
Frontiers in Psychiatry 01 frontiersin.org

Assessing the risk of prenatal 
depressive symptoms in 
Chinese women: an integrated 
evaluation of serum 
metabolome, multivitamin 
supplement intake, and clinical 
blood indicators
Rongrong Yang 1†, Zhenguo Lin 2†, Yanhua Cai 1, Nan Chen 1, 
Ying Zhou 3*, Jie Zhang 1* and Guolin Hong 4*
1 State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, 
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation 
Platform for Industry-Education Integration in Vaccine Research, School of Public Health, 
Xiamen University, Xiamen, China, 2 Department of Clinical Medicine, Xiamen Medical College, 
Xiamen, China, 3 Department of Obstetrics and Gynecology, Clinical Medical Research Center for 
Obstetrics and Gynecology Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, 
China, 4 Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First 
Affiliated Hospital of Xiamen University, School of Public Health, Xiamen University, Xiamen, 
China

Background: Prenatal depressive symptoms (PDS) is a serious public health 
problem. This study aimed to develop an integrated panel and nomogram 
to assess at-risk populations by examining the association of PDS with the 
serum metabolome, multivitamin supplement intake, and clinical blood 
indicators.

Methods: This study comprised 221 pregnant women, categorized into 
PDS and non-PDS groups based on the Edinburgh postnatal depression 
scale. The participants were divided into training and test sets according to 
their enrollment time. We conducted logistic regression analysis to identify 
risk factors, and employed liquid chromatography/high resolution mass 
spectrometry-based serum metabolome analysis to identify metabolic 
biomarkers. Multiple factor analysis was used to combine risk factors, clinical 
blood indicators and key metabolites, and then a nomogram was developed 
to estimate the probability of PDS.

Results: We identified 36 important differential serum metabolites as PDS 
biomarkers, mainly involved in amino acid metabolism and lipid metabolism. 
Multivitamin intake works as a protective factor for PDS. The nomogram 
model, including multivitamin intake, HDL-C and three key metabolites 
(histidine, estrone and valylasparagine), exhibited an AUC of 0.855  in the 
training set and 0.774 in the test set, and the calibration curves showed good 
agreement, indicating that the model had good stability.

Conclusion: Our approach integrates multiple models to identify metabolic 
biomarkers for PDS, ensuring their robustness. Furthermore, the inclusion 
of dietary factors and clinical blood indicators allows for a comprehensive 
characterization of each participant. The analysis culminated in an intuitive 
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nomogram based on multimodal data, displaying potential performance in 
initial PDS risk assessment.
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Introduction

Prenatal depressive symptoms (PDS) are mood disorders 
primarily characterized by anhedonia and persistent low mood (1–4). 
The prevalence of PDS has increased rapidly in the last decade, 
reaching up to 19%–25% in low-income countries and 7%–15% in 
high-income countries (5). Importantly, PDS leads to many adverse 
pregnancy outcomes, such as low birth weight, preterm intrauterine 
growth restriction (6). Additionally, it also serves as a significant 
predictor of postpartum depression (7). Numerous studies have 
reported that PDS is associated with many factors, such as poor social 
support, history of depression, unplanned pregnancy, exposure to 
violence, passive smoking, and multivitamin supplements (8–10). 
However, early diagnosis and treatment remain major challenges. 
Notably, traditional diagnostic methods, such as scales and structured 
clinical interviews, are susceptible to reporting bias of symptom 
severity (11). Up to now, there is no reliable molecular marker for 
prenatal depression. Therefore, there is an urgent need to identify 
potential measurable biological biomarkers for personalized PDS 
identification (12–14) and combine multimodal data for more 
accurate risk assessment that comprehensively reflects human 
characteristics (15).

Metabolites, endpoint products of the interactions between 
gene regulation, protein function, and cellular microenvironment, 
can accurately reflect the state of biological system. Hence, they are 
widely used as biomarkers for a variety of diseases (16). Measuring 
the metabolome holds great promise for the identification of 
potential biomarkers and related pathways of PDS (17). 
Metabolomic investigations have revealed that metabolic 
dysregulation, especially in amino acid metabolism, hormone 
metabolism, and lipid metabolism, plays a pivotal role in the 
pathophysiology of PDS (18).

Amino acid metabolism is tightly associated with the PDS 
progression. Significant features of PDS include abnormal levels of 
glutamate, phenylalanine, tyrosine, and tryptophan, along with the 
dysfunction of tryptophan and kynurenine pathways (12, 19–22). 
Some amino acids and their precursors act as the neurotransmitters 
in the regulation of depressive symptoms. For example, glutamate, an 
important excitatory neurotransmitter, is usually observed at low 
levels in the prefrontal cortex of women with late pregnancy or 
postpartum depression (19). It can be restored in the dorsolateral 
prefrontal cortex after progesterone treatment (23). Hormonal 
disruption during perinatal period may alter glutamate signaling. In 
addition, catecholamine neurotransmitters, including dopamine, 
epinephrine and norepinephrine, have a strong association with 
depressive symptoms (24). Phenylalanine is an important precursor 
for the synthesis of catecholamines and tyrosine. Tyrosine metabolism, 
catalyzed by tyrosine hydroxylase to produce dopamine, directly 

regulates numerous physiological functions of the central nervous 
system (20). Moreover, tryptophan, as the sole precursor of serotonin 
(5-hydroxytryptophan, 5-HT), is an essential amino acid of dietary 
origin. It plays a vital role in dietary intake, and its association with 
PDS prevalence is well-documented (21). A small fraction of 
tryptophan is synthesized into 5-HT, while the majority is catabolized 
via the kynurenine pathway, producing several metabolites with 
excitatory neurotransmission (22).

