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Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder

that persists into adulthoodwith both social and cognitive disturbances. Asperger’s

syndrome (AS) was a distinguished subcategory of autism in the DSM-IV-TR

defined by specific symptoms including di�culties in social interactions, inflexible

thinking patterns, and repetitive behaviour without any delay in language or

cognitive development. Studying the functional brain organization of individuals

with these specific symptoms may help to better understand Autism spectrum

symptoms.

Methods: The aim of this study is therefore to investigate functional connectivity

as well as functional network organization characteristics using graph-theory

measures of the whole brain in male adults with AS compared to healthy controls

(HC) (AS: n= 15, age range 21–55 (mean± sd: 39.5± 11.6), HC: n= 15, age range

22–57 [mean ± sd: 33.5 ± 8.5]).

Results: No significant di�erences were found when comparing the region-

by-region connectivity at the whole-brain level between the AS group and HC.

However, measures of “transitivity,” which reflect local information processing

and functional segregation, and “assortativity,” indicating network resilience, were

reduced in the AS group compared to HC. On the other hand, global e�ciency,

which represents the overall e�ectiveness and speed of information transfer

across the entire brain network, was increased in the AS group.

Discussion: Our findings suggest that individuals with AS may have alterations

in the organization and functioning of brain networks, which could contribute to

the distinctive cognitive and behavioural features associated with this condition.
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We suggest further research to explore the association between these altered

functional patterns in brain networks and specific behavioral traits observed in

individuals with AS, which could provide valuable insights into the underlying

mechanisms of its symptomatology.

KEYWORDS

autism spectrum disorder (ASD), Asperger’s syndrome (AS), graph theory, resting-state

functional magnetic resonance imaging (rs-fMRI), autism spectrum traits

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
condition, which has been recognized as a spectrum disorder
since its re-evaluation in the fifth edition of the Diagnostic and

Statistical Manual of Mental Disorders (DSM-5) in 2013 (1). ASD
is characterized by a combination of (1) alterations in social
interaction, (2) communicative behavior, and (3) repetitive patterns
of behaviors and narrowly circumscribed interests. It additionally
takes into account the subdivision of autistic individuals in terms
of the severity of their impairments and the need for support in
everyday life. Referring to the preceding classifications in the text-
revised, fourth edition of the Diagnostic and Statistical Manual

of Mental Disorders (DSM-IV-TR) and the 10th edition of the
International Classification of Diseases (ICD-10), autism was not
only identified with all three core symptoms mentioned above but
also included several subcategories including Asperger’s syndrome
(AS), Rett’s syndrome, Kanner’s syndrome, childhood disintegrative
disorder, and atypical autism (2, 3). Following the DSM-IV-TR, AS
comprised all the typical traits of the autistic triad but was typically
not associated with delays in speech and cognitive development
(2). It additionally included atypia of communicative behavior and
special linguistic elements such as differing prosody or rhythm of
speech (4). As a member of the group of pervasive development
disorders, AS generally persists into adulthood.

Understanding the importance of AS lies in recognizing the
unique strengths and challenges associated with it. Individuals
with AS often exhibit remarkable focus and attention to detail
impacting their fluid and general intelligence (5, 6). These strengths
can contribute to their success in various domains, including
academic pursuits as well as detailed and highly original problem-
solving strategies (6). However, individuals with AS may also face
difficulties in social interactions, especially in noisy conditions,
which can be attributed to abnormal sensitivity to sensory
stimuli, atypical eye contact, and altered speech perception (7–9).
Recognizing the significance of Asperger’s syndrome is essential
for several reasons. First, it promotes a better understanding and
acceptance of neurodiversity (10), acknowledging that individuals
with AS have unique strengths and abilities that can contribute
positively to society. Second, it allows for tailored support and
accommodations to address the challenges individuals with AS
may face in social interactions and sensory processing. Asperger’s
syndrome, as a subtype of autism spectrum disorder, holds
significance in understanding the diverse range of strengths and
challenges experienced by individuals on the autism spectrum.
By recognizing the importance of AS and exploring the neural
basis of this condition, we can base further research line,

which is more adaptive to their unique brain functionality
(11, 12).

