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Introduction: The sex difference in alcohol use disorder (AUD) is ingrained 
in distinctive neurobiological responses between men and women, which 
necessitates further investigation for a more tailored management.

Methods: Minding the findings of iron dysregulation in AUD and the sex difference 
in iron homeostasis in multiple physiological and pathological settings, we 
examined the sex difference in the association between serum ferritin and blood 
alcohol concentration (BAC) in intoxicated males (n = 125) and females (n = 59). 
We included patients with both serum ferritin tested of any value and a BAC above 
the level of detection during the same hospital admission period. We investigated 
sex difference in the relationship between BAC, serum ferritin and liver enzymes 
in intoxicated critically ill and noncritically ill patients.

Results: We found a negative association between serum ferritin and BAC in 
critically ill, intoxicated females [R2 = 0.44, F(1,14) = 11.02, p = 0.005], with much 
attenuated serum ferritin in females compared to their male counterparts (194.5 
± 280.4 vs. 806.3 ± 3405.7 ng/L, p = 0.002). We found a positive association 
between serum ferritin and liver enzymes [alanine transaminase (ALT) and 
aspartate transferase (AST)] in critically ill intoxicated females [ALT: R2 = 0.48, 
F(1,10) = 9.1, p = 0.013; AST: R2 = 0.68, F(1,10) = 21.2, p = 0.001] and in noncritically 
ill intoxicated males [ALT: R2 = 0.1, F(1,83) = 9.4, p = 0.003; AST: R2 = 0.1, F(1,78) 
= 10.5, p = 0.002]. The effect of BAC on serum ferritin was not mediated by ALT 
[indirect effect: (B = 0.13, p = 0.1)]. We also found a significant effect of sex, 
anemia, intensive care unit (ICU) admission and mortality on serum ferritin.

Discussion: Our results suggest that high BAC in intoxicated female patients 
is associated with attenuated serum ferritin levels, questioning the role of low 
serum ferritin in female vulnerability to alcohol.
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Introduction

Hazardous alcohol drinking is associated with numerous medical consequences and a 
substantial socioeconomic burden (1, 2). The prevalence of maladaptive drinking patterns and 
alcohol use disorder (AUD) has always been higher in men. However, over the past decade, 
this disparity in prevalence began to close in women’s favor, with nearly equal prevalence 
among adolescents (3–7). Sex difference in AUD is not only displayed in different prevalence 
but rather ingrained in distinctive neurobiological responses (8–10). Several studies show a 
telescoping effect in women since they exhibit more vulnerability to alcohol; with sooner 
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progression to alcohol-related disorders at less drinking levels 
compared to men (11, 12). Nevertheless, this concept has been 
questioned by studies that showed shorter time to dependence in 
men, issuing the need for larger sample sizes and enrollment of more 
women (13).

Despite the controversy around sex difference in alcohol 
consumption-related clinical course, anatomical and pathological 
differences still hold true (9). In a 12 year prospective cohort study of 
almost 13,000 participants consuming alcohol, women, compared to 
men, displayed significantly higher risk of developing alcohol-induced 
liver injury and cirrhosis (14). In addition, in a study of 643 patients 
with alcohol dependence (225 females vs. 418 males), sub-regions of 
amygdala and hippocampus showed different volumes between both 
sexes (15). Several preclinical studies have shown female sex 
vulnerability to ethanol exposure with more neuronal injury, cell 
death and distinct alterations in neurotransmitters response and 
neuronal activities (16–18). As such, the underlying pathophysiology 
for sex difference in AUD and its related disorders is under intense 
investigation to achieve better understanding for the neurobiology 
and develop a more tailored and targeted treatment.

The intriguing relationship between alcohol consumption and 
iron homeostasis has received attention over the past decades (19). In 
a large study of 1,134 men and 2,241 women, both showed high levels 
of serum iron and serum ferritin specifically in subjects who had met 
criteria for alcohol dependence, suggesting that chronic alcohol intake 
has an effect on body iron stores (20). Similarly, Milman and Kirchgoff 
showed high serum ferritin concentration in healthy fit men 
(n = 1,044) and women (n = 1,191) with alcohol intake (21). Yet, the 
relationship between chronic alcohol drinking and iron homeostasis 
is complex. For example, while alcoholics are reported to have high 
serum ferritin and transferrin saturation (22), we still observe high 
prevalence of iron deficiency and iron deficiency anemia in these 
patients (23).

Several lines of evidence suggest that alcohol interferes with iron 
homeostasis. Dysregulated iron economy seems to contribute to a 
number of alcohol-related disorders, particularly those that affect the 
liver and the brain (24). Rich body of literature discusses the role of 
iron overload with alcohol consumption in alcohol-induced liver 
disease (ALD) (25–28). On the other hand, the effect of alcohol on 
brain iron has surprisingly received less attention. A small study in 20 
males with AUD showed iron accumulation in basal ganglia and 
dentate nucleus (29). One recent large study utilized data from the 
United Kingdom Biobank to quantify brain iron content in a cohort 
of 20,729 patients showed higher brain iron deposition and worse 
cognitive functions in patients with moderate alcohol consumption 
(more than 56 g/week or roughly one drink/day) (30).

Subtle differences in iron metabolism between males and females 
have been documented under normal physiological conditions as well 
as during different neurological disorders such as normal aging-
related cognitive decline, Alzheimer’s disease, multiple sclerosis, 
Parkinson’s disease, and stroke (31). Indeed, one study showed 
sex-specific association between brain iron content and cognitive 
decline in aging-related iron disturbance (32). In a study of healthy 
individuals (93 males and 72 females), there was a significant increase 
in brain ferritin iron in the basal ganglia and hippocampus associated 
with aging, however women showed much lower brain ferritin than 
men (33). Interestingly, the kidney and liver of aging female rats 
showed higher expression of ferritin than in males (34). Moreover, 

age-related changes of serum ferritin showed a sex difference in a 
study of 20,000 individuals (35).