Beyond amino acids and their derivatives, lipids’ regulatory role 
on the central nervous system has gained significant attention. Lower 
plasma phosphatidylcholine (PC) biosynthesis or lower dietary intake 
is associated with depressive symptoms and preterm birth in African 
American pregnant women (25). Polyunsaturated fatty acids play an 
important role in maternal mental health and offspring 
neurodevelopment. Specifically, decreased levels of ω-3 
docosapentaenoic acid (DPA), eicosapentaenoic acid (EPA), 
docosahexaenoic acid (DHA), and ω-6 arachidonic acid (AA) were 
found in the placenta of women with PDS and were significantly 
associated with poorer social-emotional outcomes in infants (10).

Since these metabolites are mostly derived from food, 
multivitamin supplementation is suggested to alleviate depressive 
symptoms. Folic acid, an important nutrient during pregnancy, has 
been observed in higher plasma levels in healthy pregnant women 
compared with women with antenatal depression in the growing up 
in Singapore toward healthy outcomes (GUSTO) cohort (26). In 
addition, vitamin and mineral formulations have been shown to 
favorably modulate brain function, potentially countering the 
development of postpartum depression (27). Therefore, given the high 
recurrence rate of depression and the low medication adherence rate, 
nutrition-related factors have great potential for preventive or 
therapeutic agents for depression.

Depressive symptoms are inherently heterogeneous, making PDS 
screening susceptible to various influences. Traditional scales and 
structured clinical interviews may not accurately reflect the 
pathophysiological processes underlying clinical symptoms. Previous 
metabolome studies have provided many meaningful potential 
biomarkers, but the results are not consistent (6, 28, 29). This 
discrepancy might be attributed to differences in study design, study 
populations and ethnicity. Predicting PDS risk solely based on a single 
factor is challenging. Therefore, comprehensive studies that 
incorporate multiple metabolome biomarkers, clinical data, and 
multivitamin supplementation factors are essential to construct 
accurate PDS prediction models.

In this study, we aim to screen serum metabolic biomarkers using 
liquid chromatography/high resolution mass spectrometry-based 
metabolome approach, and evaluate the predictive value of metabolic 
biomarkers, clinical, and lifestyle factors for PDS, finally construct a 
robust risk prediction model for PDS.
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Materials and methods

Study population

This study was approved by the Medical Ethics Committee of the 
First Affiliated Hospital of Xiamen University (Approval ID: 2021-
Research No. 050). Informed consent was obtained from all 
participants at the time of recruitment. The workflow of the study 
design is shown in Figure  1. The study population consisted of 
pregnant women who received maternity services at the hospital 
between June 2021 and December 2021. The inclusion criteria were as 
follows: (1) late pregnancy and gestational age ≥28 weeks; (2) between 
the ages of 20 and 45 years; (3) planning to give birth in our hospital; 
(4) without a history of mental or cognitive disorders before 
pregnancy; (5) without severe systemic diseases such as brain, liver, or 
kidney diseases and hematopoietic system disease. Women who had 
a miscarriage or gave birth temporarily elsewhere were excluded 
before statistical analysis.

All the participants were asked to complete the Edinburgh 
postnatal depression scale and a face-to-face interview. The scale 
is a 10-item self-report screening questionnaire for perinatal 
depression (30), and its Chinese version has demonstrated good 
reliability and validity (sensitivity, 80.0%; specificity, 83.03%) (31). 
Each question has four response options ranging from 0–3, with a 
total score of 30. Subjects were considered to have PDS if the EPDS 
score was ≥10, and a score of <10 was considered to 

be non-pregnant depressive symptoms (NPDS). The three subscales 
of EPDS are anheondonia, anxiety and depressive mood (32). The 
interview gathered information on demographics, health history, 
lifestyle, and dietary supplement factors. Demographics included 
age, pre-pregnancy BMI, pregnancy BMI, gestational week, and 
parity at birth. The factors were selected according to the previous 
literature (33–36) on the prediction of the risk of PDS. The lifestyle 
factors included passive smoking, alcohol consumption, and 
exposure to chemical substances. Dietary supplements included 
multivitamins, DHA, iron, zinc, calcium, deep-sea fish, and 
vegetable oil.