Non-invasive neuroimaging studies have broadened our
knowledge of both structural and functional neural alterations
in ASD. The use of resting-state functional magnetic resonance
imaging (rs-fMRI) enabled us to study the correspondence between
autistic traits and brain functional connectome without any explicit
task. In this context, age has been discussed to play an important
role in ASD-related disturbances as significant changes in brain
connectivity have already been hypothesized in late adolescence
and early adulthood (13, 14). In addition, ASD is sometimes
recognized very late or not at all in affected individuals, especially
in high-functioning individuals, making research into the neural
basis of this condition in adulthood particularly important (15).
However, multiple studies have shown that altered functional
connectivity in ASD is heterogeneous, making it difficult to reach a
consensus on the nature and clinical relevance of these changes (16,
17). Despite these inconsistencies, studying functional connectivity
at the resting state in individuals with Asperger’s syndrome was
shown to provide valuable insights into the neural networks
associated with this specific subtype of ASD (14). Therefore,
further studies are needed to fully elucidate the role of functional
connectivity in autism and its subcategories like AS.

Graph theory has been extensively employed to investigate
alterations in brain functional networks in both healthy individuals
and psychiatric populations (18). It has provided valuable insights
into the underlying mechanisms and potential biomarkers of
various psychiatric conditions, such as schizophrenia (19), conduct
disorder (20), and dissociative experiences (21). In neuroscience,
graph theory can provide a framework to analyze the connectivity
patterns between different brain regions, treating them as nodes
and the connections between them as edges. These nodes and
edges are organized into multilevel networks based on their specific
functions, such as sensory or higher order cognitive functions.
Ultimately, these networks come together to form the global brain
network. The interactions between different regions within this
network can be measured using graph theory properties, providing
a deeper understanding of brain function and dysfunction. These
properties include the clustering tendency of nodes within specific
local brain networks and the neuronal path lengths between those
networks (22). One way to quantify the organization of a complex
network is to form the ratio of the “clustering coefficient” of
networks to the average shortest path length within the vertices of
a network, termed small-worldness. The small-worldness reflects
the fact that nodes within or between networks can be reached
with a few steps via their immediate neighbors, even if located
in separate clusters. This feature indicates if the brain network
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can efficiently integrate simultaneous information of different
quality across neural pathways or segregate them into modality-
specific modules within a network (23). The average length of
neural pathways within a network negatively correlates with
the “global efficiency” of a network (18). Another metric for
efficient brain processing involves the functioning of specialized
and segregated clusters. In addition to global efficiency, networks
must also consist of local centers with specialized functions, such
as processing specific sensory stimuli. This property of networks
can be assessed by measuring the “segregation.” As a component
of segregation, “transitivity” refers to the clustering coefficient
of brain networks and therefore reflects the interconnectivity of
nodes within their direct neighborhood (18). “Assortativity” as
a further metric of network segregation reflects the vulnerability
of brain networks to harmful events or neuropathological
processes, such as stroke, neurodegeneration, or traumatic
microlesions (24, 25). High assortativity originates from robust
connectivity between nodes in given networks corresponding
with narrowly distributed links between major nodal hubs in
those networks and is therefore interpreted as a marker for
network resilience.

