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Objective: It is well known that altered functional connectivity is a robust 
neuroimaging marker of schizophrenia. However, there is inconsistency in the 
direction of alterations, i.e., increased or decreased connectivity. In this study, 
we  aimed to determine the direction of the connectivity alteration associated 
with schizophrenia using a multivariate, data-driven approach.

Methods: Resting-state functional magnetic resonance imaging data were 
acquired from 109 individuals with schizophrenia and 120 controls across two 
openly available datasets. A whole-brain resting-state functional connectivity 
(rsFC) matrix was computed for each individual. A modified connectome-based 
predictive model (CPM) with a support vector machine (SVM) was used to classify 
patients and controls. We conducted a series of multivariate classification analyses 
using three different feature sets, increased, decreased, and both increased and 
decreased rsFC.

Results: For both datasets, combining information from both increased 
and decreased rsFC substantially improved prediction accuracy (Dataset 
1: accuracy  =  70.2%, permutation p  =  0.001; Dataset 2: accuracy  =  64.4%, 
permutation p  =  0.003). When tested across datasets, the prediction model using 
decreased rsFC performed best. The identified predictive features of decreased 
rsFC were distributed mostly in the motor network for both datasets.

Conclusion: These findings suggest that bidirectional alterations in rsFC are 
distributed in schizophrenia patients, with the pattern of decreased rsFC being 
more similar across different populations.
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Introduction

Schizophrenia is a severe mental illness characterized by abnormal thinking, delusions, and 
hallucinations. One aspect of the disease that receiving attention from researchers is the 
abnormal connectivity between brain regions, and ‘dysconnectivity’ is thought to be one of the 
pathophysiology of schizophrenia (1). Neuroimaging studies have provided evidence supporting 
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this idea, showing abnormal functional connectivity in several 
networks in schizophrenia patients (2).

However, there is an inconsistency regarding whether only 
decreased (disconnectivity) connections, or both increased and 
decreased connections (dysconnectivity), exist in schizophrenia 
(3). Even meta-analyses have shown inconsistent results; while 
some previous studies have only reported decreased connectivity 
(2, 3), others have reported both decreased and increased 
connectivity (4, 5). This discrepancy can be explained by an effect 
of decreased network hubness in schizophrenia (6); people with 
schizophrenia have a reduced degree and centrality of network hub 
nodes, which results in higher diverse connectivity but generally 
decreased connectivity across the brain (6). If increased 
connectivity is a result of higher diversity or randomness, then it 
follows logically that the inconsistent discovery of increased 
connectivity between studies.

Existing research investigating abnormal functional connectivity 
in schizophrenia mostly relies on mass-univariate analysis. In 
contrast to mass-univariate, multivariate techniques integrate all 
brain features into a ‘prediction’ about the outcome, providing 
focused tests that avoid multiple comparisons as well as increased 
statistical power. (7–9). This is suitable to disclose weak, distributed 
effects in the brain, e.g., increased connectivity in schizophrenia 
(10). Further, the multivariate approach is an information-based 
philosophy, which focuses on the information contained in a brain 
and how this information may be communicated to other parts of 
the brain (11).

However, there is no previous study investigating the direction 
of connectivity alteration in schizophrenia in a multivariate 
manner. Connectome-based predictive modeling (CPM) is a 
recently developed multivariate method that has been applied to 
reveal data-driven associations between functional connections in 
the brain and clinical outcomes. Interestingly, CPM identifies both 
increased and decreased connectivity features separately during 
feature selection which is suitable for investigating the direction 
of connectivity alteration (12). If adding a predictor results in an 
accuracy increase in multivariate analysis, it means that the 
predictor has added information to the outcome variable (13). 
Thus, we  implement a CPM to investigate the discrepancy in 
previous research. “Does increased connectivity add information 
regarding schizophrenia?”

Materials and methods

Dataset description and image acquisition

We used two openly available resting state fMRI (rsfMRI) datasets 
in this study.