Clinical blood indicators

Fasting venous blood was collected and centrifuged at 3,000 rpm 
for 15 min. We measured a number of blood indicators using routine 
blood biochemistry tests, including alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), glutamyl transferase (GGT), 
magnesium glucose (GLU), urea (UREA), creatinine (CRE), total 
cholesterol (TC), triglycerides (TG), high-density lipoprotein 
(HDL-C), low-density lipoprotein (LDL-C), glomerular filtration rate 
(GFR), hemoglobin (HGB), mean red blood cell volume (MCV), 
prothrombin time (PT), prothrombin time—INR value, activated 
partial thromboplastin time (APTT), thromboplastin time (TT), 
fibrinogen (FIB), D-dimer (D-D).

FIGURE 1

Analytical workflow of this study.
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Non-targeted serum metabolome analysis

Serum was transferred to sterile tubes (2.0 mL) and checked for 
hemolysis, then non-hemolytic samples were stored at −80°C until 
metabolomics analysis. Serum proteins were removed by adding 4 
volumes of methanol. After centrifugation at 15,000 g and 4°C for 
15 min, the supernatant was collected and dried using a Savant 
Speedvac concentrator. The dried extract was reconstituted in 100 μL 
of 50% methanol. Five μL of each sample was pooled to make a quality 
control (QC) sample to evaluate the reproducibility and the stability 
of the metabolome analysis. A blank sample (50% methanol) was used 
to evaluate potential background interference.

Serum metabolome acquisition was performed by using high-
performance liquid chromatography (HPLC) coupled to high-
resolution mass spectrometry (HRMS) (Q-Exactive Orbitrap; Thermo 
Fisher Scientific, United States). Chromatographic separation was 
performed using a Waters ACQUITY HSS T3 column (1.8 μm, 
100 mm × 2.1 mm i.d.). The temperature of the column and 
autosampler was set at 50°C and 10°C, respectively. Mobile phase A 
was Milli-Q water (0.1% formic acid) and mobile phase B was MeOH 
(0.1% formic acid). The gradient elution program was 0.1% B (0 min), 
20% B (2 min), 80% B (15 min), 99.9% B (20 min) and 99.9% B 
(22 min), at a flow rate of 0.3 mL/min. MS/MS information was 
acquired under the fragmentation energies of 25, 35 and 
45 eV. Metabolomics raw spectra data were subjected to peak 
extraction, peak alignment and identification using Compound 
Discoverer 3.1 software (Thermo Fisher Scientific, United States). The 
output metabolic features was normalized by summing the metabolic 
data after LOESS correction based on QC samples using the statTarget 
R package. The metabolites with QC intensity RSD <20% were 
accepted for metabolome analysis.

Biomarker screening, nomogram 
construction and validation

After completion of questionnaire analysis and experimental 
testing, the participants were divided into training and test sets 
according to the time of enrollment.

For the training set, multiple models were combined to screen 
biomarkers. First, differential metabolic features between the PDS and 
NPDS groups were identified using the orthogonal partial least 
squares-discriminant analysis (OPLS-DA) model and unified 
manifold approximation and projection (UMAP). We  selected 
metabolites with variable importance in projection (VIP) values 
greater than 1 and fold change (FC) greater than 1.2 as differential 
metabolites. From these differential metabolites, we further refined 
biomarker candidates using a debiased sparse partial correlation 
(DSPC) network analysis, which can discover inter-metabolite 
correlations and identify functionally relevant metabolites. We further 
explored important metabolites responsible for abnormal regulation 
of metabolic pathways in PDS using cytohubba (plugins for 
Cytoscape). Cytohubba provides 12 topological methods such as 
MCC, DMNC, MNC, degree, EPC, bottleneck, eccentricity, closeness, 
radiality, betweenness, stress and clustering coefficient. Perturbation 
maps formed by the intersection of the 12 sets display the final key 
metabolites as biomarkers. The reliability was validated using Boruta 
algorithm with 5,000 trees and 500 iterations, which can filter out all 

significant sets of features that correlate with dependent variable. In 
addition, we  further investigated the relationships between 
biomarkers, multivitamin supplement factors and subscale symptom 
scores using multiple factor analysis (MFA). Finally, we constructed a 
nomogram based on logistic regression, and evaluated its accuracy 
using the concordance index (C-index), area under curve (AUC), 
calibration curve, and clinical decision curve (DCA). The model was 
validated in the test set.

Principal component analysis (PCA) analysis of quality control 
(QC) clustering were performed using SIMCA14.0. Metabolic 
enrichment pathways and DSPC network analysis were performed 
with MetaboAnalyst 5.0.1 Cytohubba, based on Cytoscape 3.9.1, was 
used for network analysis. Other analysis was performed using R 3.6.3. 
p-values less than 0.05 were considered statistically significant.

Results

Participant characteristics, lifestyle and 
multivitamin supplement factors

A total of 221 participants were enrolled in the study, consisting 
of 110 pregnant women with PDS and 111 with NPDS. Table  1 
summarizes the baseline characteristics of the study population. 
Between the PDS and NPDS groups, there were differences in six 
blood clinical indicators: TC, TG, HDL-C, LDL-C, GLU and GFR, 
while no significant difference was observed for age, gestational week, 
BMI, birth parity, or other indicators.