Previous studies have reported abnormality in the small-world
configuration of the brain network in several psychiatric diseases
(26–28), which resulted in the broad application of graph theory-
based methods to study brain connectome in ASD (13, 26, 29–37).
Because of the complex structure of its symptomatology including
alterations in social interaction and communication, changes in
ASD were discussed to originate from multiple parts of the brain,
such as areas related to multimodal language processing or the
Theory of Mind (9, 38). Furthermore, it has been suggested that
because of this complex structure, changes in brain organization
must predominantly occur at a global level rather than in terms
of isolated functional connectivity abnormalities between or
within particular brain regions (29). Age was again postulated to
constitute another important covariate in the expression of ASD
symptomatology, especially at critical developmental stages of the
brain such as adolescence and early adulthood (13, 32, 39–42). In
this context, research by Henry et al. described an initial decrease
in global efficiency in childhood and adolescence with ASD,
followed by an increase in early adulthood, while segregation
of brain networks was found to increase in childhood and then
decrease afterward (13). Confusingly, another study found that
network segregation and global efficiency in ASD individuals were
both diminished compared with healthy controls (39). Following
the findings by Henry et al. (13), ASD can be characterized by
a more extreme progression of the typically inverted U-shaped
increasing curve of integrated connectome topology from
childhood/adolescence into adulthood, which appears to be typical
for the developing brain at this stage of life (40). From this
perspective, ASD in adulthood would be mainly characterized
by the presence of higher global integration (lower characteristic
path length) as well as lower clustering and network resilience
compared with healthy cohorts (41–43). Interestingly, Itahashi
et al. (42) also stressed the need for further studies concentrating
on changes in network organization from adolescence
into adulthood.

Here, we hypothesized that complex network measures in
adults with AS might be altered when compared to the control

group. Following the existing literature on adult ASD, we expected
functional connectivity alteration within sensory-motor regions as
well as between frontal and parietal regions (44). We assumed that
assortativity and transitivity of brain networks might be reduced
in individuals with AS, whereas metrics quantifying the functional
integration of the global connectome might be increased. We
aimed for the whole-brain approach and its promising recent
applications to psychiatric and autistic cohorts (13, 29–37).
Measuring functional connectivity between each pair of regions
throughout the whole brain as well as investigating graph theory
measures were already subject to scientific research on autism
and postulated to provide higher accuracy in diagnosing ASD
in male adults (45, 46). For quantifying functional network
organization, we investigated group differences in graph
theory metrics, including functional segregation (transitivity),
functional integration (global efficiency), and network
resilience (assortativity coefficient) using the Brain Connectivity
Toolbox (18).

Methods

Participants

Fifteen male participants diagnosed with Asperger’s syndrome
(AS) based on DSM-IV-TR (47), and fifteen healthy gender- and
age-matched (only male) individuals without any psychiatric or
neurologic disorders were recruited in this study as the healthy
comparison group (HC). All participants were native German
speakers. The final sample consisted of 15 male participants with
AS with an age range of 21 to 55 (mean ± SD: 39.5 ± 11.6) and
15 male age-matched healthy controls from 22 to 57 (mean ±

SD: 33.5 ± 8.5), and the group comparison using a two-sample
t-test did not show any significantly different regarding age (t-
value = 1.61, p-value = 0.12). The mean verbal IQ as assessed
by the MWT-B—“Mehrfachwahl-Wortschatz-Intelligenztest” (48)
was 30.20 for participants with AS and 31.43 for healthy controls
and was not significantly different between the groups in the
two-sample t-test (t-value = 0.73, p-value = 0.47). The mean
of the autism spectrum quotient (AQ) for the AS group was
40.33 ± 5.45 (49), indicating a high expression of autistic
traits. We explored DSM-IV-TR criteria for AS through a self-
developed semi-structured interview (“Diagnostic interview: AS in
adulthood”). This interview contained a general section focusing
on medical anamnesis (somatic, psychiatric, and social histories,
including childhood development) and continued with a special
section involving AS that included the following items with respect
to childhood and adulthood: social interaction and communication
(e.g., friendships with/relationship to/interest in peers, and being
a loner and suffering from loneliness); special interests (e.g.,
spending leisure time and interest in specific objects/topics);
stereotypic behavior (e.g., rituals and reaction toward disturbances
of rituals); and other characteristics (e.g., clumsiness and sensitivity
toward noises/smells/tactile stimuli). It also included items and
descriptions of all relevant criteria for the diagnosis of AS as
defined in DSM-IV-TR. We confirmed the result of the interview
for every AS subject by verifying the threshold value of the
AQ. Additionally, eye contact, facial expression, prosody, and

