributed mainly to the significant enlargement of 
the left VN-CSA in comparison to the control group (p  = 0.03; 
Table 4). For the right VN-CSA, Kruskal-Wallis one-way ANOVA 
showed no significant differences between MDD subgroups and the 
control group (Table 4).

Regarding the echogenicity of the VNs, no significant differences 
were found between the control and the MDD group (Table 2), or its 
subgroups (Table  5). In both control and MDD group, a higher 
GSM-Index was measured for the right VN in comparison to the left 
VN (Mann–Whitney U-test p < 0.001; Table 2). In the MDD group, 
no significant correlation was found neither between the BDI score 
and the left (ρ = 0.143; p = 0.320) or the right GSM-Index (ρ = 0.201; 

TABLE 3 Demographic and high-resolution ultrasound data of subgroups of patients with major depressive disorder.

Characteristics FD group (n =  18) RDD group (n =  32)

Male (n) 7 14

Female (n) 11 18

Age in years (mean, ± SD, range) 39 ± 15 (22–64) 49 ± 17 (21–80)

Height in cm (mean, ± SD, range) 173 ± 11 (158–200) 172 ± 9 (146–191)

BMI (kg/m2; mean, ± SD, range) 24.2 ± 4.4 (17.1–31.8) 27.9 ± 5.9 (20.1–46.9)

Questionnaires

BDI score (median, range) 27.5 (6–44) 23 (8–46)

PHQ-15 score (median, range) 13 (1–22) 12.5 (1–21)

Duration of actual depressive episode in weeks (mean, ± SD) 28.8 ± 21.2* 23.6 ± 17.4

Ultrasound examination

VN-CSA left (mm2; mean, ± SD) 1.6 ± 0.4 1.7 ± 0.4

VN-CSA right (mm2; mean, ± SD) 1.9 ± 0.5 1.8 ± 0.5

MN-CSA left (mm2; mean, ± SD) 7.0 ± 1.6 6.9 ± 1.2

MN-CSA right (mm2; mean, ± SD) 6.9 ± 1.6 6.7 ± 1.2

VN GSM-Index left (mean, ± SD) 4.3 ± 2.4 4.6 ± 2.4

VN GSM-Index right (mean, ± SD) 5.7 ± 3.1 5.1 ± 5.4

FD, first time diagnosis; RDD, recurrent depressive disorder; SD, standard deviation; BDI, Beck Depression Inventory; PHQ-15, Patient Health Questionnaire-15; MN, median nerve; VN, 
vagus nerve; CSA, cross-sectional area; GSM, gray scale mean. *One extreme outlier of 400 weeks duration was excluded.

TABLE 4 Subgroup analysis with Kruskal-Wallis one-way ANOVA 
between major depressive disorder patients with first time diagnosis (FD), 
recurrent depressive disorder (RDD), and control group for left and right 
vagus nerve (VN) cross-sectional area (CSA).

Left VN-CSA Right VN-CSA

Adapted p-value Adapted p-value

Control group/RDD 0.03 1.00

Control group/FD 1.00 0.683

FD/RDD 0.386 1.00

TABLE 5 Subgroup analysis with Kruskal-Wallis one-way ANOVA between 
major depressive disorder patients with first time diagnosis (FD), 
recurrent depressive disorder (RDD), and control group for left and right 
vagus nerve (VN) gray scale mean (GSM) index.

Left VN-GSM-
index

Right VN-GSM-
index

Adapted p-value Adapted p-value

Control group/RDD 1.00 0.279

Control group/FD 1.00 1.00

FD/RDD 1.00 0.247

TABLE 2 High-resolution ultrasound data of patients with major depressive disorders (MDD) and healthy controls.

Variable MDD group Control group p-value

VN-CSA left (mm2) Mean, SD 1.7 ± 0.4 1.5 ± 0.4 0.045+

VN-CSA right (mm2) Mean, SD 1.8 ± 0.5 1.7 ± 0.5 0.269+

MN-CSA left (mm2) Mean, SD 6.9 ± 1.3 6.5 ± 1.2 0.079+

MN-CSA right (mm2) Mean, SD 6.8 ± 1.3 6.5 ± 1.2 0.063+

VN GSM-Index left Mean, SD 4.5 ± 2.4 5.3 ± 4.6 0.482#

VN GSM-Index right Mean, SD 5.3 ± 4.7 6.1 ± 5.9 0.328#

+Student’s t-test; #Mann–Whitney U-test; HRUS, high-resolution ultrasound; VN, vagus nerve; CSA, cross-sectional area; GSM, gray scale mean; SD, standard deviation.
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p  = 0.161), nor between PHQ-15 score and the left (ρ = −0.174; 
p = 0.277) or the right GSM-Index (ρ = 0.190; p = 0.186). In the whole 
study cohort, the right VN-CSA correlated significantly with the right 
GSM-Index (ρ = 0.227; p = 0.023), whereas the left VN-CSA and the 
left GSM-Index showed no significant correlation (ρ  = −0.057; 
p = 0.571).

