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Introduction: Obsessive-compulsive disorders (OCD) are marked by distress,

negative emotions, mental processes and behaviors that are reflected in

physiological signals such as heart rate, electrodermal activity, and skin

temperature. Continuous monitoring of physiological signals associated with

OCD symptoms may make measures of OCD more objective and facilitate close

monitoring of prodromal symptoms, treatment progress and risk of relapse. Thus,

we explored the feasibility of capturing OCD events in the real world using an

unobtrusive wrist worn biosensor and machine learning models.

Methods: Nine adolescents (ages 10–17 years) with mild to moderate-severe

OCDwere recruited from child and adolescentmental health services. Participants

were asked to wear the biosensor in the lab during conditions of rest and exposure

to OCD symptom-triggering stimuli and for up to 8 weeks in their everyday lives

and register OCD events. We explored the relationships among physiological

data, registered OCD events, age, OCD symptom severity and symptom types.

In the machine learning models, we considered detection of OCD events as

a binary classification problem. A nested cross-validation strategy with either

random 10-folds, leave-one-subject-out, or leave-week(s)-out in both layers was

used. We compared the performance of four models: logistic regression, random

forest (RF), feedforward neural networks, and mixed-e�ect random forest (MERF).

To explore the ability of the models to detect OCD events in new patients, we

assessed the performance of participant-based generalized models. To explore

the ability of models to detect OCD events in future, unseen data from the same

patients, we compared the performance of temporal generalized models trained

on multiple patients with personalized models trained on single patients.

Results: Eight of the nine participants collected biosensor signals totaling

2, 405 h and registered 1, 639 OCD events. Better performance was obtained

when generalizing across time compared to across patients. Generalized

temporal models trained on multiple patients were found to perform better

than personalized models trained on single patients. RF and MERF models

outperformed the other models in terms of accuracy in all cross-validation

strategies, reaching 70% accuracy in random and participant cross-validation.

Conclusion: Our pilot results suggest that it is possible to detect OCD

episodes in the everyday lives of adolescents using physiological signals

captured with a wearable biosensor. Large scale studies are needed

to train and test models capable of detecting and predicting episodes.
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1. Introduction

Obsessive-compulsive disorder (OCD) in children and

adolescents is a chronic and debilitating psychiatric disorder that

can negatively affect school performance, strain family relations

and friendships, and shorten life expectancy (1, 2). OCD occurs

in up to 3% of children and adolescents under the age of 18

years (3). The first defining symptom of OCD, obsessions, are

intrusive, persistent thoughts about topics such as contamination,

symmetry, morality and committing aggressive acts (4). The

second characteristic symptom of OCD, compulsions, refers to

ritualized or repetitive acts that the individual with OCD feels

compelled to do, such as checking, cleaning, ordering, counting

and hoarding (4). Obsessions and compulsions are associated with

distress in the form of negative emotions (e.g., anxiety, fear, disgust,

sadness, embarrassment, feelings of incompleteness, and anger) (4)

and cognitive effort (associated with monitoring, uncertainty and

suppression) (5).

Assessing distress levels in OCD is important for determining

symptom severity (6), which informs treatment choice and

planning. Monitoring of OCD distress is critical to delivering

and studying the first line treatment for OCD, cognitive behavior

therapy (CBT) with exposure and response prevention (ERP) (7).

ERP involves approaching distress provoking stimuli (exposure)

and refraining from performing rituals or safety behaviors

(response prevention). Currently, monitoring OCD distress occurs

via self-report and is not continuous but intermittent. Actual

continuous, automatic, objective measures of distress would enable

more frequent and precise observations and, in turn, just-in-time

interventions.

The distress, negative emotions, and cognitive effort evoked

by OCD are reflected in autonomic nervous system activity

(e.g., heart rate, electrodermal activity) (8, 9). Biofeedback of

physiological markers may have a direct therapeutic effect. For

example, one study found that providing heart rate feedback to 54

university students (mean age nearly 18 years) with symptoms of

claustrophobia during exposure sessions showed significantly more

habituation between exposure sessions and reduced fear at the end

of six 5-min exposures compared to controls who did not receive

heart-rate feedback (instead heard paced tone or nothing) (10).

Wearable biosensors are available that can monitor autonomic

nervous system activity, but research on the application of these

biosensors for continuous monitoring within mental health care

is still in its infancy. Most studies have focused on stress and

depression in adults. Using measures of autonomic nervous system

activity from a wrist worn biosensor (Empatica’s E4) as input,

machine learning models classified no stress, low stress and high

stress under controlled stress or no stress conditions (e.g., a stressful

timed and evaluated arithmetic task) with 72% accuracy (11).

Another study used physiological stress information (measured

with the E4) from lab experiments and contextual information to

detect stress-events (with a minimum duration of 1 h) every 20

min with 92% accuracy (11). An early study demonstrated lower

heart rate variability (measured with biosensors built into a vest) in

adults with OCD, panic, social, and generalized anxiety disorders

than healthy controls (12). One study focused on OCD symptoms

in a convenience sample of 21 adults and found that machine

learning models could correctly distinguish enacted compulsive

hand washing from routine hand washing with a sensitivity rate of

84% and a specificity rate of 30% (13).

Fewer studies have applied wearable biosensors to the field

of child psychiatry. Here, the focus has been on children with

autism, to a lesser extent, attention deficit hyperactivity disorder,

and one study examined internalizing disorders (14). More than

half of these studies employed biosensors worn on the chest or

multiple sites on the body. The sample sizes of most studies were

quite small, with an average of 27 participants (14). One study

was able to classify emotion dysregulation in five 8-12-year-old

children using signals from the E4 with 68–85% accuracy (15).

