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Background: Functional magnetic resonance imaging (fMRI) is a valuable tool for

the presurgical evaluation of patients undergoing neurosurgeries. Although many

pre-processing steps have been modified according to advances in recent years,

statistical analysis has remained largely the same since the first days of fMRI. In

this study, we examined the ability of Independent Component Analysis (ICA) to

separate the activation of a language task in fMRI, and we compared it with the

results of the General Lineal Model (GLM).

Methods: Sixty patients undergoing evaluation for brain surgery due to various

brain lesions and/or epilepsy and 20 control subjects completed an fMRI language

mapping protocol that included three tasks, resulting in 259 fMRI scans. Depending

on brain lesion characteristics, patients were allocated to (1) static/chronic

not-expanding lesions (Group 1) and (2) progressive/expanding lesions (Group

2). GLM and ICA statistical maps were evaluated by fMRI experts to assess the

performance of each technique.

Results: In the control group, ICA and GLM maps were similar without

any superiority of either technique. In Group 1 and Group 2, ICA performed

statistically better thanGLM,with a p-value of<0.01801 and<0.0237, respectively.

This indicated that ICA performs as well as GLM when the subjects are able

to cooperate well (less movement, good task performance), but ICA could

outperform GLM in the patient groups. When both techniques were combined,

240 out of 259 scans produced reliable results, showing that the sensitivity of

task-based fMRI can be increased when both techniques are integrated with the

clinical setup.

Conclusion: ICA may be slightly more advantageous, compared to GLM, in

patients with brain lesions, across the range of pathologies included in our

population and independent of symptoms chronicity. Our findings suggest that

GLM analysis may be more susceptible to brain activity perturbations induced by

a variety of lesions or scanner-induced artifacts due to motion or other factors. In

our research, we demonstrated that ICA is able to provide fMRI results that can be

used in surgery, taking into account patient and task-wise aspects that di�er from

those when fMRI is used in research.
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1. Introduction

Functional magnetic resonance imaging (fMRI) has proven to

be a valuable tool for the non-invasive presurgical evaluation of

patients undergoing brain surgery in regions near the eloquent

cortex. Task-based fMRI utilizes carefully designed tasks related to

neuropsychological processes and the statistical analyses that follow

in the processing pipeline to activate the brain regions relevant to

motor, language, memory, and other functions. Most fMRI studies

focus on group analysis of tasks to reveal common functional

networks in the population. Nevertheless, the true limitations of

fMRI analysis techniques are in subject-specific analysis, which is

necessary for a clinical setup.

As far as pre-processing of fMRI data is concerned, many

improvements have been made in recent decades. Moreover,

motion artifact correction (1–3), slice time correction (4, 5), spatial

smoothing (6–9), and registration (10–12) have been extensively

studied, all of which demonstrate a high signal-to-noise ratio of

pre-processed fMRI datasets.

In clinical setups and scientific experiments, the General

Linear Model (GLM) is the most used statistical analysis. As a

statistical tool, GLM has its intrinsic limitations in addition to

the fMRI experiment-specific complexities (13, 14). Movement

during the scan, instabilities in the scanner field, or the inability

of the subject to perform the task correctly throughout the fMRI

experiment can render the design matrix inappropriate and, thus,

the results inaccurate. Furthermore, it is debatable whether the

same design matrix is suitable for different brain regions as

the hemodynamic response differs across the brain. Especially, if

the subject’s movement is in accordance with the experimental

design, then the movement regressors will be correlated with the

task regressor, leading to erroneous beta estimations. Another

problematic aspect is the linearity that GLM assumes, given that

the dynamics within the brain are known to be far from linear.

In psychiatric fMRI experiments, the strength of the

activations is important and may vary in accordance with

many neuropsychological aspects, such as the level of attention,

medication, or even the level of task familiarization of the subject.

Such experiments are usually more sophisticated in their designs

with complex scientific hypotheses where the individual variability

may be significant. These factors cannot be modeled in the

design matrix, and single-subject GLM analysis is, therefore, not

appropriate for drawing patient-specific conclusions (15). As such,

these fMRI experiments have remained only in scientific protocols

without the ability to move to clinical setups, as GLM analysis can

only produce reliable results in group analysis.

Although the scientific community is aware of these

shortcomings, the statistical analysis process using GLM of

single subjects has mostly remained unchanged since the first

days of fMRI. Independent component analysis (ICA) has been

proposed to overcome these shortcomings. ICA is a data-driven

exploratory technique that searches independent spatial distributed

maps that can explain the captured signal. The technique was first

introduced to fMRI data analysis in 1998 (16) and has since been

established in the field (17). ICA has been successfully applied in

many studies, mainly in the form of group ICA analysis as well

as in the form of simple and controlled tasks to prove the validity

of ICA.