Dataset 1 (50 patients and 120 controls), containing data 
acquired as part of the UCLA Consortium for Neuropsychiatric 
Phenomics LA5c Study 5, was obtained from the OpenfMRI 
database (accession number: ds000030, https://openneuro.org/
datasets/ds000030/versions/1.0.0) (14). All patients underwent a 
semistructured assessment using the Structured Clinical Interview 
for DSM-IV disorders (SCID; Diagnostic and Statistical Manual 
of Mental Disorders, DSM-IV). Exclusion criteria included left-
handedness, pregnancy, history of head injury with loss of 

consciousness or cognitive sequelae, and other contraindications 
to scanning. After receiving a verbal explanation of the study, 
participants gave written informed consent following procedures 
approved by the Institutional Review Boards at UCLA and the Los 
Angeles County Department of Mental Health. rsfMRI in Dataset 
1 (UCLA) was acquired using two 3 T Siemens scanners. The 
sequence parameters were as follows: repetition time/echo time 
(TR/TE) = 2000/30 ms; flip angle = 90°; 34 axial slices per volume; 
voxel size = 3 × 3 × 4 mm3; and the number of volumes = 152. After 
receiving a verbal explanation of the study, participants gave 
written informed consent following procedures approved by the 
Institutional Review Boards at UCLA and the Los Angeles County 
Department of Mental Health.

Dataset 2 (70 patients and 76 controls) was provided by the 
Centers of Biomedical Research Excellence (COBRE).1 For patients in 
this dataset, a diagnosis of schizophrenia was made using the 
SCID. Exclusion criteria included confirmed or suspected pregnancy, 
any history of neurological disorders, and a history of intellectual 
disability. Written informed consent was obtained from participants 
according to institutional guidelines at the University of New Mexico. 
Dataset 2 (COBRE) was acquired using a 3 T Siemens scanner. The 
sequence parameters were as follows: repetition time/echo time (TR/
TE) = 2000/29 ms; 32 axial slices per volume; voxel size = 3 × 3 × 4 mm3; 
and the number of volumes = 150. Written informed consent was 
obtained from participants according to institutional guidelines at the 
University of New Mexico.

To compare demographic variables, contingency χ2 tests and 
independent sample t-tests were used to examine group differences in 
demographics for both datasets. The statistical analyses were 
conducted in MATLAB 2020b.

Image processing and patient selection

A unified functional image preprocessing pipeline was used for 
each dataset. The resting-state fMRI data were analyzed using the 
GRETNA software package (15) in SPM12 (Wellcome Department 
of Imaging Neuroscience, London, United Kingdom; www.fil.ion.ucl.
ac.uk/spm). We  used the preprocessing parameters used in our 
previous publication (16, 17). The first 10 volumes were discarded to 
allow the signal to reach equilibrium. The remaining volumes were 
preprocessed by slice-timing, realigning, and normalizing to the EPI 
template with a resampled voxel size of 3 × 3 × 3 mm. Next, spatial 
smoothing with a 6 mm full-width at half maximum Gaussian kernel, 
linear detrending, bandpass temporal filtering (0.01–0.1 Hz), and 
nuisance covariate regression (24 Friston parameters, white matter, 
cerebrospinal fluid, and global signal) were also performed. The ‘head 
motion scrubbing’ method proposed by Power and colleagues was 
used to ensure that motion artifacts did not contribute to the group 
differences (18). While over 150 volumes were collected for each 
participant, those volumes with framewise displacement (FD) greater 
than 0.5 mm were identified and excluded (19). Nodes were defined 
using the Shen 268-node functional brain atlas, which can be grouped 
into 10 specific canonical networks that can be used to specify brain 

1 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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networks that contribute in the classification process (20, 21). 
Functional connectivity was calculated based on the mean time 
courses of each node (i.e., the average time course of voxels within 
the node). Next, the functional connectivity matrix was estimated as 
Pearson’s correlation coefficients of the time series between all pairs 
of regions. Fisher r-to-z transformation was further applied to 
convert each correlation coefficient to a z score for normality. Finally, 
for each subject, a symmetric 268 × 268 resting state functional 
connectivity (rsFC) matrix was generated in which each element of 
the matrix represents the functional connectivity strength between 
two individual nodes (hereafter referred to as an ‘edge’). For both 
datasets, subjects with excessive head motion (i.e., defined a priori as 
maximal translational or rotational motion parameters >3 mm or 3° 
during the fMRI scan) were excluded (22–24). Additionally, the data 
from two participants in Dataset 2 could not successfully 
be  preprocessed and were also excluded from further analysis. 
Excluded subjects’ identification numbers are in the 
Supplementary material.