Supplementary Table S1 provides baseline information for both 
the training and test sets. For the training set, we conducted both 
single-factor logistic regression and multi-factor logistic regression 
analyses, encompassing all baseline information, lifestyle factors, and 
dietary supplement factors. In our analysis, we identified multivitamin 
supplementation as a statistically significant protective factor for PDS 
[odds ratio (OR) = 0.326, 95% confidence interval (CI): 0.149–0.713]. 
Supplementary Table S2 shows the coefficients associated with 
these variables.

Metabolome biomarker analysis

A total of 2017 metabolic features were extracted from the serum 
samples. The QC samples were tightly clustered in the PCA plot 
(Supplementary Figure S1), indicating the robustness of the HPLC-
HRMS system. UMAP plot and OPLS-DA model (R2X = 0.44, 
R2Y = 0.972, Q2 = 0.512) show distinct separation between the PDS 
and NPDS groups (Supplementary Figure S2; Figure  2A). The 
permutation test confirmed the robustness of the OPLS-DA model 
(p-values for both Q2 and R2Y were <0.001). The volcano plot 
visualization (Supplementary Figure S2) of all metabolic features 
highlighted 36 differential metabolites, which were mainly derived 
from alkaloids, ketones, organonitrogen compounds, 
phenylpropanoids, steroid conjugates, and amino acids based on the 
main chemical structure classification. These differential metabolites 

1 http://www.metaboanalyst.ca
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were further screened by VIP and FC values (Table 2). KEGG analysis 
showed 19 enriched pathways (Supplementary Figure S2), including 
histidine metabolism, porphyrin and chlorophyll metabolism, 
arginine and proline metabolism, glutamine and glutamate 
metabolism, glutathione metabolism, arginine biosynthesis 
(Figure 2B).

Moreover, a DSPC network analysis (Figure 3A) was performed 
for differential metabolites. DSPC allows the intuitive discovery of 
connectivity among a large number of metabolites (37). The yellow 
nodes in the graphical model represent metabolites, while the lines 
indicate the associations between them. Certain amino acids, such as 
histidine, valylasparagine and alanylleucine, were observed to 

be  clustered together. The centrality of a metabolite within the 
metabolic network is indicated by its proximity to the center and 
reflects its strength of correlation with other metabolites and 
significance. In this study, key metabolites such as histidine, estrone, 
valylasparagine, alanylleucine, sphingosine, N-methyl-L-proline, and 
oleamide played central roles as they were involved in multiple 
metabolic reactions. The DSPC network diagram identified 25 
biomarker candidates.

The biomarker candidates were subsequently subjected to 
centrality calculation using 12 topological methods. The UpSet plots 
shows that the top 10 metabolites identified by 12 ranking methods 
had an overlap containing 6 key metabolites: histidine, estrone, 
valylasparagine, oleamide, sphingosine, and alanylleucine (Figure 3B). 
These biomarkers were important for the dysregulation of metabolic 
pathways in PDS. Furthermore, the robustness of these key metabolites 
in distinguishing PDS was validated through importance analysis of 
the independent variables using the Boruta model (Figure  3C). 
Importantly, the significance of these key metabolites was consistently 
supported by the results from multiple models. Finally, these 
metabolites were selected to develop a biomarker panel.

Association of the biomarkers and dietary 
factors with subscale scores

As shown in Supplementary Figure S3A, the MFA model 
identified two dimensions that jointly explained 36.44% of the total 
variation between the PDS and NPDS groups. The symptom scores 
exerted the greatest influence on the first dimension, while the key 
metabolites primarily contributed to the second dimension. 
Supplementary Figure S3B shows a clear separation between the 
participants taking multivitamins and those not taking 
multivitamins. Each variable’s quantification is visually represented 
as a vector extending from the origin to the triangular shape. 
Supplementary Figure S3D demonstrates that three depressive 
symptoms (i.e., disorientation, anxiety, and depressed mood) were 
positively associated with alanylleucine and oleamide, while 
negatively associated with histidine, estrone, sphingosine and 
valylasparagine. Supplementary Figures S3C,D show that three 
depressive symptoms had an obtuse angle relationship with 
multivitamin intake, indicating a negative correlation. This means 
that those who had higher intake of multivitamins were likely to 
have lesser symptoms of depression.

Construction of a nomogram prediction 
model

For the development of optimal nomogram prediction model, 
we first sought to identify the clinical factors and metabolic biomarkers 
with the most effective predictive power. Through logistic regression 
models, we  identified five predictors associated with PDS: 
multivitamin intake, HDL-C, histidine, estrone and valylasparagine. 
These predictors were selected from multivitamin supplementation, 
clinical blood indicators and metabolic biomarkers, respectively. 
We then constructed a risk prediction nomogram (Figure 4A), where 
the cumulative scores indicated the risk of PDS. The C-index of the 
nomogram was 0.855, affirming its robust predictive performance.

TABLE 1 Baseline characteristics of the study population.