In the present study, we examine the ability of ICA to extract

the fMRI activations in an uncontrolled clinical environment and

in a sophisticated language task protocol that activates multiple

and distant brain regions, and we compare the results with those

of the respective GLM analysis. We included all patients that

underwent language task fMRI studies in our hospital for the

duration of the study. We avoided setting any exclusion criteria

to assess the effectiveness of ICA in a real clinical setup. For

our results to be clinically meaningful and applicable to the

most common populations brought to brain surgery, we allocated

patients to two major groups: Group 1, consisting of patients with

chronic/static and not-expanding brain pathology, manifesting

mainly with epileptic seizures, and Group 2, consisting of patients

with progressive brain pathology, mostly malignant brain tumors

manifesting with epileptic seizures and, perhaps, other neurologic

symptoms as well. We also included a control group (CG) to

assess the differences between the two techniques in a supervised

environment. We hypothesized that the two techniques would

be equally sufficient and would supplement each other in a

clinical setup.

2. Material and methods

2.1. Study participants

The current study included healthy volunteers as well as

patients undergoing presurgical evaluation prior to brain surgery.

All data were acquired from July 2018 to January 2022 in St.

Luke’s Hospital, Thessaloniki, Greece. Twenty healthy volunteers

were recruited for the evaluation of the fMRI task protocol (18)

and included in this study as the control group. All healthy

subjects provided written consent for their participation. The

healthy volunteers performed all three tasks, resulting in 60 scans.

Patients’ data were selected retrospectively, all their imaging data

were acquired in the context of their presurgical evaluation routine,

and the protocols were not modified in any way for the current

study. As this is a retrospective study performed in accordance

with the Declaration of Helsinki, the ethical approval of the current

study was waived by the institutional review board (IRB).

As the current study aimed to evaluate the ability of ICA to

extract the activation component in task-based fMRI, no exclusion

criteria were set, and all available data were used. The imaging

data of 60 patients were available (mean age 31.3 ± 15.6 years;

29 women; Table 1). Due to a lack of cooperation from some

patients, some tasks were performed twice while others could not

be completed. Consequently, 199 scans from 60 patients were

collected and analyzed. The 60 patients were further divided into

two groups. Group 1 consisted of 38 patients with 130 scans, all

with chronic epilepsy and the following brain lesions subgroups,

as suggested by structural MRI findings and histopathology exams

following surgery. These lesions were either congenital or early-

life acquired.

• N = 18 patients with static/non-progressive developmental

neoplasms (ganglioneuronal tumors and Grade I Glial

Neoplasms). These are lesions associated with chronic
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TABLE 1 Characteristics of participants (N = 80).

Controls (N = 20)

Women, n (%) 11 (55)

Age, mean in years (std,

range)

31.6 (7.4, 18–44)

Years of education, mean in

years (std, range)

15.85 (2.18, 12–20)

Handedness, N (%)

Right 20 (100)

Left 0 (0)

Language Lateralization, N (%)

Left 19 (95)

Right 1 (5)

Patients (N = 60) Group 1
(N = 38)

Group 2
(N = 22)

Women, n (%) 18 (47.3) 11 (50)

Age, mean in years (std,

range)

26.68 (13.7, 9–63)∗ 39.8 (16.07,

11–71)∗,+

Years of education, mean in

years (std, range)

11.58 (4.87,

2–21)∗∗,++

14.86 (3.62, 6–21)∗∗

Handedness, N (%)

Right 27 (71.1)+ 18 (81.8)

Left 7 (18.4) 2 (9.1)

Bilateral 4 (10.5) 2 (9.1)

Language lateralization, N (%)

Left 29 (76.3) 20 (91)

Right 6 (15.8) 1 (4.5)

Bilateral 3 (7.9) 1 (4.5)

A�ected hemisphere, N (%)

Left 28 (73.7) 20 (90.9)

Right 9 (23.7) 2 (9.1)

Unknown 1 (2.6) 0 (0)

Pathologies, N (%)

LEAT 18 (47.4)

NDM 3 (7.9)

Gliosis 10 (26.3)

MTS 3 (7.9)

Unknown 4 (10.5)

Grade II astrocytoma 4 (18.2)

Grade III astrocytoma 5 (22.7)

Grade IV astrocytoma 10 (45.5)

Rasmussen encephalitis 2 (9.1)

Metastatic brain tumor 1 (4.5)

∗Statistical significance of a p-value of <0.05 between Group 1 and Group 2, ∗∗Statistical

significance of a p-value of <0.01 between Group 1 and Group 2, +Statistical significance of a

p-value of <0.05 with the control group, ++Statistical significance of a p-value of <0.01 with

the control group.

intractable epilepsies. They are also known as long-term

epilepsy associated tumors (LEAT).