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1223147
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Javaheripour et al. 10.3389/fpsyt.2023.1223147

“mirroring” of affections and clumsiness during the interview were
included in the assessment. The interview was always conducted by
the same experienced psychiatrist and had a duration of ∼90min.
For the whole duration of the interview, the investigator was
blind to the research questions. The diagnosis was completed with
information from personal interviews, gained by telephone or
in written form, from observers in childhood and/or adulthood
(e.g., partners, friends, and parents or siblings), and sometimes
from incorporated school reports. Moreover, retrospective data
on the development of speech were assessed. All DSM-IV-TR
criteria had to be clearly fulfilled to confirm the diagnosis. An
additional examination for axis-I co-morbidity was undertaken by
using the German version of the Structured Clinical Interview for
DSM-IV Axis I Disorders (SCID-I) (50). All probands of the AS
group were diagnosed in adulthood and have not received any
psychopharmacological treatment.

The present study was approved by the local Ethics Committee
of the Hannover Medical School and has been performed
following the latest version of the Declaration of Helsinki (51).
The participants gave written informed consent before their
participation and took part in the study for a small financial
compensation for their travel expenses.

Scanner information

MR images were acquired on a 3-T Siemens Skyra Scanner
(Siemens, Erlangen, Germany) equipped with a standard head coil.
A total of 640 T2∗-weighted volumes of the whole brain were
collected in the AC-PC orientation with the following parameters:
repetition time (TR)= 2,400ms, echo time (TE)= 30ms, flip angle
= 80◦, and a field of view (FOV) of 192mm, matrix size = 64 ×

64, 30 transversal slices, and voxel resolution of 3 × 3 × 3 mm3

with an interslice gap 0.33mm. After the fMRI scan, a 3D high-
resolution T1-weighted anatomical scan (MPRAGE-sequence, 192
sagittal slices, FOV = 256mm, voxel resolution: 1 × 1 × 1 mm3,
TR = 2.4 s, TE = 4.37ms, flip angle = 7◦) was recorded. The
subject’s head was fixed during the entire measurement to avoid
head movements.

Image preprocessing

In the first step, DICOM data were converted to NIFTI files
and organized in BIDS (Brain Imaging Data Structure) using
dcm2bids (version: 2.1.4). Then, fMRIPrep (version:1.5.5) was used
for preprocessing of the structural and functional MR data (52,
53), based on Nipype 1.4.0 (54, 55). The complete preprocessing
pipeline could be found in the Supplementary material.

In brief, the functional images were slice-time corrected using
3dTshift from AFNI (56) and corrected for head motion. The T1
image was corrected for intensity non-uniformity, and the non-
brain tissue was removed. Subsequently, the functional images
were then co-registered to the T1w reference using bbregister
(FreeSurfer), which implements boundary-based registration (57).
Then, T1 images were normalized to the MNI space by applying
non-linear registration using Advanced Normalization Tools

(ANTs, version: 2.2.0). The Gaussian kernel of 6mm FWHM (full-
width half-maximum) was used for spatial smoothing with mcflirt
(FSL 5.0.9) (58).

Head-motion parameters, i.e., transformation matrices, and
six corresponding rotation and translation parameters were used
to calculate the framewise displacement (FD) as implemented in
Nipype (59) (https://fmriprep.readthedocs.io/en/latest/workflows.
html).

Brain parcellation and identifying brain
networks

To test our first hypothesis, AS and healthy control groups
were compared for differences in functional connectivity at the
network level. For this, we used the parcellationmethod by Schaefer
et al. (61), which consists of 400 regions, to extract the time series
of the cortical areas. These 400 regions were categorized into
seven brain networks based on the classification by Thomas Yeo
et al. (60), namely frontoparietal network (FPN), the default mode
network (DMN), salience network (SN), limbic network (LN),
dorsal attention network (DAN), sensorimotor network (SMN),
and visual network (VN). Several studies have replicated the
functional networks of this parcellation scheme based on extended
resting-state data.