Another study of children and adolescents (ages 6–17 years;N = 20)

with autism, predicted aggressive events 1 min before the episode

using 3 min of physiological and motion signals measured with the

E4 (area under the curve: 0.71–0.84) (16). We know of only one

study that has tested the use of biosensors to detect OCD events in

youth. A pilot study placed a chest belt with an electrocardiograph,

inertial sensors worn on both wrists and a head mounted eye

tracker on five adolescents (ages 13–17 years) with OCD while

performing regular daily activities, exposure preparation, exposure,

and compulsions (17). No machine learning models were trained

or tested to classify OCD events. However, the study provides a

protocol and preliminary support for distinct physiological stress

patterns (increased HR and decreased heart rate variability) in

exposure situations (17).

To our knowledge, no previous study has attempted to detect

OCD events outside of controlled conditions. Thus, we tested the

feasibility of capturing OCD events using an unobtrusive wrist

worn biosensor, E4, and machine learning models in a sample

of adolescents with an OCD diagnosis. To succeed in continuous

monitoring of OCD symptoms, adolescents would need to adhere

to wearing the E4 and tag enough OCD events to amass enough

data for analysis. We characterized the biosensor wearing behavior

per day and over the entire observation period, as well as explored

the relationships between OCD symptoms, wearing behavior and

how often the adolescents tagged OCD events. We used these
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observations to generate hypotheses about OCD symptoms that

can bemonitored using physiological signals and the characteristics

of adolescents with OCD who would benefit from OCD symptom

monitoring with a biosensor. We also took a preliminary step

toward developing and testing generalized and personal models for

detecting OCD events in the everyday lives of adolescents. Finally,

we compared the physiological signals collected outside of the lab

to those collected during OCD-activating tasks in the lab.

2. Materials and methods

This study was approved by the Ethics Committee of the Captial

Region of Denmark on June 17, 2021 (ref. nr. H-18010607-79689).

A detailed description of the design of this prospective study was

reported in the protocol (18). Here, we focus on physiological data

collected in-the-wild and at Time (T) 1 in the clinic.

2.1. Participants

Participants were recruited from the child and adolescent

mental health center within the Capital Region of Denmark

hospital system. Inclusion criteria were primary or secondary

diagnosis of OCD, OCD severity score of seven or above

[Children’s Yale-Brown Obsessive Compulsive Scale (CY-BOCS)

(19)], receiving care or on wait list for care within the mental

health center, normal intellectual function, ages 8–17 years and

signed informed consent from the legal guardian. Exclusion criteria

were substance dependence, schizophrenia, psychotic disorders,

mania, bipolar disorder, pervasive developmental disorder (with

the exception of Asperger syndrome), current participation in

other OCD trials, or any condition that would hinder wearing

a biosensor on the wrist. Nine adolescents (five females and

four males) between the ages of 10 and 16 years (mean age in

years = 12.3, SD = 2.6) who were diagnosed with OCD [F42.2

according to the International Statistical Classification of Diseases

and Related Health Problems (ICD-10) (20)] participated in this

study. At enrollment, participants’ OCD severity scores (CY-BOCS

total score), ranged from 11 (mild) to 29 (moderate-severe; mean

= 24.56, SD = 5.12). Four of the participants had previously

received some form of psychosocial treatment for OCD. One

participant had received antipsychotic medication prior to the

observation period. During the observation period two participants

were receiving psychosocial treatment and one was receiving

sertraline for OCD. Two participants also had another diagnosis

Asperger syndrome [F84.5 (20)] and asthma. The adolescents were

of normal intelligence as reported by parents or the age-appropriate

intelligence test (IQ range = 95–113) (21, 22).

2.2. Measures

2.2.1. Clinical
OCD symptom severity was assessed with the gold-standard

measure, the CY-BOCS (19). Each CY-BOCS interview was

conducted by one of two investigators in this study: a trained

medical doctor and a psychologist. Five items are summed to

obtain a severity score for obsessions and another five items are

summed to obtain a severity score of compulsions. When all ten

of these items are summed, it yields a total OCD severity score

that can range from 0 to 40 (19). We also summed pairs of

obsession and compulsion severity items for time occupied by

symptoms (items 1a and 6a), interference caused by symptoms

(items 2 and 7), distress caused by symptoms (items 3 and 8),

resistance against symptoms (items 4 and 9), and control over

symptoms (items 5 and 10). OCD symptom types and counts

of symptoms were determined using the checklist of the CY-

BOCS. We summed the number of symptoms endorsed within the

following categories that have been supported by factor analysis:

symmetry, forbidden thoughts, cleaning, and hoarding (23, 24).

All endorsed symptoms were summed to obtain a total symptom

count.

2.2.2. Physiological
Participants were asked to wear an E4 (25) on their

nondominant hand. The E4 wristband measures blood volume

pulse (BVP; sampling rate: 64 Hz), external skin temperature

(sampling rate: 4 Hz), and electrodermal activity (EDA; sampling

rate: 4 Hz). Heart rate (HR; sampling rate: 1 Hz) was calculated

using the BVP signal. The E4 also includes a button to mark

events.

2.3. Procedure

Participants were asked to wear a biosensor everyday during

their daily routines from the time they awoke until they went

to bed for eight weeks. We asked participants to press the event

mark button on the biosensor whenever they were bothered or

stressed by their OCD symptoms. To protect the privacy of the

participants, the data was never connected to participant mobile

phones. Instead, data was downloaded from the E4 wristband to the

E4 server via a USB cable during in-person meetings that occurred

up to twice per week and then transferred to the hospital server. At

these meetings participants had the opportunity to report problems

they experienced with the biosensor, instances of and reasons for

not wearing the biosensor and if they falsely tagged any events.