We checked whether the demographic variables between patients 
and controls significantly differed between groups because age and 
gender can affect functional connectivity (25, 26). In addition, Dataset 
1 included images from two different scanners, which can also affect 
functional connectivity estimation. Patients and controls in Dataset 1 
had significantly different age and gender, and there was a significant 
difference in scanners used for imaging. To control for these group 
differences, we used the ‘matchit’ R package (27) to match propensity 
scores for Dataset 1. Overall, 47 patients and 47 controls from Dataset 
1 and 62 patients and 73 controls from Dataset 2 were analyzed.

Multivariate classification using rsFC

The preprocessed data and analysis code are available at https://
osf.io/agqtn/. To predict schizophrenia using rsFC, we  used 
connectome-based predictive modeling (CPM), a data-driven 
protocol for developing predictive models of brain–behavior 
relationships (12). We modified the CPM approach by replacing its 
core learning algorithm with a linear support vector machine (SVM) 
(28, 29). We briefly explain how the CPM-SVM procedure works. The 
prediction procedure was as follows: across all subjects in the training 
set, each edge in the rsFC matrices was Pearson-correlated to the 
subjects’ group label (i.e., whether each subject is schizophrenia (1) or 
healthy control (0)). Subsequently, those edges which correlated 
significantly (p < 0.05) with the group label were selected as features. 
The threshold of 0.05 was determined by optimal threshold 
exploration. We tested four different p-thresholds (0.05, 0.01, 0.005, 
0.001) and identified the one that leads to the highest predictive 
accuracy (30). Considering the sign of the resultant r values, edges 
significantly correlated with group label were divided into increased 
or decreased rsFC. Then, for each subject, the identified edges were 
summed into two predictive variables to reduce high dimensionality. 
Three SVM models were trained and tested, to discriminate which 
feature set is the most predictive in classifying schizophrenia from 
healthy controls. We used MATLAB function ‘fitcsvm’ with default 
options and the box constraint hyperparameter C was 1.

 Model 1. Predicted group label = rsFC matrix increased 
in schizophrenia.

 Model 2. Predicted group label = rsFC matrix decreased 
in schizophrenia.

 Model 3. Predicted group label = rsFC matrix increased + 
decreased in schizophrenia.

We conducted within- and between-dataset predictions 
(Figure  1). For within-dataset prediction, we  used a leave-one-
subject-out cross-validation (LOOCV) process to protect against 
overfitting (12), and for between-dataset prediction, one dataset was 
used as the training set and another was used as the test set, and vice 
versa. We additionally conducted10-fold cross-validation to validate 
the model performance. Model performance was assessed mainly 
using classification accuracy, and we performed both the permutation 
test and sign test to determine the significance of our model (31). To 
generate null distributions for permutation testing, we  randomly 
shuffled the group label and reran the modified CPM analysis with 
the shuffled labels 1,000 times. Based on these null distributions, the 
p values for leave-one-out predictions were calculated (32).

For interpretation purposes, we identified edges selected for the 
between-dataset prediction model and those edges that appear in 90% 
of the leave-one-out process to yield ‘consensus edges’ (12). 
Visualization of the edges was achieved using BioImage Suite.2

In addition, although we  followed similar preprocessing steps 
used in previous articles, there is not a single “right” way to process 
resting state data that reveals the “true” nature of the brain (33). For 
example, global signal regression may introduce artificial 
anticorrelations (33). We  conducted preprocessing without global 
signal regression and head motion scrubbing and checked the results 
are similar.

Results

Demographics

The characteristics of the study participants are displayed in 
Table 1. After propensity matching, the age and gender between the 
groups in Datasets 1 and 2 showed no significant differences.

Multivariate classification using rsFC

Figure  2 summarizes the model performance for individual 
classification based on increased and decreased rsFC. Notably, for 
both datasets, the best prediction model was the one that used both 
increased and decreased rsFC as prediction features (Figure 2, panel 
A, noted as “Both”). For both datasets, the model accurately identified 
individuals with schizophrenia above chance (Dataset 1: 
accuracy = 70.2%, permutation test p  = 0.001, sign test p  < 0.001; 
Dataset 2: accuracy = 64.4%, permutation test p  = 0.003, sign test 
p  = 0.001). In addition, using decreased rsFC in Dataset 2 could 
predict schizophrenia with an above-chance level accuracy when 
tested within the dataset (accuracy = 60.7%, permutation p = 0.005, 
sign test p = 0.016). Result of 10-fold cross-validation were similar and 

2 https://www.nitrc.org/projects/bioimagesuite/
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detailed result is in the Supplementary material. Our sensitivity 
analysis using different preprocessing steps also showed the both 
increased and decreased rsFC achieved the best prediction accuracy 
(Supplementary results).