• N = 3 patients with neurodevelopmental malformations

(NDM). These are lesions usually due to genetically-

determined aberrant structural brain organization

and deficits.

• N = 10 patients with gliotic-scar lesions.

• N = 3 patients with medial temporal sclerosis (MTS), a

particular atrophic-gliotic lesion of the medial temporal

lobe structures.

• N = 4 patients with unknown pathology. Structural MRI

clues indicating a possibly abnormal area often exist. However,

documentation of a specific lesion is lacking unless the patient

is brought to the surgery and the excised tissue is subjected to

histopathologic analysis.

Group 2 consisted of 22 subjects with 69 scans that presented

with recent onset epileptic seizures as well as other neurologic

symptoms, depending on lesion location. These lesions may appear

across a wide age range of patients, progressively enlarge, invade the

brain, and, as a result of this, manifest quite early after initiation of

the pathologic process. This group consisted mainly of malignant

brain tumors [Grade II (N = 4), Grade III (N = 5), and Grade IV (N

= 10)], Rasmussen Encephalitis (N = 2), and one case of metastatic

brain tumors (N = 1).

Finally, 259 scans (60 from healthy controls and 199 from

patients) were used in the current study. All data were fully

anonymized prior to any processing. Demographics of the cohort

are shown in Table 1. Details about the control cohort can be found

in Gkiatis et al. (18).

2.2. Task fMRI protocol

Details about the language fMRI task protocol that was

implemented can be found in Gkiatis et al. (18) and Benjamin et al.

(19). In brief, the protocol includes three lexico-semantic tasks. In

the first task (Object Naming–ON), drawn objects were presented

to the subjects, and they were instructed to silently name each object

and an action that could be performed with it (20). In the second

task (Verbal Responsive Naming–VRN), written descriptions of

concrete nouns were presented to subjects, and they were instructed

to silently name the described object (21). In the last task (Auditory

Responsive Naming – ARN) (21, 22), auditory-cued descriptions of

concrete nouns were presented to the subjects through headphones,

and they were instructed to silently name the described object. All

tasks consisted of 6 repetitions of 24 s for the task periods and 24 s

for the control periods. Control periods were carried out according

to each task to control for the stimulus-specific activations. Pre-

scan training was performed by all participants until they were

familiar with the tasks prior to any acquisition.

2.3. MRI scanner protocols

All MRI images were acquired in St. Luke’s Hospital,

Thessaloniki, Greece. A Siemens Avanto FIT 1.5T (Siemens
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Healthineers, Erlangen, Germany) MRI scanner was used. A

standard Siemens 20-channel head and neck coil with simultaneous

multi-Slice (SMS) capabilities was employed. Acquisitions began

with a standard Siemens field mapping sequence: TR 1,010ms, TE

4.76ms, and 9.52ms, flip angle 60◦, voxel-size 2 mm3, and FoV

228 × 228 × 170mm. After that, a 15-min fMRI resting state was

acquired. Then, the three language fMRI tasks were carried out. The

resting state fMRI and task fMRI scanner protocols were single-

shot echo-planar imaging protocols with the same acquisition

parameters: multi-band factor 4, TR 1,700ms, TE 50ms, flip angle

84◦, FoV 204 × 204 × 120mm, and voxel-size 2 × 2 × 2mm

in a plane matrix of 102 × 102 voxels. Following that, a 3D T1-

weighted image with a magnetization-prepared rapid gradient-

echo (MPRAGE) sequence was acquired for registration purposes

with the following parameters: GRAPPA factor 2, TR 2,200ms, TE

2.97ms, TI 900ms, flip angle 8◦, FoV 250 × 250 × 192mm, and

voxel-size 1 × 1 × 1mm in a plane matrix of 256 × 256 voxels,

with axial acquisition. A 3D T2-weighted image was also obtained

with the following parameters: GRAPPA factor 2, TR 5,000ms, TE

335ms, TI 1,800ms, FoV 260 × 252 × 176mm, a matrix of 256

× 248 voxels with a voxel-size of 1 × 1 × 1mm, with sagittal

interleaved acquisition. The resting state fMRI protocol included

530 volumes, while the task fMRI protocol included 177 volumes

for each task. Data are not currently publicly available.

2.4. fMRI pre-processing

To avoid the introduction of unnecessary biases in the

analysis, the same pre-processing steps were maintained for

both analyses. Pre-processing steps were minimal to prevent

unnecessary interpolations that could influence the results. All data

were fully anonymized prior to any processing.