Any reports were recorded in the data capturing system, RedCap

(26). Before (T1) and after (T2) the 8-week observation period,

participants were assessed for OCD symptoms and severity. At

T1 and T2 participants also wore the biosensors under controlled

conditions: a 5-min resting period, in which they were asked to sit

quietly in a room with their parent while the investigator(s) waited

outside and an ERP session, in which participants approached

OCD symptom inducing stimuli and refrained from rituals and

other safety behaviors. The ERP session had an preparation phase,

an exposure phase, and a debriefing phase. The ERP sessions

were video and audio recorded and timestamps were placed on

the start and stop times of exposure. OCD symptom categories,

severity ratings and experiments from T1 are reported in this

study.
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2.4. Data analyses

The analysis plan for this study was registered prior to

data analysis (27). We performed analyses designed to explore

the acceptability of the biosensor, generate hypotheses about

the associations between biosensor use and OCD symptom

characteristics, and explore the performance of models using

features from a biosensor to detect OCD-distress episodes. We

evaluated acceptability by examining adherence to wearing the

biosensor for the entire study including days when data was

missing due to technical or logistical problems involving the

biosensor. We summed the number of hours and days participants

wore the biosensor and the number of tagged events. We also

explored participant use of the biosensor by hour, hours per

day and per week by calculating the mean number of hours of

physiological data recorded per day and themean number of tagged

events per hour for each participant. To explore the relationships

among participant characteristics and biosensor data, we calculated

Spearman rank-correlations between number and type of OCD

symptoms, symptom severity (subscales and total), age, amount of

recorded data, and number of tagged events (significance threshold:

p<0.01).

Figure 1 provides an overview of the steps involved in model

development including model inputs, signal preprocessing, feature

extraction, model training and classification. Beforemodel training,

the biosensor data was filtered to remove periods when the

participant was sleeping or when the participant was not wearing

the E4. The process of model development is displayed in Figure 1.

All features were preprocessed, transformed and calculated for 5-

min intervals. In previous studies, interval length for stress and

anxiety detection has ranged from 10 s to 4 min (11, 28, 29).

Although shorter intervals can reflect changes in mental state (30),

a precedence of at least 100 s has been set to allow to autonomic

responses to extinguish (31). In this initial study, we expanded the

interval to 5 min to hopefully increase the likelihood of capturing

OCD events as participants labeled OCD events in real time. We

expect that there is a delay between awareness of OCD stress and

labeling as found in previous studies (11). Furthermore, OCD event

labels were registered as point events. Thus, we have no information

on the duration of the events. OCD events were defined as a time

window from 5 min prior to the event tag to the event tag (see

Figure 2). To ensure no overlap of OCD events and nonevents,

we created a buffer period by removing 5 min of data (tags and

physiological signals) after each event tag. Nonevent windows of

5 min were randomly sampled from the remaining time periods.

We sampled a minimum of three nonevents from each recording

session to ensure data from each day was included.

In total, we extracted 66 features from each 5-min window

(see Supplementary Table S3 for full list and descriptions). BVP

contributed 24 features; HR contributed 9; 5 came from skin

temperature and 28 come from EDA. All 66 features were included

in the models. All extracted features were standardized to zero

mean and unit variance.

2.4.1. Model training
We treated the prediction of OCD events as a binary

classification problem, in which each 5-min window was

considered an independent observation marking either an OCD

event or non-OCD event. Due to the limited amount of data,

we employed nested cross-validation with the outer and inner

layers being a random 10-fold-cross-validation. Within each fold,

the positive observations (OCD events) in the training set were

over-sampled to match the number of negative observations

(non-OCD events). Nested cross-validation uses the outer layer

to evaluate the performance of the models trained on the inner

layer and selects the best model and hyperparameters using

the inner layer in an iterative process (see more information in

the Supplementary Table S4). Using this nested cross-validation

method, we evaluated three scenarios representing different

clinical applications (Figure 3). Specifically, the data were split into

training, validation, and test sets: (1) In the time-split scenario (B

in Figure 3), the first 75% of observation days for all participants

formed the training set, the next 12.5% of the observation

period was designated as the validation set and the final 12.5%

of the observation period formed the hold-out test set. Model

performance was based on 10 repetitions with the same hold-out

set. With this evaluation method, we assessed model performance

as if it were trained on 5 weeks of all patient data, and then used

to detect future OCD events for the same patients. (2) In the

participant-split scenario (C in Figure 3), the inner layer models

were trained on all but two participants, which served as the

validation and test sets and outer layer was leave-one-subject-out.

With this evaluation method, we assessed model performance

as if it were trained on specific patients in the clinic, and then

used to detect OCD events in new patients. The time-split and

participant-split scenarios were also compared to a random-split

scenario (A in Figure 3), in which data were randomly split into

training (75%), validation (12.5%), and test sets (12.5%). Model

performance for random and participant-based cross-validation

was evaluated as the average of the testing folds of the outer

layer. For participant-based model performance, the average was

weighted by the population percentage of each patient.

(3) In the personalized time-split scenario (D in Figure 3),

a separate model was trained for each individual using the

first 75% of the individual’s observation period for training and

the subsequent two 12.5% sets of the observational period for

validation and test sets. With this evaluation method, we assessed

model performance as if it were trained on about 5 weeks of data,

and then used to detect future OCD events for the same patient.We

compared the performance of personalized predictive models with

the performance of the temporal generalized models. To explore

the differences betweenmodel performance for each participant, we

calculated the mean increase by subtracting the personalized model

performance metrics from the generalized model performance

metrics and performed t-tests. However, we note that the sample

size is too small to draw any conclusions from these tests. These

analyses were exploratory to inspire hypotheses to be tested in

sufficiently large samples.