Ferritin is a unique iron storage protein that has a fundamental 
role in iron homeostasis, including regulation of brain iron content. 
Ferritin has been a molecule of growing interest in the field of 
neurodegenerative disorders and neurotoxicity due to its pivotal role 
in the newly identified process of ferroptosis (36, 37). Ferroptosis is a 
form of iron-dependent cell death that has been recently pointed out 
in several animal studies as a potential culprit in alcohol-related 
complications, including acute ethanol exposure-induced 
cardiomyopathy (38), alcohol-induced liver injury (39), and alcohol-
induced depression and anxiety (40). High serum ferritin was 
associated with ferritin degradation in hepatocytes in animal models 
exposed to alcohol, releasing ferrous iron, producing reactive oxygen 
species (ROS) through Fenton reaction, and activating ferroptosis (41, 
42). The recent accounts on the relation between alcohol and 
ferroptosis and the involvement of ferritin requires taking a second 
look at alcohol-ferritin relationship.

This study aimed to shed light on the sex difference in the 
relationship between blood alcohol concentration and serum ferritin. 
The implication of clearing such a relation would be opening doors for 
studying the role of iron overload and ferroptosis in the sex difference 
in alcohol-related complications including cognitive impairment and 
neurotoxicity which would help directing AUD management towards 
a more targeted approach.

Methods

Patients and data collection

This study was approved by the Institutional Review Board (IRB) 
of the Mayo Clinic (ID#22-008591). All methods were performed in 
accordance with the relevant guidelines and regulations. Obtaining 
informed consent was waived by the IRB due to the retrospective 
nature of the study. Electronic medical records (EMR) of 184 adult 
patients (202 hospitalizations) who received medical care in the Mayo 
Clinic Health System (MCHS) from June 1, 2019, through June 1, 
2022. We included patients in the study if they had both serum ferritin 
tested of any value and a blood alcohol concentration (BAC) above the 
level of detection (11 mg/dL) during the same hospital admission 
period. The following data were extracted from EMR: demographics, 
reason for hospitalization, alcohol use disorder, psychiatric and 
medical comorbidities, hospital course, BAC, serum ferritin, liver 
enzymes, intensive care unit (ICU) admission, and mortality.

Statistical analysis

Continuous data were expressed as mean ± standard deviation 
while categorical data were expressed as percentage. The 
Kolmogorov–Smirnov and Shapiro–Wilk normality tests were used 
to test for normal distribution. To compare continuous variables 
between males and females, we used Student’s t test and Mann–
Whitney U test for normally distributed and non-parametric data, 
respectively. The chi-square test was used to compare categorical 
variables. For pairwise comparison, Bonferroni correction was used 
for multiple comparisons. Linear regression was used to test the 
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prediction effect of BAC and liver enzymes on serum ferritin after 
logarithmic transformation for the positively skewed ferritin, 
alanine transaminase (ALT), and aspartate transaminase (AST). 
We  also ran a comparison between coefficients of correlation 
between serum ferritin and BAC in both males and females to 
further verify the sex difference, using Danielsoper calculator based 
on Fisher (43). Analysis of covariance (ANCOVA) was performed 
to test the effect of sex, ICU admission, mortality and anemia on 
serum ferritin using ALT as a covariate. Mediation analysis was 
used to test if ALT mediated the relationship between serum ferritin 
and BAC in the female group. Sobel test was used to test the 
significance of the indirect relationship between ferritin and alcohol 
mediated by ALT. Analyses were performed with SPSS V26 software 
(Armonk, NY: IBM Corp). Results were considered significant at 
p < 0.05.

Results

Patient demographics

A total of 184 patients with 202 hospitalizations were sorted 
into two groups based on their sex, with 67.9% (n = 125) males and 
32.1% (n = 59) females. Both groups did not display significant 
differences in terms of their mean age (49.3 ± 14.2  in males vs. 
49 ± 12.7 in females), race, ethnicity, employment and marital status, 
or history of current or past nicotine use (32.8% in males vs. 28.8% 
in females). The “female” group had a higher level of education since 
6.8% of them had a Masters or PhD while none of the “males” group 
did (p = 0.003). Moreover, obesity [body mass index (BMI) of 
30.1–40 kg/m2] was more predominant in males: 28.8% vs. 15.3% 
within females (p = 0.04; Table 1). Patients were hospitalized for 
alcohol-related reasons (intoxication, mild or severe use, 
withdrawal, or alcohol-related disorders; 36.5% in males vs. 41.5% 
in females) among other reasons (worsening psychiatric conditions, 
suicidal ideation, suicidal attempt, drug overdose, fractures, 
coronavirus disease 2019 (COVID-19) infection, sepsis, and 
others), with no significant difference between the two groups 
(Table 2).

Alcohol use disorder, psychiatric and 
medical comorbidities

Female patients exhibited a significantly higher prevalence of 
alcohol use, abuse or intoxication compared to males (27.1% vs. 
11.2%, p = 0.006). However, there was no significant discrepancy as 
regards alcohol dependence, alcohol withdrawal syndrome, and 
alcohol-induced disorders. Psychiatric comorbidities were 
significantly predominant in 71.2% of females and 52% of males 
(p = 0.01). Although depression and anxiety showed a higher 
prevalence among females (47.5 and 44.1% vs. 30.4, 26.4% respectively, 
p = 0.02 for both), Schizophrenia, schizoaffective or bipolar disorder, 
delirium, and drug use were not significantly different between the 
two groups. Medical comorbidities were not significantly distinctive 
in the two groups. Nevertheless, a higher percentage of females 
showed anemia (62.7% vs. 34.4%, p < 0.001), specifically iron 
deficiency anemia (18.6% vs. 7.2%, p = 0.02; Table 3).