Pre-processing pipeline was implemented in FMRIB’s Software

Library (FSL; v 6.0.1; https://www.fMRIb.ox.ac.uk/fsl) (23). First,

T1-weighted 1 mm3 isotropic images were skull-stripped with

the optiBET tool—which outperformed all other tools when

extensively tested in 70 patients’ brain (24)—for the registration

procedures. In the data from the fMRI scans, the first three volumes

were discarded for the scanner’s T1 signal stabilization purposes.

The last four volumes were also discarded as they were added to

ensure that no data would be lost and the task was completed

during their acquisition. The remaining 170 volumes were used

for the analysis. The middle image of the fMRI sequence was

defined as a template. All volumes were registered to the template

with a rigid body transformation with six degrees of freedom to

correct for patients’ head movement during the scan (3). The

MRI scanner’s B0 field inhomogeneities were estimated via the

field map sequences that were acquired at the beginning of each

session and were corrected accordingly after the registration of the

maps to the template (25). FMRI data were brain extracted by

estimating the best thresholding value to remove the skull while

avoiding the removal of any brain tissue as it was implemented

in the FSL toolbox. A Gaussian kernel of double the voxel-size

(4mm) full width at half maximum (FWHM) was selected and

applied for spatial smoothing of the data ensuring high SNR

while eliminating high abrupt peaks in the scans. A high-pass

filter was applied with a cut-off frequency matching the task

frequency at 50 s. Registration to the T1-weighted images was

implemented by registering the template to this image with the

highly adopted boundary-based registration (BBR) algorithm. After

performing the rigid body transformation with 12 degrees of

freedom, this algorithm implements slight corrections according to

the boundaries of the white and gray matter (26).

2.5. Data analyses

The current study aimed to provide evidence on whether ICA

can be a viable alternative to GLM analysis for analyzing task-based

fMRI in the presurgical evaluation of patients. As such, we intended

to test this hypothesis in real-world data, which may include

noisy data with some subjects exhibiting excessive motion or not

performing well due to the potential inability to cooperate caused

by their neuropsychological state. In this context, (a) no exclusion

criteria were set, and all subjects who underwent fMRI language

mapping for their presurgical evaluationwere included in the study,

(b) the analyses were the same for all datasets irrespective of the

noise level, and (c) all analyses were performed in the single subject

level to extract the language map of each patient individually.

2.5.1. GLM analysis
General Linear Model (GLM) analysis is a univariate statistical

method that is widely used and has verified its efficacy in task-based

fMRI independent of the task. GLM takes the form:

Y = Xβ + e,

where Y refers to the time series of the voxel being tested, X is the

design matrix or, equivalently, the matrix of regressors of the fMRI

model, e refers to the error of the model, and β are the parameters

of the model that can be estimated as:

β̂ =

(

XTX
)− 1

XTY ,

where the T sign denotes the transposed matrix, and −1 sign

denotes the inverse matrix, and it should follow a Gaussian

distribution with zero mean: e ∼ N(O, σ 2I).

As such, the best estimation of Y is the ordinary least

square (OLS):

Ŷ = Xβ̂ = X
(

XTX
)−1

XTY = PXY ,

where PX = X
(

XTX
)−

XT , and the error e can be estimated as:

e = Y − Ŷ = Y − PXY = RXY ,

where RX = I − PX .

Though, the errors in an fMRI dataset are not independent

of one another, and it follows a distribution: e ∼ N(O, σ 2V),

where V is the autocorrelation matrix of the time series that may

have nonzero off-diagonal elements and different values across

the diagonal illustrating cross-correlation and time-dependent

differences in variance. As such, a pre-whitening stage was applied
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that involved the estimation of a matrix W, such that WVWT = I

or, equivalently, V−1 = WTW, with which the data are multiplied:

WY = WXβ + We,

which leads to an error: We ∼ N(O, σ 2I) since the variance was:

Var (We) = σ 2WVWT = σ 2I

So, the model was now solved as follows:

β̂ =

(

XTV−1X
)−1

XTV−1Y

and

Ŷ = Xβ̂ = X
(

XTV−1X
)−1

XTV−1Y

However, most importantly, the error has a normal distribution

with zeromean. It is independent and identical, which can allow for

correct model parameter β̂ estimation. In our analyses, different σ 2

of the error were assumed for each voxel to account for differences

in brain activation as well as in noise level, which may reflect B0

inhomogeneities, BOLD signal discrepancies, or other factors in

distant brain regions.

The creation of the model X in the GLM analysis is of

high importance for the meaningful estimation of the parameter

β̂ . The regressors of X can be divided into two categories: (a)

regressors of interest and (b) nuisance regressors. In general, as

regressors of interest, the time series of the task is chosen, while

as nuisance regressors, the motion parameters and/or physiological

measurements during the acquisition are chosen. In our analysis,

since all fMRI scans were block-design, the regressor of interest

was set:

X1 = (hrf ∗f ),

where ∗ refers to the convolution of the two functions, f is a binary

function with 1 s at the time that the task was performed and 0 s

as the time when there was rest, and hrf is the model for the

hemodynamic response function that was chosen for the current

analyses, and it is composed of a single gamma function (std-dev:

3 s; mean lag: 6 s) after filtering it with a high-pass filter at 50 s.