In each scenario, the outer layer estimated model performance

on the hold-out test set using the following metrics: accuracy,

F1-score, precision, recall, and area under the receiver operating

characteristic (ROC-AUC). These metrics are defined in Section

7 of the Supplementary material. The inner layer compared

the performance of feedforward neural networks (NN), logistic

regression (LR), random forest (RF), and mixed-effect random

forest (MERF) model and selected the best performing model and
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FIGURE 1

Model development flowchart. Physiological signals—blood volume pulse (BVP), heart rate (HR), electrodermal activity (EDA), and skin temperature

(TEMP)—from waking periods were preprocessed and then segmented into 5-min windows. Next, 66 features were extracted and entered into

supervised machine learning models, which classify the 5-min segments of physiological data as OCD events or nonevents and are OCD events.

FIGURE 2

Windowing strategy. OCD events (green box) were defined as the 5-min window prior to patient tags (vertical red line). The 5 min following patient

tags were designated as bu�er zones (red box) meaning they could not be OCD events nor non-events. Five minute segments following the bu�er

zones were designated as non-events (blue box).

hyperparameters based on accuracy. These models were chosen as

a starting point to explore the feasibility of detecting OCD events

in-the-wild. The size of our sample was not ideal for training

generalizable models. Nonetheless, we experimented with a simple

deep learning technique, NN. Given our small sample, LR and RF

are most suitable as they are less prone to overfitting (32). MERF

can account for relationships within clustered, longitudinal data.

2.4.2. Evaluation of feature importance
To examine feature importance and increase interpretability

of our models, we plotted SHapley Additive exPlanations (SHAP)

values (33) for the random cross-validation models. Positive

SHAP values indicate that features have a positive impact on

the prediction of a model, i.e., leading the model to classify

an observation as an OCD event (33). Negative SHAP values

negatively impact prediction, i.e., influencing the model to classify

an observation as a nonevent (33).

2.4.3. Features during controlled OCD events and
nonevents

We extracted the most important features for differentiating

OCD events from nonevents in-the-wild from data collected in the

laboratory at T1 under conditions of rest and exposure, in which

OCD symptoms were evoked. Using data from 5 min of the resting

period and the first 5 min of the exposure period, we created box

plots to examine differences in features between conditions of rest

and exposure. Five of eight participants had E4 recordings under

these controlled conditions. The exposure phase of the start and

stop time of the exposure sessions were identified using the video

recordings of the sessions. Three participants were removed from
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FIGURE 3

Cross-validation strategies. Models using random cross-validation (A), generalized predictive models (B, C) and personalized predictive models (D)

were trained. Temporal generalized models (B) and personalized predictive models (D) used a leave-1-week-out strategy. The participant-based

generalized predictive models (C) used a leave-one-person-out strategy. This figure is a modified version of the figure published in Olesen et al. (27),

which was published under the terms of Creative Commons Attribution 4.0 license.

this analysis as either their exposure session video was missing or

the E4 timestamps did not align with the video timestamps.

2.4.4. Power analysis
To estimate the amount training data needed to achieve a

certain level of performance, we fitted the inverse power law to

the measured performance metrics as a function of the number

of observations (34). The performance metrics are expressed as

accuracy, F1-score, precision, recall and ROC-AUC. To remove

the uncertainty of between participant variance, we calculated

performance levels by using personalized models. Models were

run several times: once using 100% of the participant observations

and five times using incrementally down-sampled observations
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TABLE 1 Descriptives for naturalistic data collection from adolescents (ages 10–16 years) with OCD.

ID Sex Age group N Tags N hours N days Mean hours/day Mean N tags/hour

0 M 10-12 26 233.32 36 6.48 0.11

1 M 10-12 313 372.09 35 10.63 0.84

3 F 10–12 9 29.03 4 7.26 0.31

4 M 10–12 6 336.71 35 9.62 0.02

5 M 13–16 38 118.65 29 4.09 0.32

6 F 13–16 73 419.34 47 8.92 0.17

7 F 13–16 238 521.33 48 10.86 0.46

8 F 13–16 936 374.93 36 10.41 2.50

repeated ten times. We down-sampled the training data to 10, 25,

50, 75, and 90% through stratified random sampling to maintain

the same class (OCD event, nonevent) distribution. Thus, we ran

models for participants with many observations (OCD events and

nonevents). The test set was held constant in all models.

3. Results

3.1. Acceptability

Details of the amount of data collected from the biosensors are

presented in Table 1. Eight of the nine participants wore the E4

for at least four days outside of the clinic. One participant did not

wear the E4 at all outside of the lab visits. The group wore the E4

for 270 days totaling 2, 405 full hours of physiological signals. The

retention rate for wearing the biosensor in everyday life for up to 8

weeks (seven out of nine patients, 78%) was just under our criterion

for success (80%), but 0.8 is within the 95% CI (0.4, 0.97) of our

estimated retention rate.

During the observation period, participants registered 2,146

OCD events using the event tag button on the E4. Patients did

not report any false or accidental registrations/ tags. Plots of

number of tags per hour over the 8 week observation period

show the frequency of OCD event tags of each participant (see

Supplementary Figure S2). The frequency of tags appeared to

decrease over the observation period for three participants. Two

participants showed varied tagging behavior over the 8 weeks. OCD

event tagging for two other participants was consistently low across

the observation period with occasional increases in tagging.

The most represented OCD symptom types in our sample

were forbidden thoughts, followed by symmetry, and then cleaning.

Hoarding was rare, but a dominant symptom for one participant.

OCD symptom types, counts, and severity for each patient assessed

prior to data recording are displayed in Supplementary Table S1.

Figure 4 shows the correlations between the total symptom

count, OCD symptom severity, age and number of tags per

hour. None of the p-values were significant. However, there were

medium-sized, positive correlations between the number of OCD

event tags per hour and participant age as well as the total

OCD symptom count. Additionally, there was a medium-sized,

positive correlation between age and total OCD symptom count.

The number of tags per hour was not related to OCD severity.