Hospitalization, ICU admission, mortality, 
serum ferritin concentration, blood alcohol 
concentration, and liver enzymes

All patients were hospitalized with no significant difference in the 
hospital length of stay (males vs. females: 15.1 ± 22.5 vs. 9.4 ± 6.8 days). 
In addition, 27.7% of males and 24.6% of females required ICU 
admission with no significant difference. Both groups ended up with 
insignificantly different ICU length of stay, mortality rate (males vs. 
females: 15.2% vs. 23.7%) and hospital admission-to-death interval 
(males vs. females: 207.1 ± 206.8 vs. 250.9 ± 140.3 days). Both males 
and females shared high but non-significantly different values of BAC 
(males vs. females: 217.2 ± 131.7 vs. 221.8 ± 137.8 mg/dL). However, 
compared to females, males had significantly higher levels of serum 
ferritin (806.3 ± 3405.7 vs. 194.5 ± 280.4 ng/L, p = 0.002) and liver 
enzymes (ALT: 98.8 ± 132.1 vs. 36.1 ± 23.4, p < 0.001 and AST: 
141 ± 190 vs. 86 ± 81.1, p = 0.07; Table 4).

The association between blood alcohol 
concentration and serum ferritin

Simple linear regression was used to assess if BAC significantly 
predicted serum ferritin concentration. In the female group, serum 
ferritin was negatively correlated with BAC (r = −0.4). Fifteen percentage 
of change in serum ferritin was accounted for by BAC (R2 = 0.15, 
F(1,63) = 11.2, p = 0.001). However, this finding varied when taking ICU 
admission into account. In ICU admitted females, 44% of change in 
serum ferritin was accounted for by BAC (R2 = 0.44, F(1,14) = 11.02, 
p = 0.005). While in non-ICU admitted females, BAC did not predict 
change in serum ferritin concentration (R2 = 0.1, F(1,47) = 4.01, 
p = 0.051). In the male group, there was no linear relationship between 
serum ferritin and serum ethanol whether patients were ICU admitted 
or not (Figure 1; Supplementary Table S1). On comparing correlation 
coefficients between males and females using Danielsoper calculator, 
we found a statistical difference with a z-Score = −2.6 and p = 0.01. On 
comparing coefficients in the ICU-admitted group, we  also found 
statistical significance with a z-Score = −2.9 and p = 0.003. On the other 
hand, comparing coefficients in the non-ICU-admitted group showed 
no statistical significance, secluding the sex difference to the 
ICU-admitted group (z-Score = 0.28, p = 0.78).

The association between liver enzymes and 
serum ferritin

In both groups, serum ferritin was positively correlated with 
serum ALT level (Females vs. Males: r = 0.3 vs. 0.3), and AST level 
(Females vs. Males: r = 0.4 vs. 0.3). In females, 12 and 17% of change 
in serum ferritin was accounted for by serum ALT (R2 = 0.12, 
F(1,43) = 5.9, p = 0.019) and serum AST (R2 = 0.17, F(1,40) = 8.2, 
p = 0.007) respectively. In males, 8% of variation in serum ferritin was 
accounted for by serum ALT (R2 = 0.08, F(1,115) = 10.2, p = 0.002) and 
10% by AST (R2 = 0.1, F(1,106) = 11.4, p = 0.001). However, ICU 
admitted patients showed sex difference in serum ferritin variation 
predicted by liver enzymes. In the females group, 48 and 68% change 
in serum ferritin was accounted for by both ALT and AST, respectively, 
(ALT: R2 = 0.48, F(1,10) = 9.1, p = 0.013; AST: R2 = 0.68, F(1,10) = 21.2, 
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p = 0.001). Nevertheless, no linear relationship was detected between 
serum ferritin and liver enzymes in ICU admitted males 
(Supplementary Table S2). Mediation analysis was used to test if the 
effect of BAC on serum ferritin was mediated through ALT in females. 
We did not perform mediation analysis in the male group due to 
absent significant association between BAC and serum ferritin. BAC 
was negatively correlated with serum ferritin (B = −0.4, p = 0.001). The 
effect of BAC on serum ferritin was not mediated by ALT [indirect 
effect: (B = 0.13, p = 0.1); Supplementary Table S3].

The effects of sex, ICU admission, anemia, 
and mortality on serum ferritin

Using ALT as a covariate, ANCOVA showed a significant 
effect for sex: F(1,16) = 6.4, p = 0.01 on serum ferritin 
concentration with significantly higher ferritin in males 
(806.3 ± 3405.7 vs. 194.5 ± 280.4 ng/L, p = 0.002). In addition, 
there was a significant interaction between sex, ICU admission, 
and anemia [F(1,16) = 4.6, p = 0.03] and between sex, ICU 

TABLE 1 Demographics.