Sex, age, BMI, height, cardiac arrythmia, and diabetes mellitus 
were not identified as covariates for the VN-CSA nor for the 
VN echogenicity.

Discussion

For the first time, this study revealed morphological changes of 
the cervical VNs in patients with MDD. The left VN-CSA was 
significantly enlarged in comparison to healthy subjects. Noteworthy, 
this enlargement of the left VN-CSA in patients with MDD was 
mainly driven by the subgroup of patients with recurrent 
depressive disorder.

Over the last decade, HRUS enabled the reliable examination 
of small nerves like the VN (10). A reduced VN-CSA was 
repeatedly measured in neurodegenerative disorders like PD or 
amyotrophic lateral sclerosis (1, 2, 12), while enlarged VN-CSA 
was described in inflammatory (13, 16, 17), but also in hereditary 
neuropathies (18). The enlarged left VN-CSA in patients with 
MDD and especially in the subgroup of patients with RDD might 
be due to a subtle inflammatory edema of the left VN. Other 
explanations like hereditary or inflammatory polyneuropathies 
(18) are unlikely because of the unaffected MNs, and participants 
with clinical signs of a polyneuropathy in the profound 
neurological examination were excluded from this study. 
Compression of nerves can also cause enlarged CSAs, however, 
during the HRUS examination the VN was visualized over its 
cervical course and no compression or entrapment was noted. 
Thus, the most probable explanation for the small (about 10%) 
but significant difference in the CSAs of the left VN remains a 
(chronic) inflammation which leads to an edema with subsequent 
VN enlargement. The VNs were also found to be  enlarged in 
patients with chronic inflammatory demyelinating 
polyradiculoneuropathy (CIDP) (17, 19). Interestingly, patients 
with CIDP may also show a subtle affection of the ANS with 
focus on parasympathetic cardiovascular fibers (20), and they 
may suffer from neuropsychiatric symptoms and disorders like 
pain, fatigue, and depression (21, 22). However, so far depressive 
symptoms in patients with inflammatory polyneuropathies are 
thought to be reactive due to the patients’ functional impairment 
and not to be  related to the inflammation of the peripheral 
nervous system or the VN (21).

The VNs with their afferent and efferent fibers also play a crucial 
role in connecting the gut and the brain. Recently, cumulate research 
suggested that a disturbance of the microbiota and the gut-brain axis 
might contribute to the etiology of depression (8, 9). In their review, 
Tan and colleagues argued that the immune response to gut 
microbiota translocation induced by a leaky gut may be responsible 
for the chronic inflammatory condition in depression. 
Pro-inflammatory cytokines like IL-2, IL-12, or TNF-α were 
repeatedly shown to be over-expressed in patients with MDD which 

points to a role of inflammation in the pathophysiology of MDD 
(23–28). The TNF-α inhibitor etanercept was effective in treatment-
resistant depression and reduced depression and anxiety in psoriasis 
patients (29, 30). Consequently, modulating inflammation and 
immune regulation in patients with MDD emerged as a potential drug 
target (31).

Furthermore, the VNs may exert anti-inflammatory and 
epithelial barrier protective effects in the gut (8). The interactions 
between the immune system and the central nervous system are 
characterized by a bidirectional communication that aims to specify 
the immune defense of the host (32). Physiologically, the afferents of 
the VNs can sense a peripheral infection and transmit this 
information to the central nervous system which is shielded from 
the rest of the body by the blood brain barrier (32). This information 
may then be  redirected to vagal efferents which can send anti-
inflammatory responses through the inhibition of pro-inflammatory 
cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, 
and the release of anti-inflammatory cytokines such as IL-10 (7, 33). 
This is also referred to as the “inflammatory reflex” of the VN (7, 33, 
34). Thus, an (ongoing) inflammation of the VNs could restrict vagal 
activity and might lead to a lack of vagal downregulation of 
inflammatory processes. A reduced vagal activity was repeatedly 
described in patients with MDD (35, 36), and was mitigated after the 
onset of antidepressant treatment (36). The MDD subgroup analysis 
showed that the enlargement of the left VN-CSA was mainly driven 
by the RDD subgroup. We  assume, that recurrent depressive 
episodes might trigger a chronification of vagal dysfunction by 
overstressing the anti-inflammatory functions of the VNs in the long 
term (37).