Characteristics NPDS 
(n =  111)

PDS 
(n =  110)

p

Agea 31.83 ± 4.36 30.76 ± 4.52 0.560

Prepregnancy BMIa 20.95 ± 3.72 21.03 ± 2.97 0.486

Pregnancy BMIa 25.57 ± 3.04 25.87 ± 3.72 0.508

Gestational weeka 34.72 ± 2.62 34.36 ± 2.46 0.297

Birth parityb n (%) 0.943

Yes (firstborn) 59 (53.15) 59 (53.64)

No 52 (46.85) 51 (46.36)

Mga 0.78 ± 0.16 0.79 ± 0.09 0.472

CREa 48.87 ± 9.31 47.70 ± 9.59 0.358

TCa 7.41 ± 1.59 6.36 ± 1.46 <0.001

TGa 5.00 ± 2.80 3.70 ± 1.94 <0.001

HDL-Ca 1.68 ± 0.60 1.95 ± 0.52 <0.001

LDL-Ca 4.02 ± 1.20 3.20 ± 1.09 <0.001

GGTa 12.57 ± 7.96 13.61 ± 14.10 0.501

GFRa 123.78 ± 12.43 123.05 ± 13.16 0.011

INRa 0.89 ± 0.06 0.90 ± 0.08 0.213

D-Da 9.78 ± 19.92 6.87 ± 17.00 0.243

PTa 10.03 ± 0.99 11.12 ± 1.07 0.917

ALTa 12.62 ± 6.82 12.23 ± 7.83 0.691

TTa 15.53 ± 1.50 15.27 ± 1.75 0.232

ASTa 17.77 ± 4.74 17.70 ± 5.53 0.917

GLUa 5.20 ± 1.28 4.64 ± 1.26 0.001

UREAa 3.49 ± 0.96 3.55 ± 1.00 0.614

MCVa 91.59 ± 8.43 91.66 ± 6.34 0.950

FIBa 4.45 ± 0.85 4.40 ± 0.81 0.706

HGBa 123.78 ± 12.43 123.05 ± 13.16 0.669

APTTa 26.82 ± 4.30 26.15 ± 3.95 0.229

EPDS scorea 5.50 ± 2.27 11.65 ± 1.67 <0.001

Anhedoniaa 1.80 ± 1.22 2.90 ± 0.91 <0.001

Anxietya 2.62 ± 1.34 5.65 ± 1.38 <0.001

Depressive mooda 1.08 ± 1.07 3.09 ± 1.12 <0.001

Data presented as mean ± SD or n (%). 
aAnalyzed by the student t-test. The results of the corrected t-test are presented when the 
variance is not homogeneous.
bAnalyzed by the chi-square test.
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To validate the accuracy of the nomogram, we employed the test 
set. Using bootstrap methods with 1,000 resamples, the area under the 
curve (AUC) for the training and test set nomogram was determined 
to be 0.855 (95% CI, 0.791–0.920) and 0.774 (95% CI, 0.673–0.874), 
respectively. We also established the corresponding cut-off values for 
the training and test sets as 0.013 and 0.397. In practical terms, when 
the cumulative threshold of the five indicators in the training set 
reached 0.013, the model demonstrated optimal discriminative power. 
The same principle applied to the test set. To assess the clinical utility 
of the model, we employed DCA, which quantifies the net benefit at 
various threshold probabilities within the dataset. In both the training 
and test sets, our full model consistently outperformed single-factor 
models, indicating its great potential for clinical applications 
(Figure 4).

Discussion

The screening of PDS is important in the management of perinatal 
mental health. Up to now, the predictive power of single risk factors is 
limited. In this study, we  investigated the serum metabolome, 
multivitamin supplementation factors, and clinical blood indicators 
to develop an integrated predictive model for assessing the risk of 
PDS. Our approach involved several key steps. Firstly, we  used 
non-targeted metabolomics technique to identify 36 differential 
metabolites distinguishing PDS from NPDS, and combined multiple 
models (DSPC network analysis, 12 topological methods from 
Cytohubba) to rigorously identify 6 key metabolites as metabolic 
biomarkers. Secondly, we conducted the logistic regression analysis, 
and identified multivitamin use as a protective factor for depressed 
pregnant women. Thirdly, we employed MFA models to examine the 
association of subscales of depressive symptoms with serum metabolic 
biomarkers, supplementation factors. Finally, we  developed and 
validated a nomogram to assess the risk of PDS. This study offers a 
promising method for improving the early identification and 
management of PDS.

Biological significance of the serum 
metabolome in PDS

Previous studies have identified abnormal levels of phenylalanine, 
tyrosine, glutamate, and leucine as diagnostic or predictive factors for 
depression (13, 14, 20). In this study, we also observed the disruption 
of amino acid metabolism in PDS group, which was consistent with 
previous studies. Histidine showed a more noticeable decreasing trend 
in the PDS group. Histidine is a semi-essential amino acid that needs 
to be  supplemented through diet. It is converted to histamine, a 
potential new target for depression treatment of (38) by the enzyme 
decarboxylase. Intriguingly, while histamine barely penetrates the 
blood-brain barrier, histidine can be transported into the brain via 
histidine transporter proteins. Hence, brain histamine needs to 
be synthesized within the central nervous system rather than supplied 
by peripheral tissues (39) As a precursor of histamine, histidine is 
critical for maintaining brain histamine levels. Studies have shown 
that oral histidine oral histidine improves working memory in mice 
and significantly improves fatigue, sleep quality, mood state scores, 
decreases reaction time, and increases the perception of clear thinking 
in human subjects (40).