Males (n  =  125) Females (n  =  59) Student t-test or 
Chi-square test 

(p value)

Sex [no (%)] 125 (67.9%) 59 (32.1%) <0.001

Age (years) (Mean ± SD), range 49.3 ± 14.2 (24–83) 49 ± 12.7 (20–79) t = 0.1, df = 182, p = 0.9

Race [no (%)] White 99 (79.2%) 50 (84.7%) 0.4

African American/African/Black 11 (8.8%) 2 (3.4%) 0.2

American Indian/Alaskan Native 6 (4.8%) 2 (3.4%) 0.7

Other 8 (6.4%) 1 (1.7%) 0.2

Not provided 1 (0.8%) 4 (6.8%) 0.02

Non-Hispanic Ethnicity [no (%)] 112 (89.6%) 52 (88.1%) 0.8

Employment status [no (%)] Unemployed 48 (38.4%) 28 (47.4%) 0.2

Other (Employed/Student) 27 (21.6%) 14 (23.7%) 0.8

Retired 21 (16.8%) 6 (10.2%) 0.2

Disabled 10 (8%) 5 (8.5%) 0.9

Self-employed 10 (8%) 1 (1.7%) 0.09

Missing 9 (7.2%) 5 (8.5%) 0.8

Educational level (no (%)) ≤12 grade or GED 13 (10.4%) 6 (10.2%) 0.9

Bachelor’s or Professional school 

degree

13 (10.4%) 6 (10.2%) 0.9

Some college 7 (5.6%) 7 (11.9%) 0.1

Associate degree 7 (5.6%) 6 (10.2%) 0.3

Masters or PhD 0 (0%) 4 (6.8%) 0.003

Missing 85 (68%) 30 (50.8%) 0.03

Marital status [no (%)] Single 67 (53.6%) 24 (40.7%) 0.1

Married 30 (24%) 16 (27.1%) 0.6

Divorced 16 (12.8%) 12(20.3%) 0.2

Widow 3 (2.4%) 3 (5.1%) 0.3

Separated 4 (3.2%) 2 (3.4%) 0.9

Life-partner 2 (1.6%) 2 (3.4%) 0.4

Missing 3 (2.4%) 0 (0%) 0.2

BMI (kg/m2) (Mean ± SD), range 28 ± 6.7 (14.1–49.7) 252 ± 5.8 (16.8.–44.6) t = 2.6, df = 177, p = 0.009

BMI groups [no (%)] <18 (kg/m2) 5 (4%) 4 (6.8%) 0.4

18.1–30 (kg/m2) 77 (61.6%) 41 (69.5%) 0.3

30.1–40 (kg/m2) 36 (28.8%) 9 (15.3%) 0.04

>40 (kg/m2) 6 (4.8%) 1 (1.7%) 0.3

Missing 1 (0.8%) 4 (6.8%) 0.02

History of current or past nicotine use [no (%)] 41 (32.8%) 17 (28.8%) 0.6

Patients with multiple hospitalization [no (%)] 10 (8%) 6 (10.2%) 0.6
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admission, anemia, and mortality [F(1,16) = 7.6, p = 0.007; 
Supplementary Table S4].

Discussion

The results of this study show high serum ferritin levels in both 
male and female alcoholics with much attenuated serum ferritin 
elevation in females. We also present an evident sex difference in the 
association between serum ferritin and BAC specifically in critically 
ill alcoholics. We detected a negative correlation between BAC and 
serum ferritin in critically ill intoxicated female patients, a relation 
that was not detected in non-critically ill ones. Interestingly, no such 

association between serum ferritin and BAC was detected in 
intoxicated male patients whether critically ill or not. Moreover, liver 
enzymes were much higher in male patients compared to their female 
counterparts despite no significant difference in BAC between the two 
groups. The association between serum ferritin and liver enzymes also 
revealed a sex difference and a distinction between critically ill and 
non-critically ill intoxicated males and females. It was crucial to look 
into this relation due to the remarkable role of the liver in hepcidin 
production, being the richest organ in iron content (44), and the first 
and major site for alcohol metabolism (45). Our study is the first to 
explore the sex difference in the relationship between BAC, serum 
ferritin and liver enzymes in intoxicated critically ill and non-critically 
ill patients. The demonstrated sex difference in ferritin response could 

TABLE 2 Reason for hospitalization.

Males (n  =  125) and 137 
hospitalizations

Females (n  =  59) and 65 
hospitalizations

Chi-square test 
(p value)

Alcohol related

Any 50 (36.5%) 27 (41.5%) 0.5

Intoxication 26 (19%) 13 (20%) 0.9

Alcohol abuse/dependence 38 (27.7%) 18 (27.7%) 0.99

Alcohol withdrawal 21 (15.3%) 9 (13.8%) 0.8

Alcohol induced disorder 13 (9.5%) 4 (6.2%) 0.4

GIT related: bleeding/

gastritis/pancreatitis
17 (12.4%) 10 (15.4%) 0.6

Psychiatric

Any 11 (8%) 7 (10.8%) 0.5

Depression 2 (1.5%) 2 (3.1%) 0.4

Anxiety 1 (0.7%) 0 (0%) 0.7

Delirium 18 (14.4%) 5 (8.5%) 0.3

Suicide ideation or attempts 

including drug overdose
7 (5.1%) 5 (7.7%) 0.5

Cardiovascular related 

disorders
9 (6.6%) 0 (0%) 0.03

Fracture 3 (2.2%) 4 (6.2%) 0.2

SARS-CoV-2 positive test 5(3.6%) 1 (1.5%) 0.6

Sepsis 0 (0%) 2 (3.1%) 0.1

Diabetic complications 4 (2.9%) 1 (1.5%) 0.5

Hepatic disorders 3 (2.2%) 1 (1.5%) 0.6

Pulmonary disorders 3 (2.2%) 1 (1.5%) 0.6

Neurological disorders 4 (2.9%) 0 (0%) 0.3

Renal disorders 1 (0.7%) 1 (1.5%) 0.5

Others

All 21 (15.3%) 7 (10.8%) 0.4

Weakness/Falling/Loss of 

consciousness
10 (7.3%) 1 (1.5%) 0.1

Cellulitis/ Systemic 

inflammation/Contusions
4 (2.9%) 1 (1.5%) 0.5

Dehydration/ Heatstroke 3 (2.2%) 1 (1.5%) 0.6

Hypokalemia 1 (0.7%) 2 (3.1%) 0.2

Anemia±Chronic blood loss 3 (2.2%) 0 (0%) 0.5

Acidosis 0 (0%) 1 (1.5%) 0.3

Anasarca 0 (0%) 1 (1.5%) 0.3
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TABLE 3 Alcohol use disorder, psychiatric, and medical comorbidities.