This homogeneous parcellation is composed of all cortical
regions based on fMRI scans of 1,489 participants (61). The Fisher-
Z transformation was applied for individual correlation coefficient
matrices based on 400 parcels. Each value of these matrices
is representative of functional connectivity between two nodes.
Additionally, we also compared FC at the nodal level from all 400
ROIs (79,800 FCs) between AS patients and healthy controls.

Statistical models

To compare AS and control groups regarding the FC metrics
at the network and nodal level, we used the two-sample t-test.
To have comparable normalized variables, the dependent variables
were inverse normal transformed before the two-sample t-test
comparisons (62). To correct for multiple comparisons using the
Bonferroni method, the alpha (0.05) was divided by 7, the number
of comparisons at the network level (p-value < 0.007). However,
due to a large number of comparisons at the pairwise FC level
(79,800 FCs), we used the false discovery rate (FDR) correction to
balance 214 between the likelihood of making a type I error and the
probability of making a type II error (63).

Graph theoretical analysis

We computed both the clustering coefficient and transitivity to
investigate the network segregation for different network densities.
The clustering coefficient quantifies how much nodes in a network
tend to cluster together. It considers the connectivity of both
high- and low-degree nodes in the network. However, because
the clustering coefficient is normalized at the nodal level, it gives
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low-degree nodes the same weight as high-degree nodes. This
means that low-degree nodes are not ignored when computing the
clustering coefficient, and their contribution to the overall network
structure is considered. Therefore, networks with higher clustering
coefficients might reflect locally efficient networks and suffer
from fewer connected nodes. Meanwhile, transitivity is normalized
collectively and less influenced by nodes with fewer connections
(18). To measure the integration of the brain organization, we have
chosen global efficiency as this graph feature is less influenced by
long paths and it might be more reliable to show the information
flow of a network (64). We also calculated the assortativity
coefficient to examine the resilience of a network against “attacks”
(65). The assortativity coefficient is a correlation coefficient between
the degrees of all nodes on two ends of a link (66).

The correlationmatrices of time series from 400 nodes based on
the Schaefer parcellation scheme were calculated for each subject
(61). These adjacency matrices were used to compute the graph
theory features.

Graph theoretical measures were investigated at different
network density thresholds, ensuring that all constructed networks
had an equal number of edges for a given density (67). We used
network densities ranging from 10 to 34% at intervals of 1%. Brain
functional networks of this range show small-world properties, as
described previously by Zhang et al. (68).

To perform group comparisons of graph theoretical measures,
we employed a bootstrapping approach. First, we generated
1,000 bootstrap samples (with replacement) for each group
and computed an average connectivity matrix for each sample.
Second, we computed the clustering coefficient, transitivity, global
efficiency, and assortativity from the average connectivity matrix of
each bootstrap sample after thresholding and binarizing over the
range of density thresholds mentioned above. Then, we calculated
the area under the curve (AUC) for each graph feature. Finally,
the comparisons between groups of AUC were made using a
two-sample t-test and corrected for multiple comparisons using
Bonferroni correction.

Results

Network-level and nodal-level functional
connectivity

To compare the overall functional connectivity within each
of the seven brain networks, we averaged the connections within
regions of each defined functional network (DMN, FPN, SN, DAN,
SMN, VN, and LN). There were no significant differences between
the AS and control groups by comparing averaged FCs within seven
main cortical networks.

We also compared all 79,800 FC between 400 regions. However,
our analysis did not indicate any significant differences between the
AS and control groups at the FDR-corrected p-level.