Lipids also play a crucial role in the pathology of depression (41). 
We  observed that alpha-linolenic acid (ALA), anandamide 
(arachidonoyl ethanolamide, AEA), estrone and sphingosine were 
associated with depressive symptoms. ALA, an omega-3 essential fatty 
acid, can be converted into DHA, AA, EPA, and other important 
compounds in the body (42). Although the effect of omega-3 on the 
pathophysiology and treatment of depression remains obscure, cohort 
studies and meta-analyses have demonstrated that reduced intake of 
omega-3 food and ALA is associated with an increased risk of 
depression (43–45). There is no consensus on the changes in AEA in 
depressed mood. AEA is an important endogenous cannabinoid that 
exerts its activity by activating cannabinoid CB1 and CB2 receptors 
(46). Studies have shown that taking cannabinoids can reverse 
depressive-like behaviors (47). The opposite result has been seen in 

FIGURE 2

OPLS-DA model and pathway analysis. (A) OPLS-DA model showing the significant differences between the two groups. (B) Overview of pathway 
analysis, highlighting the significant metabolic pathways. Significance was determined as p  <  0.05 and pathway impact >0. The size of the nodes 
represents the influence factor of a topological analysis, while the color of the nodes indicates the p-value of the enrichment analysis.
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other experiments: women diagnosed with major depression had 
reduced AEA concentrations, but women with mild depression had 
increased AEA concentrations, which the authors hypothesized was 
the body’s protective buffer against disease progression (48) And AEA 
it is more widely known for its regulation of obesity and its 
involvement in energy metabolism in the brain and peripheral tissues. 
There are many studies showed an increase in serum AEA during 
intake of high-fat diets and weight gain exactly consistent with the 
context of pregnancy-related physiological changes (49). Estrone is an 

important estrogen that affects the vulnerability of specific brain 
regions, and fluctuating levels (particularly estrogen withdrawal) 
make women of childbearing age more susceptible to mood disorders 
(50). During pregnancy, estrogen levels usually increase steadily with 
each week of pregnancy. Nevertheless, estrone levels were significantly 
lower in the PDS group, and there may be a process of decreasing 
hormone levels, suggesting that mood disorders may be related to 
pregnancy hormones. Lastly, sphingosine, a degradation product of 
ceramide, can be synthesized into sphingomyelin with lipoyl CoA and 

TABLE 2 Differential serum metabolites between PDS and NPDS.