Males (n  =  125) Females (n  =  59) Chi-square test 
(p value)

Alcohol use disorder 

[no (%)]

Alcohol use or abuse with and without intoxication 14 (11.2%) 16 (27.1%) 0.006

Alcohol dependence 81 (64.8%) 34 (57.6%) 0.3

Alcohol withdrawal syndrome 35 (28%) 14 (23.7%) 0.5

Alcohol-induced disorders 46 (36.8%) 21 (35.6%) 0.9

Alcohol induced disorders

Hepatic (fatty liver, hepatitis, 

cirrhosis, fibrosis)
35 (28%)

18 (30.5%)
0.7

Neurological 

(polyneuropathy, sleep 

disorder, delirium, 

degeneration)

9 (7.2%) 5 (8.5%) 0.8

Pancreatitis (acute/chronic) 2 (1.6%) 2 (3.4%) 0.6

Alcohol induced anxiety 

disorder/ mood disorder

2 (1.6%) 1 (1.7%)
0.96

Gastritis 1 (0.8%) 1 (1.7%) 0.5

Cardiomyopathy 4 (3.2%) 0 (0%) 0.3

unspecified alcohol induced 

disorder
8 (6.4%)

2 (3.4%)
0.5

Comorbid psychiatric 

conditions [no (%)]

Comorbid psychiatric conditions 65 (52%) 42 (71.2%) 0.01

Depression 38 (30.4%) 28 (47.5%) 0.02

Anxiety 33 (26.4%) 26 (44.1%) 0.02

Drug use Any 19 (15.2%) 11 (18.6%) 0.5

Cannabis 7 (5.6%) 3 (5.1%) 0.9

Opioid 1 (0.8%) 2 (3.4%) 0.2

Cocaine 1 (0.8%) 1 (1.7%) 0.5

Poly-substance 5 (4%) 3 (5.1%) 0.7

Unknown 6 (4.8%) 2 (3.4%) 0.6

Delirium during this hospitalization 20 (16%) 8 (13.6%) 0.7

History of schizophrenia or schizoaffective or bipolar disorder 9 (7.2%) 3 (5.1%) 0.7

Comorbid medical 

conditions [no (%)]

Anemia Any 43 (34.4%) 37 (62.7%) <0.001

Iron deficiency anemia 9 (7.2%) 11 (18.6%) 0.02

Cardiovascular Any 65 (52%) 30 (50.8%) 0.9

Hypertension 48 (38.4%) 16 (27.1%) 0.1

Cardiomyopathy/Heart 

failure
13 (10.4%) 5 (8.5%) 0.7

Neurological Any 62 (49.6%) 28 (47.5%) 0.8

Neuropathy 19 (15.2%) 10 (16.9%) 0.8

Epilepsy/Seizures 11(8.8%) 3 (5.1%) 0.5

GIT 58 (46.4%) 26 (44.1%) 0.8

Hepatic 44 (35.2%) 24 (40.7%) 0.5

Pulmonary 29 (23.2%) 20 (33.9%) 0.1

Renal/Urinary 20 (16%) 15 (25.4%) 0.1

Diabetes 21 (16.8%) 6 (10.2%) 0.2

Thyroid disorders Any 11 (8.8%) 7 (11.9%) 0.5

Hypothyroidism 9 (7.2%) 4 (6.8%) 0.9

COVID-19 positive during this hospitalization 12(9.6%) 3 (5.1%) 0.4

Cancer 7 (5.6%) 5 (8.5%) 0.5
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come down to the sex difference in alcohol metabolism, alcohol-
mediated oxidative stress, and alcohol-induced disruption of iron 
homeostasis, probably rendering females more vulnerable to 
ferritinophagy and ferroptosis; a possible mechanistic speculation that 
have prospects to explain the telescoping phenomenon in females and 
the sex difference in AUD neurobiological responses.

Due to the chaos that an excess of iron can create and the lack of 
a physiological mechanism for its excretion, iron is strictly regulated. 
Systemic iron pool builds up mainly from duodenal enterocytes 
absorbed iron, hepatocytes, and macrophages, with ferroportin as the 
only way out to exit these cells. Ferroportin is strictly controlled by 
hepcidin; a 25 amino acid peptide produced by the liver. Hepcidin 
expression, under physiological conditions, is up regulated by high 
serum iron. Hepcidin is considered the master hormonal regulator 
of iron since it controls the systemic availability of iron by limiting its 
intestinal absorption and blocking its cellular release through 
ferroportin degradation (46–48). Iron is transported in the circulation 
bound to liver-synthesized transferrin that allows iron entry into cells 
through transferrin receptors. In addition, iron is stored mainly in 
hepatocytes and macrophages of the reticuloendothelial system 
bound to ferritin (44). Apoferritin is an iron storage shell formed of 
24 subunits of two types: Heavy (H ferritin) and Light (L ferritin). 
Iron loading into apoferritin is mediated by H ferritin that has a 
ferroxidase enzymatic activity to oxidize ferrous to ferric iron (47, 
49). On the other hand, iron mobilization from ferritin is facilitated 
by ferritinophagy. Ferritinophagy is an autophagic degradation of 
ferritin mediated by nuclear receptor co-activator 4 (NCOA4), 
increasing iron cellular availability (50, 51). In cases of excess labile 
catalytic iron pool and over-activated ferritinophagy, H ferritin steps 
in to load iron into ferritin to prevent triggering ferroptosis (52, 53). 
Serum ferritin, secreted from hepatocytes, reticuloendothelial cells, 
and other parenchymal cells, has been always an indicator for body 
iron stores since it correlates with intracellular iron concentration in 
physiological settings and in cases of iron overload (Figure  2A) 
(54–56).