However, positive, medium-sized correlations were found between

number of tags per hour and the degree of interference from

OCD symptoms (rho = 0.40, p = 0.25) and number of forbidden

thought-related symptoms (rho = 0.71, p = 0.03). Negative, medium

sized correlations were observed between distress due to OCD

symptoms and number of physiological data hours per day (rho =

−0.55, p = 0.12). All correlations between variables are displayed

in Supplementary Table S2 and discussed in Section 4 of the

Supplementary material.

3.2. Model performance

3.2.1. Generalized predictive models
In total, 1, 639 OCD events and 2, 739 nonevents were

sampled from all participants. The performance of detecting OCD

events using different cross-validation strategies (random split,

participant split, and time-split) is shown in Figure 5. Using a

10-fold random cross-validation, the average test accuracy was

higher than 70%. However, the F1-score was just under 60%,

primarily due to low recall. The recall was 50%, indicating

that only half of the tagged events were detected on average.

The precision was 66% indicating that one in three positive

predictions were false positives. The average AUC-ROC was

0.8, indicating that the classifiers generally ranked the tagged

events higher than the negative observations. Thus, the detection

threshold might be adjusted to increase the recall. Based on the

ROC curves, the detection threshold can be adjusted to detect

90% of all tagged events at the cost of falsely detecting half

of the negative observations (Supplementary Figure S3A). The

performance measures of the participant-based cross-validation

were all lower than the random cross-validation, indicating that

the generalization across participants was poor. In contrast, the

generalization to new data from the same participants of the

temporal cross-validation was comparable to the performance

of random cross-validation in terms of accuracy and F1

score. A notable difference was that the recall was higher

and the precision was lower for the temporal cross-validation

than for random cross-validation, indicating that more positive

predictions were made using temporal cross-validation. This

was also reflected in the temporal cross-validated ROC-curves

(Supplementary Figure S3B). A standard detection threshold falsely

predicted a third of the negative cases (non-OCD events) as positive

cases (OCD events) while obtaining a recall of 70%. However, when
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FIGURE 4

Spearman rank-correlations between the total symptom count, symptom severity, age, and number of tags per hour.

the detection threshold was adjusted to obtain a recall of 90%, half

of the negative observations were still falsely detected, similar to

random cross-validation. Thus, while the generalization to newly

recorded data was good, it made the models more prone to false

positives.

Figure 6 shows the maximum average validation accuracy

for each model type in the inner-layer validation sets. For all

cross-validation strategies tree-based models achieved the highest

accuracy. Particularly, the MERF model outperformed a normal

random forest model for random and temporal cross-validation as

the MERF model may have used between patient variations during

predictions. However, for participant-based cross-validation, the

MERF models had not previously seen data from the test

participant and defaulted to a normal random forest classification

without any hyperparameter optimization leading to relative worse

performance.

3.2.2. Personalized predictive models
The results per participant of personalized models averaged

over 10 repetitions are displayed in Table 2. The accuracy of

personalized models was below the accuracy obtained by simple
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FIGURE 5

Average model performance for di�erent cross-validation strategies. Error bars denote the standard error of the mean. For random and

participant-based cross-validation, model performance was estimated using outer folds. For temporal cross-validation, model performance was

based on 10 repetitions with a holdout set. For participant-based models, the performance results for each participant were weighted by their

population percentage. The accuracy obtained by majority guessing is denoted by the dashed line.

FIGURE 6

The maximum of the average validation accuracy for each model type on the inner-layer validation sets. Error bars denote the standard error of the

mean. Dashed lines indicate the average value accuracy obtained by majority guessing.

majority guessing for all participants except one. The model

accuracy for the remaining participant was similar to majority

guessing. This indicates that even personalized models trained

on a small training set with few tagged events predicted some

OCD events. However, the F1-score for most of these personalized

models, with<50 tagged events, was 0, meaning that all predictions

were false positives. The only exception was Participant 0 who

achieved an average recall of 0.8, which means that eight of

the 10 models correctly identified the tagged event. Personalized

models for participants with 313 and 238 tagged events correctly

identified some tagged events. However, the models suffered from

false positives and false negatives. For one of these participants,

the models identified 20% of the tagged events on average

and one in five of the predicted OCD events were correct.

For the other participant, the results were slightly better. Sixty

percent of all tagged events were detected on average, and two

in five of the predicted OCD events were correct. For the

participant with 936 tagged events, personalized models detected

an average of 80% of all OCD events. However, the models

still suffered from false positives, as every other OCD prediction
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TABLE 2 Comparison of personalized and temporal generalized model performance per participant with oversampling of OCD events.