Graph theory properties

As presented in Figure 1, significant differences between groups
were found in both small-world metrics and the assortativity across

several network densities. Regarding transitivity as an indicator of
brain network segregation, AS group showed significantly lower
segregation than the control group (Figure 2A: AS < controls,
t-value = −21.20, p-value < 0.0001, Bonferroni-corrected).
Significant differences in the clustering coefficient confirmed the
finding of lower segregation in the AS group (AS < controls, t-
value = −29.85, p-value < 0.0001, Bonferroni-corrected). The AS
group showed significantly lower network assortativity compared
with healthy controls (Figure 2B: AS < controls, t-value=−15.19,
p-value < 0.0001, Bonferroni-corrected).

Furthermore, the AS group exhibited higher network
integration compared with the control group as revealed by higher
global efficiency (Figure 2C: AS > controls, t-value = 2.33, p-value
= 0.02, Bonferroni-corrected).

Discussion

In the present study, we investigated differences in pairwise
FC at the whole-brain level as well as in the whole-brain
functional organization in individuals with Asperger’s syndrome
(AS) and HCs. Our study revealed that individuals with AS show
decreased network assortativity and transitivity compared with
the HC group pointing out reduced activity in local information
processing within specified brain regions and lower network
resilience in AS. The global efficiency of whole-brain networks
was significantly higher in participants with AS compared with
HCs, which on the other hand reveals smaller shortest path
lengths between distant nodes in AS. Comparing the averaged
functional connectivity (FC) within the seven main functional
brain networks, we did not find any significant differences between
AS and HCs.

Previous studies on brain organization in AS have shown
several inconsistencies and are partially competing with the
current findings. Our finding of no difference in whole-brain FC
in AS individuals compared with the control group is in line
with a previous study by Tyszka et al. (46), which found no
significant differences in whole-brain FC in adults with high-
functioning autism (HFA) in comparison with HCs. However,
the aforementioned study considered that mainly individuals in
adolescence and with low functional abilities may exhibit FC
alterations. Further studies testing this hypothesis demonstrated
hyper- and hypoconnectivity in whole-brain analyses of ASD
(14, 69, 70). In the case of AS, hyperconnectivity of subcortical
and primary sensory networks was found to be associated with
disturbed sensory perception in adults with AS (71). Social
impairments, one of the core symptoms of AS, were also
correlated with hypoconnectivity in insular regions in adolescents
with AS (72). Our study provides evidence to support the
hypothesis that in adulthood, the brain functional connectivity
of individuals with AS might be similar to the functional
connectivity of typically developing individuals. This convergence
of functional connectivity has already been observed in other
brain functions such as sensory processing, which is essential
for understanding autistic symptomatology (73). Inconsistencies
in previous findings might be also related to high sample
heterogeneity regarding age, sex, and severity of symptoms (14,
74). Here, despite the relatively small sample size, our study
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FIGURE 1

Schaefer parcellation scheme with 400-area categorized in seven networks by Thomas Yeo et al. (60).

FIGURE 2

Comparisons of graph theory metrics between individuals with Asperger’s syndrome (AS) and healthy controls. In the first row, the X-axis of each plot

represents the density threshold ranging from 10 to 34%, and the Y-axis displays the values of graph theory measure, including transitivity (A),

assortativity (B), and global e�ciency (C). The Asperger’s syndrome group (AS) is denoted by green, while the control group is indicated by orange.

The second row shows boxplots of the area under the curve (AUC) for each graph measure [transitivity in (A), assortativity in (B), and global e�ciency

in (C)], which are compared between the two groups of AS (green) and controls (orange). The reported p-values were corrected for multiple

comparisons using the Bonferroni approach (0.05/3).

can contribute important evidence, as our sample contained
narrowly defined subjects with AS, exclusively male sex, and high
cognitive functioning.