Our study displays high serum ferritin in both male 
(806.3 ± 3405.7 ng/L) and female intoxicated patients 
(194.5 ± 280.4 ng/L); a recurrent finding through the literature indicating 
the disruption of iron homeostasis associated with alcohol consumption 
and an increase in body iron stores (20, 21, 57–59). Alcohol down-
regulates hepcidin which allows more intestinal iron absorption and 
release of iron from macrophages into the circulation, increasing serum 
iron which could be in part responsible for high serum ferritin levels, 
reflecting iron overload. Hepcidin down-regulation has been repeatedly 
documented as a trigger for hepatic iron overload, ROS production and 
liver injury in ALD (60–64). Nevertheless, several studies show 
unaltered or low serum iron with elevated serum ferritin in alcoholic 
patients, implying desensitization of hepcidin to iron level (19, 22, 23, 
65, 66). In this case, high serum ferritin could be caused by de novo 
synthesis of ferritin through alcohol-induced inflammation (59, 67). 
While low serum iron could be due to alcohol-induced disruption and 
inflammation of intestinal mucosa which restricts iron absorption (68). 
Our study is limited by not providing serum iron or hepcidin 
measurements, however our results display anemia in 62.7% of females 
and 34.4% of males (p < 0.001) and iron deficiency anemia in 18.6% of 
females and 7.2% of males (p = 0.02).

Significantly attenuated high serum ferritin in intoxicated females 
compared to their male counterparts (806.3 ± 3405.7 vs. 
194.5 ± 280.4 ng/L, p = 0.002) could possibly be  explained by sex 
difference in hepcidin expression, ferritin synthesis or ferritin 
degradation. Animal studies have shown higher hepcidin expression in 
alcohol-fed females which could be  caused by sex hormones or 
differences in ROS production (69). Hepcidin expression is controlled 
by hepcidin antimicrobial peptide (HAMP) gene in humans, and by 
Hepc1 and Hepc2 genes in mice. Harrison-Findik et al. found higher 
expression of Hepc1 in 20% ethanol fed female mice compared to males. 
Ethanol-mediated oxidative stress suppressed hepcidin, through 
inhibiting CCAAT/enhancer-binding protein α (C/EBPα), a 
transcription factor crucial for hepcidin expression, suggesting ROS 
mediated suppression of hepcidin in males (70). However, this notion 

TABLE 4 Hospital course, blood ethanol concentration, serum ferritin, liver enzymes, and mortality.

Males (n  =  125 and 137 
hospitalizations)

Females (n  =  59 and 65 
hospitalizations)

Mann–Whitney 
test or Student 

t-test or chi square 
test (p value)

Hospital length of stay (days) (Mean ± SD) (range) 15.1 ± 22.5 (115) 9.4 ± 6.8 (21) 0.4

Required ICU admission [no (%)] 38 (27.7%) 16 (24.6%) 0.6

ICU length of stay (days) (Mean ± SD) (range) 5 ± 5.2 (26) 3.4 ± 2.1 (7) 0.3

blood alcohol concentration (mg/dL) (Mean ± SD) 217.2 ± 131.7 (13–536) 221.8 ± 137.8 (13–460) t = 0.2, df = 200, p = 0.8

Ferritin concentration (ng/L) (Mean ± SD) (range) 806.3 ± 3405.7 (34283) 194.5 ± 280.4 (1384) 0.002

ALT Level (U/L) (Mean ± SD) (range) 98.8 ± 132.1 (669) 36.1 ± 23.4 (82) <0.001

AST Level (U/L) (Mean ± SD) (range) 141 ± 190 (987) 86 ± 81.1 (291) 0.07

Alkaline Phosphatase (U/L) (Mean ± SD) (range) 129.7 ± 111.4 (796) 143.7 ± 115 (655) 0.2

Mortality (no (%)) All 19 (15.2%) 14 (23.7%) 0.2

In hospital 1 (5.3%) 0 (0.00%) 0.4

After discharge 18 (94.7%) 14 (100%) 0.4

Interval between hospital admission and death (days) 

(Mean ± SD)
207.1 ± 206.8 (2–765) 250.9 ± 140.3 (37–577) t = 0.7, df = 33, p = 0.5
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could be contradicted by higher ROS production in female alcoholic 
patients and ethanol-fed animals (71–73). A more seemingly compelling 
argument for higher hepcidin in female alcoholics is the effect of sex 
hormones on hepcidin expression. Testosterone was found to down-
regulate HAMP gene expression, while progesterone exerted an opposite 
effect, with contradictory reports on estrogen (74, 75). Nevertheless, 
higher hepcidin in females, compared to their male counterparts, could 
hamper iron intestinal absorption and iron cellular release, decreasing 

iron systemic availability, degrading ferroportin, and trapping ferritin 
inside the cells, which could account for lower serum ferritin levels.