Participant 0 1 3 4 5 6 7 8

N train tags 25 296 9 4 37 72 223 867

N test tags 1 17 0 2 1 1 15 69

Accuracy

Mean personal 0.84 0.57 0.68 0.87 0.80 0.83 0.54 0.56

Mean temporal 0.89 0.63 0.55 0.92 0.84 0.89 0.58 0.56

Mean temporal increase 0.06 0.06 −0.13 0.05 0.04 0.06 0.04 0.00

p-value 0.33 <0.01 0.01 0.01 0.51 0.17 0.11

F1-score

Mean personal 0.51 0.47 0.00 0.00 0.00 0.00 0.23 0.61

Mean temporal 0.07 0.45 0.00 0.07 0.32 0.05 0.48 0.62

Mean temporal increase −0.43 −0.02 0.00 0.07 0.32 0.05 0.25 0.01

p-value 0.01 0.35 – 0.19 0.01 0.17 <0.01 0.41

Precision

Mean personal 0.44 0.38 0.00 0.00 0.00 0.00 0.22 0.50

Mean temporal 0.04 0.42 0.00 0.05 0.24 0.03 0.39 0.50

Mean temporal increase −0.39 0.03 0.00 0.05 0.24 0.03 0.17 −0.00

p-value 0.02 0.03 – 0.18 0.03 0.17 <0.01 0.97

Recall

Mean personal 0.80 0.59 0.00 0.00 0.00 0.00 0.24 0.77

Mean temporal 0.20 0.48 0.00 0.15 0.60 0.20 0.63 0.81

Mean temporal increase −0.60 −0.11 0.00 0.15 0.60 0.20 0.39 0.04

p-value 0.01 0.01 – 0.19 0.01 0.17 <0.01 0.21

Area under the ROC

Mean personal 0.88 0.62 0.00 0.12 0.61 0.46 0.46 0.58

Mean temporal 0.92 0.68 0.00 0.79 0.85 0.64 0.57 0.57

Mean temporal increase 0.04 0.06 0.00 0.67 0.24 0.18 0.11 −0.01

p-value 0.58 <0.01 – <0.01 <0.01 0.05 <0.01 0.11

Note. Significant p-values of a two-tailed t-test for a difference in means are denoted by italics when temporal generalized models have better performance or bold when personalized models

have better performance.

was a false positive and the F1 scores indicated poor model

performance overall due to the small number of observations

available.

3.2.3. Comparative model performance
The personalized predictivemodels were compared to temporal

generalized models. The per participant results of temporal

generalized models and personalized models averaged over 10

repetitions are displayed in Table 2. For all participants, except

one, temporal generalized models gained a small increase in

accuracy compared to personalized models. However, this increase

was only significant for two participants (1 and 4). For another

participant (3), the accuracy of the temporal generalized model

decreased significantly compared to personalized models. These

results suggest that the temporal generalized models classified

more events as OCD events that were actually non-OCD events,

i.e., false positives. For most participants, temporal generalized

models made more positive predictions than personalized models.

Temporal generalized models marginally improved performance

in terms of precision and recall for most patients with few tagged

events. Figure 7 summarizes the relationship between the number

of tagged events and precision and recall for temporal generalized

models and personalized models, Precision and recall increased

significantly for Participants 5 and 7 and slightly for Participants 4

and 6. However, given the small amount of positive observations

or OCD events in the test set for these participants conclusions

cannot be drawn. Moreover, for Participant 1, recall decreased

and precision increased significantly as the temporal generalized

models made fewer positive predictions. Similarly, precision and

recall for patient 0 decreased significantly due to fewer positive

predictions.
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A B

FIGURE 7

Average precision and recall over 10 repetitions, as a function of the number of tagged OCD events, per adolescent of personal (blue) and temporal

generalized (orange) models. Error bars denote the standard error of the mean. (A) Precision. (B) Recall.

AUC-ROC values showed a significant increase when temporal

generalized models were used for all patients except for Particitant

0, in which the increase was minor and for Participant 8, in which

there was a non-significant decrease.

Figure 8 illustrates the receiver operating characteristics for

patients 0, 1, 5, and 7. The average false positive rate required

to detect most OCD events was reduced when using temporal

generalized models compared to personalized models. Particularly,

for Participant 0 (Figure 8A), temporal generalized models

correctly classified the tagged OCD event in the test set with an

average false positive rate of 7.7%. However, personalized models

had an average false positive rate of 11.5%. For Participant(s) 0

(Figure 8A), the tagged OCD event in the test set would be among

the first three predicted events for all temporal generalized models.

Although improvements were generally seen for all patients,

the performance for Participant 8 was virtually unchanged. We

hypothesize that this was because the temporal generalized models

were being dominated by this participant due to their relatively

larger amount of data.

Figure 9 shows the average performance per patient of

personalized and temporal generalized models, with and without

down-sampling of data from other patients to match the amount

of data from the participant under evaluation. Down-sampling

resulted in a boost in F1-score as seen when we included all

data from other participants. However, down-sampling did not

achieve a similar performance in accuracy or AUC-ROC.Moreover,

the variation in performance between repetitions was greatly

reduced using down-sampling of each participant, suggesting that

performance was more consistent across patients albeit slightly

worse on average.

3.3. Feature importance

To gain a better understanding of how the predictive models

arrived at their classification decisions for OCD/ non-OCD events,

we obtained SHAP values for the random cross-validation model.

The SHAP values are derived from the models selected in the inner

layer. For the random models, MERF was selected in all 10 folds of

the inner layer and, thus, the SHAP values were derived fromMERF

classification. Figure 11 shows the SHAP values of the 20 most

important features. Features related to the slope of the BVP signal

were the most important features, followed by features related to

the frequency content of the BVP signal and the variation of the

BVP signal. Although other cross-validation strategies can affect

the order of these the most important features were consistent

across the three validation strategies: features related to the slope

of the BVP, the frequency content of the BVP, and the variation

of the BVP. The SHAP values for participant-based and temporal

generalized models are presented in Supplementary Figures S4, S5.

The plots also show that high (orange dots) and low (blue dots)

values of features had the same probability for predicting an OCD

event. This illustrates the difficulty of predicting OCD events in-

the-wild and highlights the need for nonlinear multivariate models.

3.4. Power analysis

We down-sampled the amount of training data on personalized

models for the three participants with the most observations

to ensure sufficient OCD events in the test set (see Table 2).

Figure 10 shows the evolution of the performance metrics for

these three participants as a function of the percentage of training

data used for training. For Participant 1 and 8 (Figures 10),

the accuracy, ROC-AUC, and precision quickly reached their

asymptotic values suggesting that increasing the amount training

data would not improve these performance metrics. However, the

recall and F1-score increased with more training data. Together,

these performance metrics suggest that these models could learn

to detect more OCD events with more training data, but the

test set had some nonevents that become false positives with

increased sensitivity. For Participant 7, performance metrics
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A B

C D

FIGURE 8

Ten repetitions of the receiver operating characteristics (ROC) for detecting OCD events in adolescents using personal (blue) and temporal

generalized (orange) models. (A–D) Participant 0, 1, 5, and 7.

reached asymptotic values using 10% of the training data. Indeed,

the curve fit for accuracy, F1-score, precision, and recall decreased

with additional training data. However, this decrease may be

a random effect as the asymptotic values had been reached.