On the other hand, inconsistencies in studies of FC in
AS samples could be also related to the complexity of AS
symptomatology, which might affect the network organization
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of the brain. Keeping in mind, that the already mentioned core
symptomatology of ASD most likely depends on the interplay of
various, also sensory-related, brain networks (9, 38), we argue that
the complexity of AS symptomatology could be better explained
by relating them to alterations in the whole-brain connectome
level analyzed by means of graph theory. Consequently, our
results revealed that brain network transitivity and assortativity
are globally reduced in the AS cohort, while global integration is
increased. This could be interpreted as a shift toward a less efficient
and therefore more randomized network configuration in adult AS,
which has already been observed in previous connectome studies
with other psychiatric cohorts (28). This hypothesis is furthermore
in line with studies proving that lower path lengths typically occur
in more randomized networks (75, 76). In further consistency with
our findings, increased global efficiency was found for children with
ASD in comparison with matched subjects with developmental
delay (30). Moreover, increases in global integration in ASD
were reported in studies with ASD samples in childhood and
adolescence, showing that global efficiency in male subjects with
ASD increased from adolescence into early adulthood, whereas
transitivity of brain networks diminished in opposition to this (13).

Partially contradicting our findings are results reporting a
decrease in clustering coefficients at the local network level in a
sample with ASD individuals in childhood and adolescence (e.g.,
DMN) (41, 75), at least one of which was based on a highly
heterogeneous sample in terms of subjects’ verbal IQ, symptom
severity, and global functioning (41). Interestingly, segregation
deficits in children with ASD have been described for particular
brain regions involved in social interaction (77) or emotional
face processing (78). Here, we speculate that our finding of no
significant alterations at the local network level in adult AS can
be explained by the fact that clinically better-performing adults
with AS or HFA might only dispose of significant deficits at the
global level, whereas deficits in local network connectivity might be
associated with earlier stages of brain development in ASD (13, 79).
Moreover, our study is in partial contradiction with results that
have postulated that significant parameters in ASD can be expected
at the local level for the introduction of screening measures (34).
However, this study included a sample with a relatively young
subject age [age: 20.49 ± 6.16 (14–42)] and may therefore not
adequately depict the neural constellation of the adults with AS
or HFA.

The findings of our study, therefore, provide further evidence
for a characteristic brain network configuration in adults with
ASD, which has already been characterized in previous studies
by increased global integration and lower clustering coefficients
(41–43, 75). However, it is not possible to specify the exact
symptoms that can be explained by the present findings as
the study did not directly investigate the relationship between
network configurations and specific symptoms. The identified
network configuration of increased global integration and lower
clustering coefficients in AS group may nevertheless provide
insights into the underlying neural mechanisms that contribute
to this specific subgroup of ASD, characterized by alterations in
social communication, repetitive behaviors, and restricted interests
without any delay in verbal or cognitive development (2, 3). Further
research is needed to establish the relationship between network
configurations and specific symptoms of ASD.

Limitations

In the first line, the sample size is small and diagnostics
for Asperger’s syndrome are already obsolete. The results of
studies only deliver information on a subset of the current
ASD population (high-functioning autism/Asperger’s syndrome).
Another important consideration is the potential impact of
gender on brain network organization in ASD and to control
the effect of gender, our study only included male participants,
which has also been discussed as an independent factor in the
context of altered brain functionality in autism (13, 14, 80–
82). Additionally, we did not correlate the severity of the AS
symptomatology to other clinical scores than the AQ. Therefore,
the limitations of our investigation may potentially be the cause of
the unexpected results in our study, such as the non-finding in the
FC analyses.

Conclusion

In conclusion, this study showed that global FC in adult
AS was significantly different from adult HC. As adults
exhibited increased global integration and decreased network
transitivity and assortativity. Current findings indicated
more randomized brain organization in adult AS compared
to HCs. We recommend two areas for future research.
First, comparing brain organization measures in different
groups of individuals stratified by clusters of ASD symptoms,
gender, age, and severity of functional impairments could
deepen our understanding of the symptomology of ASD
and related disturbances in brain functional organization.
Second, longitudinal studies on high-functioning individuals
with ASD could help map changes in brain functional
organization alongside changes in symptoms from childhood
to adulthood.
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