In addition, lower serum ferritin levels in females could be simply 
explained by decreased ferritin synthesis in females due to lower iron 
stores caused by frequent blood loss (35) and the predominance of 
thyroid disorders in females (67, 76), with contradictory accounts on 
the effect of sex hormones on serum ferritin (77, 78). Moreover, 
ferritin degradation could account for the attenuated serum ferritin in 

FIGURE 1

Sex difference in the association between log serum ferritin and blood alcohol concentration by linear regression. (A) A significant negative relation 
(Beta  =  −0.4) between log serum ferritin and blood alcohol concentration (BAC) detected in 65 hospitalizations for 59 intoxicated female patients 
[F(1,63)  =  4.8, p  =  0.03]. (B) An insignificant negative relation (Beta  =  −0.03) between log serum ferritin and BAC in 137 hospitalizations for 125 
intoxicated male patients [F(1,135)  =  0.13, p  =  0.7]. (C) A significant negative relation (Beta  =  −0.7) between log serum ferritin and BAC in 16 ICU-
admitted intoxicated female patients [F(1,14)  =  11.02, p  =  0.005]. (D) An insignificant positive relation (Beta  =  0.09) between log serum ferritin and BAC in 
38 ICU-admitted intoxicated male patients [F(1,36)  =  0.3, p  =  0.6]. (E) An insignificant negative relation (Beta  =  −0.3) between log serum ferritin and BAC 
in 49 hospitalizations for 43 non-ICU-admitted intoxicated female patients [F(1,47)  =  4.01, p  =  0.051]. (F) An insignificant negative relation (Beta  =  −0.08) 
between log serum ferritin and BAC in 99 hospitalizations for 87 non-ICU-admitted intoxicated male patients [F(1,97)  =  0.6, p  =  0.4].
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females, a possibility that could be reinforced by the reported effect of 
sex difference on the process of ferroptosis (79) and the higher ROS 
production in female alcoholics (71–73). Further preclinical research 
is needed to investigate these different potential mechanisms behind 
sex difference in serum ferritin during alcohol intoxication.

Negative association between serum ferritin and BAC in 
intoxicated females could be the result of ferritin degradation with 
higher BAC, increasing labile catalytic iron which triggers ferroptosis 
and cell death, explaining in part female vulnerability to alcohol (11, 
12). Female alcoholic patients display an exaggerated oxidative stress 
response to alcohol compared to males (73). This observation could 
be the result of sex difference in alcohol metabolism (80, 81). Oxidative 
ethanol metabolism in the liver, the primary site for alcohol 
metabolism, is implemented by alcohol dehydrogenase (ADH) and 
cytochrome P450 2E1 (CYP2E1), oxidizing alcohol to acetaldehyde. 
The human CYP2E1 gene is up-regulated by ethanol concentration, 
promoting acetaldehyde formation that triggers more CYP2E1 
expression and ROS production (45, 82). Acetaldehyde production 
further compromises the antioxidant system through binding to 
glutathione (GSH), diminishing its antioxidant capacity (83). Nuclear 

erythroid 2-related factor 2 (NrF2), a transcription factor that 
up-regulates antioxidant gene expression, was decreased with chronic 
alcohol-feeding in rats, maximizing alcohol-induced oxidative stress 
(84). In addition, NrF2 was found to up-regulate H ferritin expression; 
a protective mechanism that helps iron loading into ferritin, 
preventing the detrimental cascade of ferroptosis triggered by free 
catalytic iron (42, 85–88). Moreover, the reduction of NrF2 was found 
to aggravate NCOA4 ferritinophagy (89). The process of alcohol 
metabolism seems to check all the boxes of ferroptosis characteristics; 
GSH depletion, ROS production, high lipid peroxidation products 
such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) 
and disruption of iron homeostasis (Figure 2B) (26, 37–40, 90).

An interesting animal study by Penaloza et al. (71) showed a 
sex difference in alcohol metabolism and alcohol-induced 
oxidative stress demonstrated by eight times higher mRNA 
expression of CYP2E1, a 15% higher ROS production and half 
GSH concentration in female mice compared to males (71). Based 
on these recent accounts, we  propose that the exaggerated 
oxidative response in females to alcohol would overwhelm the 
antioxidant system, deplete GSH and down-regulate NrF2 which 

FIGURE 2

Ferritin under physiological and alcohol conditions. (A) Representative scheme of ferritin role under physiological conditions. Duodenal enterocytes 
absorb iron, which is carried on transferrin, and stored into hepatocytes, macrophages, and other cells. Iron exits these cells through ferroportin, which 
is degraded by liver produced hepcidin. Serum iron upregulates hepcidin. Cellular iron is loaded into apoferritin mediated made of H and L ferritin 
subunits. Iron loading is mediated by H ferritin which has a ferroxidase enzymatic activity to oxidize ferrous iron to ferric iron. When cells demand more 
iron, ferritin is degraded by nuclear receptor co-activator 4 (NCOA4) ferritinophagy, increasing available intracellular iron. (B) Representative scheme of 
ferritin role under alcohol intoxication. Alcohol down-regulates hepcidin, what leads to more intestinal iron absorption and release of iron from 
macrophages into the circulation favoring the increased levels of serum iron and leading to hepatic iron overload, which in turn leads to higher levels 
of ROS. Alcoholic liver injury upregulates ferritin synthesis, and, therefore, increases serum ferritin. Then, alcohol is metabolized by alcohol 
dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1), oxidizing alcohol to acetaldehyde. The human CYP2E1 gene is up regulated by ethanol 
concentration. Thus, if there is more acetaldehyde formation that will lead to more CYP2E1 expression, and more reactive oxygen species (ROS) 
production. Acetaldehyde binds to glutathione (GSH), diminishing its antioxidant capacity. Alcohol decreases nuclear erythroid 2-related factor 2 (NrF2) 
and maximizes alcohol-induced oxidative stress by decreasing iron loading into ferritin. Low levels of NrF2 triggers NCOA4 ferritinophagy. In 
conclusion, there will be more free catalytic iron and more ferroptosis.
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could decrease H ferritin production and promote NCOA4 
ferritinophagy and ferroptosis, particularly with more ferritin 
trapped in the cells due to higher hepcidin expression. Therefore, 
lower serum ferritin in intoxicated females could indicate more 
vulnerability to alcohol-induced complications. Moreover, the 
distinction in serum ferritin-BAC association in our results 
between critically ill and non-critically ill intoxicated females 
(p = 0.051) implies the necessity to include a larger sample size. 
Nevertheless, this distinction could be explained by exaggerated 
state of oxidative stress in critically ill intoxicated female patients 
(91, 92). We  also found a significant effect of the interaction 
between sex, ICU admission, anemia, and mortality on 
serum ferritin.