Considering side-specific effects of the VNs, in healthy subjects, 
Pelz et al. found an inverse correlation only between the left VN-CSA 
and parameters of parasympathetic activity (11). Left VN efferent 
neurons were also prominently involved in anti-inflammatory effects, 
at least in mice, where the selective stimulation of efferent cholinergic 
VN neurons originating in the left dorsal motor nucleus and 
projecting to the celiac-superior mesenteric ganglia significantly 
increased splenic nerve activity and inhibited TNF-α production (38). 
The so-called cholinergic anti-inflammatory pathway is exerted 
through vago-parasympathetic reflexes via the splenic nerve and vagal 
efferent neurons to enteric neurons resulting in a decrease of TNF-α 
(33). In humans, invasive VNS was approved for severe treatment-
resistant depression in 2005 by the US Food and Drug Administration. 
Usually, the left cervical VN is stimulated (5, 39). Recently, left VNS 
also emerged as a promising treatment approach for inflammatory 
bowel disease (40, 41).

So far, echogenicity of nerves was examined only in a few studies. 
Gamber and colleagues did not find a general difference in the nerves’ 
echogenicity between patients with CIDP and probands, but 
differences between the subgroups of clinically progressive CIDP 
patients compared to healthy controls and stable CIDP patients (42). 
No differences were found in the echogenicity of the VNs between 
MDD and controls. One explanation may be, that the epineurium is 
relatively prominent, in particular in the right VN. Thus, a change in 
echogenicity was probably mitigated by the hyperechoic epineurium. 
However, there was a significant side difference of the GSM Index 
between the left and the right VN within both the MDD and control 
group. The GSM Index of the left VN was significantly lower than the 
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right, i.e., the left VN was more hypoechoic, which could be a due to 
a lower number of fascicles in the left VN, which are sheathed by 
hyperechoic epineurium (10).

We found no significant correlation between MDD symptom 
severity and VN-CSA or echogenicity. BDI and PHQ-15 ask for 
symptoms within the last 2 weeks, which reflects rather acute than 
chronic symptoms. In our findings, the RDD subgroup contributed 
most to the alterations in VN-CSA. This may suggest that recurrent 
and chronic courses of MDD alters VN-CSA independently to its 
current symptom severity.

There are several limitations. Firstly, the MDD group was 
heterogenous, comprising patients with FD and RDD, with the RDD 
subgroup impacting the VN-CSA the most. Further HRUS investigations 
in MDD should focus on differences between first time, recurrent, and 
chronic depressive disorders. Moreover, it should be noted that the RDD 
subgroup presumably underwent a longer period of medical treatment, 
due to recurrent depressive episodes and long-term intake of 
antidepressants. We could not rule out that (especially the long-term-
treatment with) antidepressants had an influence on the VN alterations, 
as they may also have anti-inflammatory effects (43, 44). Secondly, the left 
VN-CSA enlargement was small and thus, it appears unlikely that the 
VN-CSA may serve as a biomarker for diagnosis or treatment response 
in MDD on an individual basis. Thirdly, no general procedure of 
determining echogenicity in HRUS images is established yet. But unlike 
previous studies (42), we adjusted echogenicity for individual factors 
during the HRUS examination like changes in gain, depth, and focus by 
calculating an index, rather than reporting raw values. Finally, there is an 
ongoing debate whether the sonographically measured VN-CSA reflects 
the anatomical size of the VN (45).

In conclusion, the enlargement of the left VN-CSA in patients 
with MDD, and especially in these patients with recurrent depressive 
disorders, might turn out as a promising imaging biomarker. Possible 
mechanisms could involve a dysregulation of inflammatory and anti-
inflammatory effects of the gut-brain axis. Further sonographic 
research is warranted, especially over the course of MDD to improve 
our understanding of the role of the VNs in affective disorders.
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