As discussed in Section 3.2.3, model performance increased for

Participant 7 when training data from other participants was

included using temporal generalized models. This indicates that

for some individuals additional data was not sufficient to improve

performances and data from other participants may be needed.

One reason for this could be a significant change in the data

between training and test sets perhaps due to illness or a change

in the environment of the participant at test. Using random cross-

validation for Participant 7, the performance metrics generally

improved with additional data as expected. The maximum recall

was still obtained using only 10% of the data. However, the variance

from repeated experiments was high indicating that there was

significant change in the data for this participant. One explanation

for the change in data may be that frequency of registering

OCD events changed over the observation period as shown in

Supplementary Figure 1.
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FIGURE 9

The average performance for detecting OCD events per participant of personalized, temporal generalized, and temporal generalized models, in

which the training data from other participants has been down-sampled to match the data amount from the participant under evaluation.

3.5. Comparison of features: rest vs.
exposure

The box plot in Figure 12 displays group differences in the most

influential features in the prediction models under conditions of

rest and exposure in the lab. For a few of the features (related to

BVP slope and frequency content), the box plots show differences

between conditions. Generally, the raw signals did not differ

visually between conditions (see Supplementary Figure S6). Heart

rate in the rest condition was higher than in the exposure condition

for the group, but HR features were not among the most influential

in the predictive models from the in-the-wild data. This was

supported by additional plots (shown in Supplemental Figure S8).

Note that on the individual level, changes in heart rate

differed across individuals (see Supplemental Figure 9). For some

individuals heart rate was higher in the exposure condition

compared to the rest condition toward the end of the five minutes.

For one individual, heart rate was markedly higher in the exposure

condition compared to the rest condition after one minute, but

higher in the resting condition after three minutes.

4. Discussion

This feasibility study explored whether OCD episodes can be

detected in the everyday lives of adolescents with OCD using

physiological signals from a wrist worn biosensor. Previous studies

have used wearable biosensors to capture OCD-related behavior

in highly controlled settings or using several conspicuous sensors

(13, 17). OCD episodes were defined as any time the individual

felt stressed by their OCD symptoms. To be able to detect OCD

episodes, children and adolescents with OCD would need to be

willing to wear the biosensor during their everyday lives. The

retention rate for wearing the biosensor in everyday life for up to 8

weeks was just under our criterion for success. Of the nine included

participants, one refused to wear the wristband outside of the clinic

and one dropped out of the study after four days of wearing the

biosensor. In one case, symptoms of Asperger syndrome may have

played a role in the resistance to wearing the biosensor. Given

that we only have one case example and another study managed

to collect an average of 10 consecutive days of E4 data from 20

adolescents (6–17 years) with autism in inpatient care, exploring

the use of wrist worn biosensors in adolescents with autism

spectrum disorders is still relevant. In the other case, the adolescent

was concerned about the biosensor revealing information about

them that they did not want to reveal. Such privacy concerns can

be addressed in future trials by explaining more clearly how the

biosensor and machine learning methods work.

The eight participants who wore the biosensor, wore it for an

average of 33.75 days and 8.5 h per day. This rate of 60% of the total

number of days of observation exceeded our success criterion of

at least 30%. This rate reflects the participants’ willingness to wear

the biosensor, and thus, the tolerability of the biosensor, as well as

missed days due to logistical issues with exchanging biosensors full

of data for empty ones. Nonetheless, the adolescents in our sample

with OCD, wore the biosensor longer than adolescents of a similar

age in a weight management study (35). These results provide

preliminary support that adolescents with OCD are willing to wear

a biosensor to monitor OCD symptoms for an extended period of

time. To use the biosensor as an objective measure of OCD-related

distress or time occupied by OCD symptoms, which comprise four

items on the gold standard measure of OCD symptom severity

(CY-BOCS), the adolescents in this study wore the biosensor for

more than enough time. The CY-BOCS requires respondents to

estimate how much obsessions/compulsions caused distress and

occupied their time in the past week on a likert scale (6). Most

adolescents in our study demonstrated that they could wear the

biosensor for seven consecutive days. A number of hypotheses

can be drawn from our exploratory study. We found a medium

sized, yet non-significant, negative correlation between distress due

to OCD symptoms and number of biosensor signal hours per

day. Future studies with sufficiently large samples may test the
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FIGURE 10

Estimated amount of training data required to achieve the given performance level in accuracy, F1-score, precision, recall, and ROC-AUC. Inverse

power law fit to the performance levels obtained by using personal predictive models for Participants 1 (A), 7 (C), and 8 (B) (34) and random

cross-validation for Participant 7 (D). In all personal predictive models, the test set was held constant regardless of the amount of training data. In

random cross-validation the testset was selected randomly from the sampled data. 100% training data equals 523, 754, and 1, 954 for Participants 1,

7, and 8, respectively. Experiments were repeated 10 times.

hypothesis that youth who report higher levels of distress in the

OCD symptom severity interview (CY-BOCS) wear the biosensor

less than adolescents with lower levels of OCD distress.

Participants tagged an average of 205 OCD events over the

entire period with nearly 6 tags per day. The frequency of

tags appeared to decrease over the observation period for three

participants. The frequency with which participants tagged OCD

events varied within our sample. OCD event tagging for two

participants was consistently low across the observation period

with occasional increases in tagged events. Two other participants

showed varied frequency of event tagging over the 8 weeks. None

of the participants reported accidentally pressing the event mark

button to tag an OCD event (i.e., a false positive). In our sample,

adolescents who were older, endorsed more forbidden thought-

related symptoms, endorsed more OCD symptoms in general and

rated symptoms as more functionally impairing tended to tag more

OCD events per day. The association between time occupied by

OCD symptoms and number of OCD events per day was smaller.