As nuisance regressors, the six motion parameters were chosen

as well as the temporal derivative of X1 to account for shifts of

hrf that may result due to slice time differences or hemodynamic

response differences in different parts of the brain and/or between-

subject variability of the hemodynamic response function. It should

be noted that the derivatives of the motion parameters were not

included in the model X in order to avoid excessive increases in the

degrees of freedom.

2.5.2. ICA analysis
Independent component analysis (ICA) is a multivariate blind

source separation (BSS) method. The goal of ICA is to express

the data, which are a set of random variables, as a combination

of statistically independent non-Gaussian component variables,

which are the signal sources, and it can be formulated by this simple

matrix equation:

X = AS,

where X is the fMRI data rearranged into a p× n, with p being the

time points of each voxel n in the dataset, S is the optimized q × n

matrix containing the statistically independent spatial maps in each

row, and A is the mixing p × q matrix containing the time course

of each spatial map in its columns. The aim of the optimization

algorithms is to estimate an unmixing matrix W = A−1 such

that S = WX contains mutually independent rows. In the current

study, probabilistic ICA (PICA) (17) was utilized. PICA alsomodels

additive Gaussian noise leading to:

X = AS+ η,

where η ∼ N(O, σ 26). Similar to GLM analysis, a variance-

normalization step takes place with a matrix K, such that K6KT =

I, leading to a new error of η ∼ N(O, σ 2I) that follows the

normal distribution with zero mean such that it is independent

and identical.

Although the equations appear similar to that of GLM analysis,

there are two major differences, (a) the matrix A is not predefined

as in GLM, but rather it is estimated as part of the model fitting,

and (b) ICA is a multivariate method, meaning matrix X and,

subsequently, matrices A and S, that refers to the time series of the

whole fMRI scan and not to the time series of a single voxel.

The next step in model fitting is the estimation of the

dimensionality q of the matrix A, or, equivalently, the number

of components to be extracted. To avoid manual annotation

of the matrix dimensionality in each subject, we employed the

Laplace approximation to the Bayesian evidence to estimate the

model order (17) that estimates the value of q that maximizes

the signal explained in the fMRI data while maintaining q < p.

Finally, the unmixing matrix W was estimated in the space of

the pre-whitened data and on the principle of non-Gaussianity

and statistical independence of the source distribution. To convert

each independent component that was calculated into a Z-score

map that could be thresholded, the raw components were divided

by the standard deviation of the estimated voxel-wise error η.

The component of activation, or, equivalently, the ICA language

map, was selected according to the structural distribution of the

activations as well as the similarity to the GLM language map. In

6 out of the 259 fMRI scans, ICA split the activations into more

than one component.

2.6. Experts’ evaluation of language maps

Following the language maps, the GLM and ICA maps were

thresholded and presented to two independent experts in language

mapping with fMRI, GK, and KN, who reviewed and scored the

maps accordingly.

2.6.1. Language map thresholding
The language maps, independent of whether they were derived

from GLM or ICA methodology, were thresholded with a

combination of a fixed cluster-wise threshold at a p-value of <0.05

and a voxel-wise threshold that ranged from 2.3 to 3.1 z-score (p

< 0.01 to p < 0.0001). Four thresholded maps were generated

for each methodology for each subject according to the voxel-wise
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threshold, one at 2.3 z-score, one at 2.6 z-score, one at 2.9 z-score,

and one at 3.1 z-score.

2.6.2. Evaluation procedure
These four maps were presented to the experts blindly

to whether the map was generated through GLM or ICA

methodology, superimposed in the high-resolution space (T1-

weighted images). The evaluation procedure is shown in Figure 1

and was as follows. First, they chose the most appropriate language

map among the four thresholdedmaps of the specific methodology.

Then, they scored the selected map ranging from 0 to 5 according

to the following classification:

0: No activations: No cluster survived the thresholding, and/or

noise clusters were visible, and none could be attributed to

language-relevant regions.

1: Unreliable activations: Some clusters may be language

activations, but noise clusters were interfering with these clusters,

and no reliable conclusion could be made.

2: Unreliable activations: Only a few of the six-language critical

regions were activated, and/or noise clusters were visible, and they

interfered with the activation clusters.

3: Somewhat reliable activations: Activations in most of the

six language-critical regions were visible, but some were missing,

and/or noise clusters were visible without interfering with the

activation clusters.