We also investigated the generalizability of the identified edges 
between datasets. The between-dataset prediction showed somewhat 
different results. When the CPM-SVM prediction model was trained 
with Dataset 1 and tested on Dataset 2 (Figure 2, panel B, blue bars), 
feature sets of only decreased rsFC could best predict schizophrenia 
with above chance (decreased rsFC: accuracy = 61.5%, permutation 
p = 0.003, sign test p = 0.009; both rsFC: accuracy = 60.0%, permutation 
p = 0.001, sign test p  = 0.025). None of the CPM-SVM prediction 
models trained with Dataset 2 and tested on Dataset 1 could make 
predictions above chance (Figure 2, panel B, red bars).

For interpretation purposes, the edges selected for the between 
dataset prediction model and the ‘consensus edges’ in the leave-
one-out process are grouped into ten specific functional networks 
(34). When overlapped with canonical networks, the majority of 
decreased rsFC were connected within and between the motor 
networks for both datasets (Figure 3).

Discussion

In this study, we investigate the effects of different rsFC feature sets 
(only those increased or decreased in schizophrenia or their combination) 
on the performance of the CPM – to determine whether the increased 
connectivity has added information regarding schizophrenia. We found 
a few key points. First, we noticed that combining both the increased and 
decreased rsFC achieved the best prediction accuracy for both datasets 
(Dataset 1: accuracy = 70.2%, permutation p = 0.001; Dataset 2: 
accuracy = 64.4%, permutation p = 0.003). Second, when tested across 
datasets, decreased rsFC in Dataset 1. was well generalized to predict 
schizophrenia in patients from Dataset 2.

There are two potential applications for multivariate brain 
decoding: (1) brain decoding for real-world applications, and (2) 
multivariate hypothesis testing (11, 35). In the first case, a brain 
decoder with maximum prediction power is desired. In the second 
case, multivariate decoding is suitable to investigate the information 
contained in distributed patterns of neural activity to infer the 
functional role of brain networks (36). In this study, we are interested 
in the second application of brain decoding which can be considered 

FIGURE 1

Schematic of multivariate classification using resting-state functional connectivity (rsFC). CPM, connectome-based predictive modeling, SVM, support 
vector machine.

TABLE 1 Demographic characteristics of participants.

Dataset 1 (UCLA) Dataset 2 (COBRE)

Variables SCZ CON statistic SCZ CON statistic

Sample size 47 47 62 73

Age (years) 36.5 36.7 t = 0.104, p = 0.917 38.4 35.9 t = −1.08, p = 0.270

Gender (M/F) 34/13 35/12 χ2 = 0.06 p = 0.815 48/14 50/23 χ2 = 1.34 p = 0.246
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a multivariate hypothesis testing. Nonetheless, the prediction 
accuracy we obtained is comparable to previous machine learning 
classification studies distinguishing patients with schizophrenia from 
healthy controls. To date, machine learning algorithms with fMRI 
and structural MRI features have been used in schizophrenia 
diagnosis, and the performance of machine learning algorithms 
varied from 70 to 90% in terms of accuracy (37). For example, in a 
recent study, Lei et al. classified healthy controls and patients with 
schizophrenia and reported a balanced accuracy of 65.7–73.8% using 
the same open dataset and deep learning ((17), Table 2, datasets 5 and 
6  in the reference article). We  achieved 64–76% classification 
accuracy which is expectable and comparable to previous machine 
learning studies, considering we  did not include higher-order 
polynomial terms, because our prior goal was to achieve straight 
forward interpretation of feature weights (12).