Metabolites HMDB ID VIP p FCa FDR

Beta-tyrosine HMDB0003831 1.14 1.28E-02 0.83 1.78E-02

Alanylleucine HMDB0028691 1.19 3.50E-02 1.26 3.82E-02

Glycylvaline HMDB0028854 1.37 4.36E-03 0.68 8.72E-03

Glutamic acid HMDB0000148 1.26 1.96E-02 0.83 2.41E-02

Histidine HMDB0000177 1.50 3.14E-04 0.67 1.73E-03

Ornithine HMDB0000214 1.77 4.15E-04 0.82 1.73E-03

N(alpha)-benzyloxycarbonyl-L-leucine NA 1.64 1.62E-03 0.82 4.85E-03

N2-acetylornithine HMDB0003357 1.62 1.39E-03 0.62 4.53E-03

N-methyl-L-proline HMDB0094696 1.86 3.56E-04 0.83 1.73E-03

Proline betaine HMDB0004827 1.46 2.25E-03 2.04 6.22E-03

Alpha-linolenic acid HMDB0001388 1.15 1.72E-02 0.82 2.21E-02

3-oxotetradecanoic acid HMDB0010730 1.31 9.48E-03 0.79 1.48E-02

CMPF HMDB0061112 1.08 2.01E-02 0.73 2.41E-02

Erucamide HMDB0244507 1.54 2.58E-04 1.27 1.73E-03

Oleamide HMDB0002117 1.39 2.95E-03 1.29 7.09E-03

17-hydroxypregnenolone sulfate HMDB0000416 1.50 1.37E-02 0.80 1.83E-02

16α-hydroxy DHEA 3-sulfate HMDB0062544 1.60 3.78E-03 0.75 8.00E-03

Corchoroside A HMDB0033846 1.51 3.25E-03 0.77 7.31E-03

Cortolone-3-glucuronide HMDB0010320 1.15 1.08E-02 0.80 1.55E-02

Estrone HMDB0000145 1.57 1.10E-03 0.78 3.94E-03

Taurochenodesoxycholic acid HMDB0000951 1.05 4.82E-02 0.72 4.82E-02

9-cis-retinoic acid HMDB0002369 1.38 2.96E-03 0.77 7.09E-03

LysoPC(16:0/0:0) HMDB0010382 1.31 4.57E-02 0.80 4.70E-02

Valylasparagine HMDB0029122 1.26 2.11E-02 0.76 2.45E-02

Trigonelline HMDB0000875 1.28 6.09E-03 0.81 1.04E-02

12-hydroxydodecanoic acid HMDB0002059 1.35 6.35E-03 0.79 1.04E-02

Bilirubin HMDB0000054 1.31 2.37E-02 0.74 2.67E-02

Allantoin HMDB0000462 1.75 7.00E-05 0.76 8.40E-04

Anandamide (AEA) HMDB0004080 1.05 4.31E-02 1.22 4.56E-02

Sphingosine HMDB0000252 1.15 1.01E-02 0.80 1.52E-02

5-decanoyl-2-nonylpyridine HMDB0035516 1.51 4.33E-04 1.26 1.73E-03

5-O-methylembelin HMDB0040867 2.54 4.15E-06 0.67 7.47E-05

3,4-dihydroxyhydrocinnamic acid HMDB0000423 1.74 3.47E-04 0.83 1.73E-03

Caffeic acid 3-O-sulfate HMDB0041706 2.30 1.03E-07 0.54 3.70E-06

Stachydrine NA 1.49 5.57E-03 1.90 1.00E-02

Testosterone ketolaurate NA 1.08 5.22E-03 1.23 9.90E-03

aThe FC (fold change) was calculated as the ratio between the mean metabolite abundance in PDS relative to NPDS (FC = PDS/NPDS).
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phosphorylcholine. Previous research has reported a negative 
association between sphingomyelins and depression among American 
Indians with depression (51). Sphingosine can also be phosphorylated 
to sphingosine-1-phosphate (S1P), which is abundant in brain tissue. 
Knockdown of S1P-related receptors (S1PR2 and S1PR3) increased 
both anxiety and depression levels (52), while overexpression of 
S1PR3 not only attenuated anxiety-related and depression-related 
behaviors, but also promoted the production of adrenocorticotropic 
hormone (ACTH) to increase the adaptability of rats to stressors 
(52, 53).

Multivitamin supplement associates with 
PDS

Our study yielded a significant finding—the protective effect of 
multivitamin use against PDS. To achieve this, we employed multiple 
factor analysis (MFA), a powerful technique that enables the 
examination of subjects using multiple sets of variables while 
considering the interplay among these variables (54). It is the first time 
such an analysis has been applied in prenatal depression research.

The MFA analysis revealed that histidine, estrone, sphingosine, 
and multivitamin intake were all negatively associated with three 

clinical symptoms, with histidine also demonstrating a positive 
association with multivitamin use. Earlier studies have shown that 
individuals who took daily mineral and vitamin complex supplements 
experienced significant improvements in overall cognition and 
specific functions such as memory and executive function (e.g., 
planning and decision making) (35). Moreover, the mothers who took 
several micronutrients had significantly lower EPDS scores during the 
first and second trimesters (36). These findings suggest the existence 
of a supplement-metabolite-symptom-relevance chain, wherein 
exogenous vitamins influence the body’s state of various depressive 
symptoms by modulating specific metabolites. Consequently, 
nutritional interventions may serve as an adjunct treatment in PDS, 
offering potential benefits without reported side effects. It’s important 
to note that nutritional deficiencies often involve a combination of 
nutrients rather than a single nutrient due to the diversity of the 
typical diets.

Clinical blood indicators associate with 
PDS

Our study revealed abnormalities in lipid-related indicators: 
total cholesterol, triglycerides, LDL-C and HDL-C. These 

FIGURE 3

The DSPC network analysis of 36 differential metabolites showed correlations for 25 filtered metabolites (A). Yellow nodes represent metabolites and 
node size indicates the direction of the change. The lines indicate the partial correlation coefficients of the two connected metabolites after 
controlling for all other metabolite conditions. Red line and blue line indicate a positive correlation and a negative correlation between two 
metabolites, respectively. The width of the line indicates the strength of the partial correlation coefficients. The UpSet plot shows the results of 25 
metabolites in 12 ranked methods taking intersections to obtain a total of 6 key metabolites (B). The ranked methods are betweenness, bottleneck, 
closeness, clustering coefficient degree, DMNC, eccentricity, EPC, MCC, MNC, radiality and stress. Z-score of metabolite dataset properties under 
Boruta model (C). Z-score as an indirect measure of importance, the blue boxes indicate the minimum, average and maximum Z-scores of the shaded 
attributes. The red boxes (not existing actually) and the green boxes indicate Z-score of the rejected and confirmed attributes, respectively.
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findings are partly consistent with some of previous research in 
the field of depression studies (55, 56). However, the specifical 
link between blood lipids and pregnant women with depression 
is unclear. HDL-C may also have negative health effects and show 
a U-shaped curve with it. Simple measurement of HDL-C 
concentration does not yield information about HDL function 
(57) and measurement of “dysfunctional” HDL may be  an 
alternative therapeutic target (58). Therefore, lipid concentrations 
may be  a more distal marker of elevated risk for depression. 
Further investigation into this relationship could provide valuable 
insights into the mechanisms underlying prenatal depression and 
its potential treatment strategies.