4: Reliable activations: Activations in all six language-critical

regions were visible, but in some regions, the extent may not be

satisfactory when compared to the mean of the control group. No

noise clusters were visible.

5: Reliable activations: Activations in all six language-critical

regions were visible and to a satisfactory extent when compared to

the mean of the control group. No noise clusters were visible.

When there was a disagreement between the scoring of the two

experts, the two reviewers concurred on the final score according

to the scoring table. When no cluster survived the thresholding in

any methodology, maps were given a score of 0, and they were

not presented to the reviewers. Examples of language maps for

each score are presented in Figure 2. In the ICA methodology,

in six maps where the activations were split into more than

one component, the component that showed the most reliable

activations was thresholded and shown to the reviewers, though

they were still not informed of this procedure.

3. Results

From a group of 60 patients and 20 controls, a total of 259 scans

were collected and analyzed. For each scan, a GLM and an ICA

map were chosen and were given a score. The total count of the

scores is shown in Figure 3. As can be observed, both techniques

performed fairly well. A paired t-test statistical analysis for the

60 scans of the control group showed no statistically significant

different mean between ICA and GLM analysis techniques (p =

0.2425; mean of the differences = 0.1). The paired t-test of the

199 scans of the patients showed a statistically significant different

mean (p = 0.002767; mean of the differences = 0.171), with ICA

analysis techniques showing a greater mean value than the GLM

technique. For Group 1, with 69 scans, ICA analysis scores showed

a statistically significant greater mean than the GLM analysis scores

(p = 0.0237; mean of the differences = 0.1594). For Group 2,

with 130 scans, the ICA analysis scores displayed a statistically

significant greater mean when compared to the GLM analysis

scores (p= 0.01801; mean of differences= 0.1769).

A histogram was used to evaluate the differences and

complementary nature of the two analysis techniques, as shown

FIGURE 1

Flowchart of language map scoring for both techniques.
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in Figure 4. In Figure 4A, we extracted scans (27 scans) in which

the ICA technique scores were unreliable (scores of “0,” “1,” or

“2”), and we presented the score of the GLM technique. Similarly,

in Figure 4B, we extracted scans (31 scans) in which the GLM

FIGURE 2

Examples of language maps for each score. Score 0 is not shown as it is a blank/noisy map. Images are in radiological orientation. GLM scoring when

the score of ICA analysis was 0, 1, or 2. ICA scoring when the score of GLM analysis was 0, 1, or 2. GLM, General Linear Model. ICA, Independent

Component Analysis.
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FIGURE 3

The sum of the scorings for each analysis technique. GLM, General Linear Model; ICA, Independent Component Analysis. As can be observed, GLM

presented a motion-related artifact that interfered with the results, making them unreliable. ICA was able to di�erentiate and split these two signal

sources into di�erent components producing a reliable map. Images are in radiological orientation.

FIGURE 4

Scoring of each analysis technique when the other technique produced unreliable results. (A) GLM scoring when the score of ICA analysis was 0, 1,

or 2. (B) ICA scoring when the score of GLM analysis was 0, 1, or 2. GLM, General Linear Model; ICA, Independent Component Analysis. As can be

observed, ICA merged in a single component the activation with an artifact source resulting in an unreliable map. The ICA time series is far from the

task time series. GLM produced a reliable map showing that the language areas were activated according to the task. Images are in radiological

orientation.

technique scores were unreliable (scores of “0,” “1,” or “2”), and

presented the score of the ICA technique.

To further underline the different results between the two

techniques, we created Figures 5, 6. In Figure 5, an example is

presented where the GLM technique performed poorly, with a

score of “1” while the ICA technique produced reliable results,

with a score of “5.” Figure 6 presents the only scan where

the ICA technique performed poorly, with a score of “2,”
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FIGURE 5

Example of a task that scored “1” in GLM analysis while scoring a “5” in ICA analysis. As can be observed, GLM presented a motion-related artifact that

interfered with the results, making them unreliable. ICA was able to di�erentiate and split these two signal sources into di�erent components,

producing a reliable map. Images are in radiological orientation.

FIGURE 6

Example of a task that scored “1” in ICA analysis while scoring a “4” in GLM analysis. As can be observed, ICA merged in a single component the

activation with an artifact source resulting in an unreliable map. The ICA time series is far from the task time series. GLM produced a reliable map

showing that the language areas were activated according to the task. Images are in radiological orientation.

while the GLM technique performed excellently, with a score

of “5.”