These preliminary findings support the clinical phenomenology of

OCD in youth that number of symptoms are not associated with the

time occupied by OCD symptoms as reported in clinical interviews

(36). The associations between age, symptom load, time spent on

OCD and frequency of OCD symptom disturbance registered in

real time is worth testing in a larger sample. Hence, more objective

Frontiers in Psychiatry 14 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1231024
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Lønfeldt et al. 10.3389/fpsyt.2023.1231024

FIGURE 11

SHAP-values for the 20 most important features in the random cross-validation. SHAP values were derived from MERF models selected in the inner

layer. Features are listed along the Y-axis in order of magnitude of impact on model predictions.

FIGURE 12

Boxplot of values of important features obtained from the SHAP analysis in random cross-validation (Figure 11) for rest and exposure conditions in

the lab.
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measures of symptom load and time occupied with OCD may be

plausibly developed in the near future.

Our preliminary results suggest that detection of OCD events

in the wild is possible. We compared four models’ ability to classify

OCD-episodes: a neural network, logistic regression, random

forest and mixed-effect random forest. The tree-based models

(RF and MERF) demonstrated the best performance and reached

our success criterion for feasibility of 70% accuracy. Models

performed better when generalizing across time than generalizing

across patients. However, generalized temporal models trained on

multiple patients outperformed personalized models trained on

a single patient. Furthermore, generalization to new times made

models more prone to false positives. Given the current levels

of false positives, these models cannot be applied to the task of

delivering momentary interventions, but these models may be

useful in assessing treatment progress.

Future attempts will benefit from finding strategies for reducing

the number of false positives. Apart from training the models on

data from more patients, one possible way of reducing the number

of false positives is including training data from control participants

without an OCD diagnosis. Our preliminary results also suggest

that future studies aiming to detect OCD events in newly recorded

data will require a large number of labeled OCD-episodes or a

different modeling approach. For example, a time-series approach

would retain more data and may better account for the temporal

variation. A study predicted aggression in 20 adolescents with

autism using a time-series approach with promising results (16).

Notably, the study also used behavioral observations to mark the

start and stop times of aggressive events (16). Measuring the

duration of events has the advantage of more precision in when

the event of interest is occurring and when not. However, it is also

more labor intensive than pushing a button once.

The most influential features in our models included features

related to the slope, the frequency content of the BVP, and the

variation of the BVP. Our comparison of these features under

controlled conditions of rest and exposure showed differences

in features related to slope of the BVP, the frequency content

of the BVP, and the variation of the BVP, supported the

feature importance results. In some instances the direction of

the effects were in opposite directions, which could be expected

when comparing non-linear modeling with univariate box plots.

Surprisingly, the raw heart rate signal in a subsample (n = 5)

of our participants tended to be higher during conditions of rest

than during exposure (Supplementary Figure S8).We would expect

the exposure to be more stressful and result in a higher heart

rate. However, the sample size was small. For some individuals at

certain times during the five minutes, heart rate was higher during

exposure than during rest. Still, we cannot rule out that events

preceding the resting period did not contaminate the resting period

or that. Some of our participants found the resting period, in which

they were asked to sit quietly and still, more stressful or arousing

than the exposure task. Alternatively, this unexpected result may be

due to only using the first 5min of exposure. This preliminary result

is difficult to compare with previous findings due to the scarcity

of research in this area and methodological differences. A previous

pilot study observed higher heart rate during exposure than during

benign activities and recovery in five adolescents with OCD (17).

Although it was not possible to perform a traditional sample

size calculation to plan future studies that aim to detect OCD or

similar events, we performed a power analysis that investigated

the amount of training data (events and nonevents) that would

be needed to adequately train classification models to differentiate

OCD events from nonevents. The results of these analyses were

inconclusive, thus, we are unable to recommend a specific training

set size for future studies. However, these analyses indicate that

for some individuals more training data would improve model

performance. For others, the low quality of the data hampered

accurate classification. Low data quality may have stemmed

from changes in participant behavior, as observed by changes in

frequency of registered OCD events, and changes the environment

that impacted the physiological signals such as illness, vacation, and

seasonal changes. In these cases, transfer learning may improve

classification, in which data from other individuals is applied

to individual problematic data. Transfer learning will require a

large sample of participants and observations. In general, more

information is needed about nonevents, such as periods of physical

exertion or non-OCD related stress.

This study had limitations that should be taken into account.

The size of our sample does not allow any conclusions to be drawn

from statistical analyses or machine learning model performance,

other than toward its feasibility. Another limitation of the design

of the study was that we did not collect systematic information

about skin tone. A previous study has demonstrated that the PPG

sensors with green light, as the one used in the present study,

had increased measurement error with darker skin tones (37).

Thus, any future study should systematically collect information

of skin tone and if possible adjust for or at least assess the

measurement error this introduces. A third limitation was the

uncertainty of the duration of OCD events. Participants marked

events as a single moment in time by pressing a button and

we set a 5 min window before the marked time points. This

labeling technique was not labor intensive for the participants

or the researchers. Future studies may weigh the advantages of

obtaining more precise measures of OCD event duration by

asking participants to register more detailed information about

OCD events.

5. Conclusion

Preliminary results from machine learning modeling using

physiological signals as input suggest that OCD events can

be distinguished from non-OCD events in the the daily

lives of adolescents. The results of this feasibility study have

produced hypotheses to be addressed in larger studies. One

set of hypotheses could involve specific OCD symptoms,

in terms of content and form, that can be measured with

a wearable biosensor. Future studies would also benefit

from investigating whether specific clinical presentations

are contraindicated for using wrist worn biosensors for

symptom monitoring. Future modeling endeavors may

benefit from more registered OCD events and a time-series

modeling approach, which will require more certainty in data

labels.
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