Predication models of PDS risk

In developing a robust risk prediction model, it is essential to ensure 
that multimodal data provide a few key variables while excluding 
numerous confounding factors. To achieve this, we utilized multiple 
models for hierarchical screening, ultimately identifying six key 
metabolic biomarkers. The nomogram model also integrated protective 
factors like multivitamin use and conventional blood indicators.

While perfect models are hard to attain, the integration of various 
models with distinct experimental designs can enhance validity 
compared to relying on a single model. This approach is not only 
applicable in the field of depression but is a trend in diagnosis of 

FIGURE 4

A nomogram for predicting PDS risk (A). The value of each variable was assigned a score, and then the scores for each variable were summed. The 
sum is located on the total points axis, which allows us to predict the probability of PDS risk. Evaluation of the nomogram model were based on 
training (B) and test sets (C), including ROC, calibration plot and DCA. ROC for the nomogram was generated using bootstrap resampling (1,000 
times). The nomogram calibration plot shows the proximity of the solid line (performance nomogram) to the dotted line (ideal model), which serves as 
an indicator of prediction accuracy. The DCA graph demonstrates the expected net benefit per patient, with the red solid line representing the 
prediction model, the gray line representing all patients with PDS, and the solid horizontal line indicating the absence of PDS patients.
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complex diseases. Researches have consistently shown that multi-
model fusion model yields superior results in comparison to single 
prediction methods, offering improved performance and higher 
accuracy (59, 60). In this study, we used several models to identify the 
most representative metabolic biomarkers. The combined use of 
models can complement each other’s performance, thus reducing the 
uncertainties and inaccuracies associated with each individual model.

Several biomedical technologies, including omics, have attempted 
to identify reliable biomarkers of depression to facilitate screening. For 
example, microRNAs have been detected in body fluids, and magnetic 
resonance imaging (MRI) has demonstrated sensitivity and specificity 
greater than 80% (28, 29). Unfortunately, many of these models 
performed poorly when they were validated in test sets or other 
populations, perhaps due to the inherent heterogeneity of the disease. 
Thus, a critical aspect in developing disease risk prediction models is 
to gather comprehensive multimodal data from patients, allowing for 
the precise assessment of individual characteristics, the inclusion of 
more risk factors, and the use of more accurate laboratory testing 
techniques (15). In this study, our model, encompassing information 
at three levels—multivitamin supplementation, clinical blood 
indicators, and metabolome—offers a more precise prediction of the 
risk of depressive symptoms. The results from the DCA matched 
expectations, with the full model significantly outperforming a single 
factor in predicting PDS. One prominent example of a similar 
approach is the North American prodrome longitudinal study, which 
collected detailed baseline measures and information across five 
domains: genomics, hormones, anatomy, physiology, and behavior, 
finally developed a robust prediction algorithms (61).

Nomograms have been used for the reliable prediction of various 
aspects of depression risk factors (e.g., demographic characteristics, 
social factors, and biological factors) (62, 63). However, there are limited 
reports on the use of nomograms in the PDS, and most reports typically 
focused on a single domain of risk factors (64). Therefore, we have 
constructed a risk prediction nomogram model for PDS by combining 
metabolic biomarkers, dietary factors, and clinical blood indicators. 
We have evaluated the model’s accuracy in a test set, demonstrating its 
strong predictive capabilities and clinical applicability. The risk 
assessment model has great potential, because these lifestyle factors 
(multivitamin supplement factors), and routine clinical examination 
indicators are readily available, quantifiable, and easy to interpret.

Limitations

Our study has some limitations. First, the sample size was relatively 
small, which limited the precision and statistical power of the study. 
Therefore, the results should be  interpreted with caution. Future 
research with larger cohorts and possibly multicenter collaborations 
would not only enhance the statistical power but also increase the 
diversity of the study population, which can lead to more robust and 
widely applicable results. Second, the study did not consider various 
other lifestyle and supplementation factors, thus potential biases might 
be  introduced into the observed results. Third, using a single 
metabolomics platform limited the scope of the metabolic information 
obtained. Employing multiple platforms in future studies could capture 
comprehensive metabolome, leading to a richer and potentially more 
accurate metabolic profile associated with PDS.

Conclusion

This study has offered valuable insights into the protective factors 
and routine clinical indicators associated with PDS. Utilizing 
non-targeted metabolomics techniques and a multi-model screening 
approach, we have identified six crucial metabolites differentiating 
PDS from NPDS. We have further explored the relationships between 
these characteristic variables to build a robust risk prediction model. 
These findings significantly enhance our understanding of prenatal 
depression’s pathogenesis. Distinguishing from previous studies on 
depression during pregnancy, our research’s comprehensiveness is 
underlined by the integration of a multi-model approach and the 
utilization of multimodal data. This approach has enabled precise 
screening of biomarkers and the development of powerful predictive 
models. The findings of this study mark an important step forward in 
prenatal depression research, opening new avenues for future 
investigation, and have the potential to inform improved screening 
and intervention strategies.
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