4. Discussion

In clinical practice, task-based fMRI has proven to be an

essential examination prior to brain surgery. Nevertheless, there

are many factors during the examination that can vary the

results, frequently casting the scan session invalid. Such factors

can be motion artifacts, notably when motion is correlated

with the task, scanner artifacts, subjects’ performance, and their

neuropsychological state. In addition, physiological factors also

play a key role in the results, such as the difference in the

hemodynamic response of different brain regions, the effect of

tumor or long-lasting epilepsy in the brain, and the effects of brain

aging (15, 27).
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Currently, the most widespread statistical analysis technique

in use is the GLM. Although it is the only technique in medically

approved software and it has been validated extensively, its intrinsic

assumptions of linearity and the applied regressions do not

allow for the abovementioned factors to be taken into account

satisfactorily. Other shortcomings are that, even though a single

hemodynamic response model was utilized for the whole brain, the

motion parameters might not resolve the artifacts when motion is

in line with the task, or the subject’s performance and psychological

state are not known to the model (14).

In this study, we sought an alternative to GLM that can

be at least as reliable as GLM when conditions are ideal but

can outperform it when not. ICA is a data-driven technique

that can potentially overcome some of the abovementioned

shortcomings. ICA splits the signal into spatial components that

are statistically independent, which can later be identified as

signal components/networks or noise components. The goal of the

study was to identify if the activation of the task can be found

among the signal components reliably and independently of other

signal sources.

In fMRI data analysis, there are many considerations that

can alter the statistical maps quantitatively and qualitatively. Pre-

processing analysis techniques and parameters may significantly

affect the results. As such, we utilized a common pipeline for all

subjects, and both GLM and ICA techniques were fed with the same

datasets. Since software packages may also influence the results,

we employed the same software for both analysis techniques,

namely FSL. Statistical thresholding of the maps is one of the

immersive considerations in fMRI. To overcome this, we employed

a methodology that included a variety of thresholds of the same

statistical map and two fMRI expert clinicians who chose the final

version of the map for each session blinded to what technique

produced each map (15, 27, 28).

However, factors such as motion artifact and physiological

noise that were not removed during pre-processing, as well as

subjects’ neuropsychological state and cooperation, were left to the

GLM and ICA techniques to handle, because of which no subjects

or sessions were excluded for any reason to assess the ability of each

technique unbiased.

Following that, we included three groups of subjects. A control

group of 20 subjects (60 scans) that, theoretically, should have

performed well, and two patients groups: Group 1 with 38 patients

with either congenital or early-life lesions (130 scans), although

they usually cooperate well and their fMRI activations are often

atypical, and Group 2 with 22 patients (69 scans) with high-

grade pathologies that they, often, do not cooperate well due

to their neuropsychological state [disease-specific and/or anxiety

(27)]. Further, the acquisitions consisted of three fMRI language

tasks for each subject that activate a spatially complicated statistical

map with six language critical regions throughout the brain that

includes frontal, temporal, parietal, occipital, median regions and,

in some cases, deep brain structures (18). This allows us to

evaluate the two techniques in maps with clusters in distant

regions that may be affected or not by the brain disease and/or

may differ in hemodynamic properties, as has been extensively

suggested (29).

Statistical comparisons among the two techniques revealed:

(a) no statistically significant difference between ICA and GLM

in the control group, (b) a statistically significant greater mean

value for ICA compared to GLM in the patient group when both

Group 1 and Group 2 were included, (c) a statistically significant

greater mean value for ICA compared to GLM in Group 1, and

(d) a statistically significant greater mean value for ICA compared

to GLM in Group 2. This further endorsed our hypothesis that

the two techniques can perform similarly in the control group

while ICA can outperform GLM in the patient group. It should

be noted that both techniques performed satisfactorily well for

clinical needs.

Even if not shown in the current study, ICA analysis revealed

networks that were not linked to the language activation network

either in their spatial map or in their time course. This further

strengthens the assumption that many complex neuropsychological

tests have suggested that brain dynamics are far more complex than

simple on/off activations (15).

In Figure 4, the complementary nature of the two techniques

can be observed. In this figure, the performance of each technique

being assessed in cases where the other technique has failed is

presented. Figure 4A shows the performance of GLM in the 27

scans in which ICA had poor performance. Similarly, Figure 4B

shows the performance of ICA in the 31 scans in which GLM

had poor performance. The nine scans that had scores of zero

are the same scans for both techniques, so we believe that

the subjects did not perform the task during those scans. It

is evident that, by utilizing both techniques, the failed fMRI

sessions can be minimized to 19 instead of 27 and 31 for each

technique, respectively.

In most of the scans where GLM failed, ICA succeeded;

the ICA component’s time series was not as correlated with the

task as in other scans. This can be explained by the inability

of the subject to perform the task in a portion of the scan,

which, in turn, can explain the reason GLM failed to produce

reliable activation maps. In other scans, GLM failed due to motion

parameters being correlated with the task. ICA succeeded in some

of them, while in others, it could not differentiate, producing a

map similar to GLM but an unreliable activation map. However,

when ICA failed to produce a reliable activation map while GLM

succeeded, we found that the maps had been either split into

multiple components or had been merged with noise into a

single component. This may change if we perform ICA analysis

with different parameters for these scans, such as the number of

components to be produced, but this was outside the scope of this

study as we intended to assess the performance with the default

parameters of each technique.