When it comes to multivariate hypothesis testing for interpretation, 
we demonstrated the added value of incorporating both increased and 
decreased rsFC features into the CPM. If adding a predictor results in 

an accuracy increase in multivariate analysis, it can be said that the 
predictor has added information to the outcome variable (13). In 
addition, incorporating changes to rsFC in both directions to CPM 
does not guarantee an increase in prediction accuracy (i.e., (30, 38)), 
supporting that increased rsFC in schizophrenia has complementary 
information to decreased rsFC regarding schizophrenia. Secondly, it 
should be noted that only the decreased rsFC in Dataset 1 generalized 
well to predict schizophrenia in patients from Dataset 2 in the present 
work. We suggest a few interpretations of this finding. One is these 
results imply the decreased rsFC is rather universal in schizophrenia 
while increased rsFC is local. When we grouped the edges detected in 
the between-dataset prediction into ten canonical functional systems 
(Figure 3), we recognized the shared distribution of decreased rsFC in 
the motor network. In a previous article, decreased rsFC in the motor 
network in schizophrenia was related to the symptomatology of 
psychosis, and suggested that these networks may be contributing to 
the etiology of the disease (39). In addition, reduced cortical volume 
and attenuated activation of the precentral gyrus have been associated 

FIGURE 2

Results of the classification analysis. Panel A shows the results of the within-dataset leave-one-out classification. For both datasets, CPM-SVM 
classification using both increased and decreased edges showed the highest classification accuracy with a permutation test p  <  0.01 (last two columns). 
Panel B shows the results of the external dataset classification. When Dataset 1 was used as the training set, CPM-SVM classification using the 
decreased matrix and both matrices could predict subjects in Dataset 2 above chance level. (* in the figure denotes both the permutation test and sign 
test p  <  0.02). Panel C (UCLA dataset) and D (COBRE dataset) shows the confusion matrix of the within-dataset classification result. Blue boxes indicate 
individuals correctly identified by the model.
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FIGURE 3

The edges selected in CPM-SVM prediction between datasets (upper) and the ‘consensus edges’ selected during the of the leave-one-out process (lower). The 
numbers denote the number of edges selected. Those edges that decreased in the schizophrenia patients linked the motor to other networks (blue matrix 
plots). Meanwhile, the edges that increased in the patient group did not have a similar pattern between the two datasets (red matrix plots). CBL, cerebellum; 
SC, subcortical; SAL, salience; Vas, visual association; VI, visual A; VII, visual B; Mot, motor; DMN, default mode network; FP, frontoparietal; MF, medial frontal.

https://doi.org/10.3389/fpsyt.2023.1232015
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kim et al. 10.3389/fpsyt.2023.1232015

Frontiers in Psychiatry 07 frontiersin.org

with motor-related cognitive dysfunction in schizophrenia (40, 41). 
However, the distribution of increased rsFC in schizophrenia does not 
overlap between datasets (Figure 3, upper row). We suggest that this 
heterogeneity of the increased rsFC in schizophrenia may be  the 
underlying cause of the inconsistent previous reports about the 
directionality of connectivity alteration in schizophrenia (2–5). These 
findings can be explained by a previous theory proposed to explain 
functional connectivity changes in schizophrenia (6). Lynall et  al. 
discovered that schizophrenia patients show a decrease in hubness, 
resulting in lower regional connectivity strength across the brain, 
explaining the general decrease in connectivity. Meanwhile, higher 
regional diversity was also found, and we suggest that this diversity 
results in rather randomly and inconsistently distributed increased 
connectivity. In addition, we also suggest global signal regression in 
preprocessing may contributed to artificial rsFC anticorrelations in 
both datasets and result in shared decreased rsFC. When 
we  preprocessed the data without global signal regression the 
generalizability of decreased rsFC between datasets was not significant 
(Supplementary Figure S2).

There are several limitations in this study. First is data decay. 
Open data allows researchers to explore pre-existing datasets in new 
ways. However, if many researchers reuse the same dataset, multiple 
statistical testing may increase false positives (42). This is not 
avoidable since we  used openly available datasets. Second, the 
heterogeneity of schizophrenia between the two datasets. Two 
subjects in the COBRE dataset and 11 subjects in the UCLA dataset 
had schizoaffective disorder. Third, both of the schizophrenia patients 
groups were not medication-naïve. Antipsychotic medication may 
lead to changes in brain function (43), which may have contributed 
to relative low classification accuracy between datasets.

In conclusion, by using a data-driven and linear multivariate 
approach, we  found evidence that incorporating increased and 
decreased rsFC has additional information regarding schizophrenia, 
although decreased rsFC is more universal across the datasets. 
We suggested our findings can explain the inconsistent discovery of 
increased rsFC in schizophrenia and give an insight into general 
distribution pattern of rsFC alteration.
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