Our results show higher liver enzymes in male intoxicated 
patients which could be, in part, the result of a higher prevalence 
of elevated BMI (30.1–40 kg/m2; 28.8%) compared to female 
patients [15.3%, (p = 0.04)] (93). Values of liver enzymes could 
reflect the hepatocellular integrity. However, the prevalence of 
ALD or non-alcohol induced hepatic comorbidities was 
insignificantly different among intoxicated males and females in 
our study. Liver enzymes could be  elevated as a response to 
excessive alcohol intake without evident liver insult in hazardous 
drinkers (94). This represents a limitation in our study since 
we  did not characterize the amount of alcohol consumption. 
Nevertheless, our results showed that ALT did not mediate the 
effect of BAC on serum ferritin in females, indicating a much 
complex interaction between BAC and serum ferritin that extends 
beyond hepatic integrity. In addition, the sex difference in serum 
ferritin-liver enzymes association among critically and 
non-critically ill patients needs further characterization of age, 
blood pressure, waist circumference, plasma glucose, lipid profile, 
and white blood cells (WBC) count, since all can affect the 
association between serum ferritin and liver enzymes (95, 96).

Our findings support the current notion of closing the gap of 
AUD prevalence between men and women (3), with even higher 
prevalence of alcohol use with and without intoxication in women 
(27.1% vs. 11.2%, p = 0.006). Our data display a very high 
prevalence of psychiatric comorbidities which is a recurring theme 
among patients with AUD, probably due to shared 
psychopathological and neurobiological responses (97). In a recent 
work of ours, we  detected attenuated serum ferritin levels in 
geriatric critically ill COVID-19 patients with psychiatric 
comorbidities compared to those with no psychiatric comorbidities, 
however no sex difference was found (98). This finding implies the 
need to consider the effect of psychiatric comorbidities on serum 
ferritin in intoxicated patients, especially since women displayed 
much higher prevalence of psychiatric conditions (71.2% vs. 52%, 
p = 0.01) in our current study. Moreover, we  detected a high 
prevalence of long term post-hospitalization mortality in both 
sexes which is common among AUD patients, especially those with 
alcohol withdrawal syndrome, mostly due to high medical 
comorbidities and alcohol related disorders (99, 100) which is 
demonstrated in both males and females in our results.

One important factor that could affect serum ferritin among 
alcoholic patients is nicotine use, particularly with high prevalence 
of nicotine use among alcoholics (101). High serum ferritin has 
been reported in smokers (102, 103), interestingly showing a sex 
difference. One study found high serum ferritin levels in 

adolescent boys (n = 470) and girls (n = 379) with different types 
of smoking, compared to their non-smoker counterparts. In 
addition, they detected lower serum ferritin values among female 
smokers, compared to male smokers (104). The sex difference in 
serum ferritin reported in nicotine users could be explained in the 
light of the findings presented by Benowitz et al. They reported 
higher clearance and faster metabolism of nicotine in 
pre-menopausal women compared to men, particularly women on 
combined and estrogen-only contraceptives, implying a role for 
sex hormones in nicotine metabolism (105). Our study was 
limited by not considering the effect of nicotine on serum ferritin 
since our data on nicotine use was not clear whether it is for past 
or current use.

In conclusion, we found a negative association between serum 
ferritin and BAC in critically ill intoxicated females, with much 
attenuated elevation of serum ferritin in female alcoholics 
compared to their male counterparts. A possible underlying 
mechanism could boil down to sex difference in alcohol and iron 
metabolism. Exaggerated ROS production in females could 
overwhelm cellular antioxidant systems (e.g.; NrF2) which 
activates NCOA4 ferritinophagy and down-regulates H ferritin, 
causing ferritin degradation, decreasing iron loading into ferritin 
and releasing catalytic iron which promotes ferroptosis and cell 
death, particularly with trapped ferritin in the cells with higher 
hepcidin expression. The implications of verifying these 
mechanistic speculations would help signify ferroptosis and iron 
disruption as a culprit for sex difference in AUD and its related 
disorders, providing a more targeted approach for management 
and may be introducing low serum ferritin as a marker of alcohol 
vulnerability in intoxicated females.

Limitations

The retrospective design of our study restricted the availability of 
data about peak serum ferritin, serum iron, serum hepcidin and other 
iron-related parameters such as transferrin saturation (TSAT) and 
total iron binding capacity (TIBC) which would have helped providing 
a clearer view of the disrupted iron metabolism with high 
BAC. We also could not provide data on oxidative stress and lipid 
peroxidation markers. We did not provide detailed description of the 
amount, duration and frequency of alcohol consumption which could 
be a confounding factor.
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