In literature, ICA has been established in fMRI studies as

a reliable technique to extract network activations, although it

has been mainly utilized in resting-state fMRI. Some studies in

task-based fMRI have demonstrated that ICA is able to reveal

networks and interactions beyond the GLM map activations (30–

33). Although these studies are investigating group ICA analysis,

networks of opposite activations and regions beyond the language

networks were observed in our cohort as well. In another study,

group ICA was able to differentiate activations even in multi-task
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fMRI designs (34). Ahmed et al. were able to differentiate the

variability across trials, sessions, subjects, and brain areas using

the ICA decomposition (35). In some recent studies by Boerwinkle

et al. (36) ICA has been utilized successfully in single-subject

resting-state fMRI analysis to reveal the epileptic network. They

managed to validate the existence of the network in surgical cases

as well (37, 38).

These studies demonstrate the advantages of group ICA

to reveal more subtle activations and differences among

populations over group GLM in complex neuropsychological

fMRI experiments. In our study, ICA has been proven capable

of extracting a complex brain network of language processes

together with their time course at the single subject level.

As such, we believe that ICA can offer a new perspective

on brain dynamics and interactions in fMRI spatial maps,

as well as their corresponding time courses. This can be

applicable to group ICA and single-subject ICA, facilitating

the integration of more complex neuropsychological tests into

clinical translation.

To the best of our knowledge, the only study to perform single-

subject ICA in task-based fMRI was by Tie et al. (39). Even if the

focus of their study was group ICA analysis, they also reported

single-subject ICA results from back-reconstructed maps of group

ICA components. They found very high similarity scores of their

ICA maps with the GLM results, similar to ours. In our study,

we included a bigger cohort of controls (20 subjects), and we also

included a group of patients (60 subjects; 38 Group 1 and 22 Group

2) for a total of 259 scans. However, more importantly, we chose to

focus on methods that can be applied in single subjects separately

without the need for a group analysis to prove the ability of ICA in

clinical settings.

5. Limitations and future perspectives

There are some limitations in the current study that we would

like to point out. Most important, the lack of neuropsychological

assessments in our cohort limited the analysis we could perform

in the study. Moreover, the number of subjects, although higher

than any previous study and enough for statistical comparisons, is

still not enough to drive ICA into clinical practice. More studies

with similar results and larger and more diverse cohorts need

to take place. From a methodological point of view, we believe

that both GLM and ICA could perform better if parameters

from each technique could be adjusted for each subject instead

of taking the default values for all the scans. As such, another

study could potentially compare these two techniques but with

optimized parameters for each scan. Another methodological

limitation of our study is the expert’s evaluation of the language

maps. This methodology implies objectivity, which may not always

be present and, as such, may introduce some biases in the

analysis. Though we chose this methodology over the alternative

of a similarity score, as with the second, (a) we lost the ability

to differentiate which technique performed better, and (b) we

could potentially have high similarity scores even in unreliable

language maps.

In our study, frequently, we found more ICA signal

components that were not the activation of the task. A future

study could potentially focus on these components to interpret their

appearance and/or contribution to language processes.

To conclude, we need to emphasize the advancement in MRI

technologies over the past few years that lead to acquiring high-

quality data in time as well as in space. This allowed us to

acquire fMRI data of 170 data points in a 5-min acquisition with

an isotropic voxel size of 2mm with full-head coverage. This is

crucial for the successful implementation of the ICA methodology,

as the fewer the data points, the faster the algorithms fall to

overfitting. As such, a future study could focus on identifying

the lower limit of fMRI data points that are needed during

the acquisition for the successful ICA implementation in task-

based fMRI.

6. Conclusion

In this retrospective study, we performed two analysis

techniques—GLM and ICA—in language task-based fMRI data to

assess the ICA technique’s ability to performwell in clinical settings.

For that reason, no exclusion criteria were set, and all 60 subjects

that performed fMRI language were included in the study together

with 20 healthy controls, resulting in 259 scans. ICA was able to

perform as well as GLM in our control cohort while performing

statistically better than GLM in patients independent of the

underlying pathology. We demonstrated that ICA could extract the

language map reliably in 232 out of 259 scans, while GLM extracted

a reliable map in 228 scans. Notably, with the combination of both

techniques, 240 scans could potentially produce reliable activations,

improving the sensitivity of task-based fMRI in general. As such, we

propose that, in practice, the implementation of both techniques

in clinical settings significantly optimizes the sensitivity of task-

based fMRI.
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