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Suicide is a pressing public health issue, with over 700,000 individuals dying 
each year. Ketamine has emerged as a promising treatment for suicidal thoughts 
and behaviors (STBs), yet the complex mechanisms underlying ketamine’s anti-
suicidal effect are not fully understood. Computational psychiatry provides 
a promising framework for exploring the dynamic interactions underlying 
suicidality and ketamine’s therapeutic action, offering insight into potential 
biomarkers, treatment targets, and the underlying mechanisms of both. This 
paper provides an overview of current computational theories of suicidality 
and ketamine’s mechanism of action, and discusses various computational 
modeling approaches that attempt to explain ketamine’s anti-suicidal effect. 
More specifically, the therapeutic potential of ketamine is explored in the context 
of the mismatch negativity and the predictive coding framework, by considering 
neurocircuits involved in learning and decision-making, and investigating altered 
connectivity strengths and receptor densities targeted by ketamine. Theory-
driven computational models offer a promising approach to integrate existing 
knowledge of suicidality and ketamine, and for the extraction of model-derived 
mechanistic parameters that can be  used to identify patient subgroups and 
personalized treatment approaches. Future computational studies on ketamine’s 
mechanism of action should optimize task design and modeling approaches to 
ensure parameter reliability, and external factors such as set and setting, as well as 
psychedelic-assisted therapy should be evaluated for their additional therapeutic 
value.
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1. Introduction

According to the World Health Organization, suicide is a major public health concern, with 
more than 700,000 people dying by suicide every year (1), a number that has steadily risen over 
the past decade (2). Moreover, for each death by suicide, there are more than 20 suicide attempts 
(1). Individuals suffering from depression are 20-fold more likely to die by suicide compared to 
the general population (3). In major depressive disorder (MDD), the lifetime prevalence of 
suicide attempts is estimated to be 31% (4) with completion rates between 5 and 10% (5, 6). 
However, suicidality is a cross-diagnostic outcome that extends beyond depression alone. 
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Suicidal ideation and attempts can occur in individuals with various 
psychiatric disorders, as well as in those without a formal psychiatric 
diagnosis (7). Differentiating between suicidal ideation and suicide 
attempts is crucial, as the former refers to thoughts and feelings related 
to suicide, while the latter refers to actual behaviors with potentially 
lethal consequences. The development of suicidal ideation and the 
progression from ideation to suicide attempts are distinct phenomena, 
and researchers have increasingly focused on identifying factors that 
distinguish between the two (8, 9).

Recent studies have shown that ketamine, an N-methyl-D-
aspartate receptor (NMDAR) antagonist, significantly reduces suicidal 
thoughts and behaviors (STB) (10). Within hours, a single infusion of 
subanesthetic-dose ketamine relieves depressive symptoms (11, 12), 
including in treatment-resistant individuals (13, 14), and rapidly and 
significantly reduces suicidal ideation (10, 15–19). In comparison, 
treatment with first-line antidepressants, such as selective serotonin 
reuptake inhibitors (SSRIs), is associated with an improvement in 
depressive symptoms by the end of the first week, and may take up to 
6 weeks to achieve maximum therapeutic effect (20). However, 
repeated ketamine administrations are required to prolong the drug’s 
effect, a response which typically abates within a week of a single 
infusion (21, 22). Notably, ketamine’s anti-suicidal effects may 
be distinguishable from its antidepressant effects (18, 23, 24). While 
antidepressant effects are crucial for overall mood improvement, the 
rapid anti-suicidal action of ketamine can prove critical for those in 
acute crisis and may hold promise for a broader spectrum of patients 
with STBs (24). This raises the possibility that ketamine may affect 
neurobiological pathways associated with STBs independent of 
depression, emphasizing the unique therapeutic potential of this 
drug (25).

The replication of ketamine’s rapid antidepressant and anti-
suicidal effects has prompted detailed study into the drugs’ 
pharmacological mechanism of action. Ketamine preferentially acts 
via NMDAR antagonism giving rise to increased glutamate release 
from pyramidal cells with subsequent activation of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). A 
cascade of downstream signaling pathways is then triggered leading 
to enhanced brain-derived neurotrophic factor (BDNF) and 
mammalian target of rapamycin (mTOR) signaling, increased protein 
synthesis, and synaptogenesis, which may, in turn, promote adaptive 
rewiring of pathological neurocircuitry (26) [see (27, 28) for detailed 
reviews of ketamine’s pharmacological profile]. However, ketamine’s 
effect is not restricted to glutamatergic pyramidal cells, but extends to 
other neurotransmitter systems, including serotonin, norepinephrine, 
and dopamine (29–33) as well non-monoaminergic systems (e.g., 
opioidergic and inflammatory) (14, 34).

Several clinical and neurobiological predictors of ketamine’s 
antidepressant and anti-suicidal effect have been identified (35–37), 
however, these data-driven approaches provide little mechanistic 
insight into how ketamine reduces STBs. This is partly due to the 
lack of mechanistic understanding of suicidality itself (38). 
Suicidality is a complex construct that involves multiple factors, such 
as emotion regulation, cognitive processing, and social and 
environmental stressors. Advancements in computational psychiatry, 
namely generative models, hold great potential in unraveling the 
complexities of suicidality and the mechanisms underlying 
ketamine’s anti-suicidal effects. Generative models explicitly describe 
the mechanisms underlying observed neural or behavioral data 

using biologically-interpretable variables (39, 40). By comparing 
model simulations against empirical data, the resulting discrepancies 
can be used to refine the model. This iterative process leads to the 
development of more informed theories of suicide and compuational 
models. By leveraging these computational tools, we can gain insight 
into the dynamic interactions between suicidality and ketamine’s 
anti-suicidal effects, potentially identifying biomarkers and 
treatment targets, and enhancing our understanding of the 
mechanisms involved.

In this paper, we  review current computational theories of 
suicidality and ketamine’s mechanism of action, and discuss various 
computational modeling approaches being used to understand 
ketamine-induced changes in STBs. We close with a brief discussion 
on the implications of computational psychiatry for suicide prevention 
and address open-ended questions in ketamine therapy research.

2. Computational accounts of 
suicidality

Normative theories of learning and decision-making in 
computational neuroscience offer a theoretical framework for 
understanding optimal decision-making processes and can provide 
insight into the vulnerabilities associated with STB. While 
computational accounts of STB are only beginning to emerge, there is 
already a substantial body of literature on cognitive task performance 
that can inform such accounts.

Several studies have investigated impaired decision-making in 
individuals with STBs using the Iowa Gambling Task (IGT) and 
Cambridge Gambling Task (CGT). A meta-analysis of these studies 
showed an association between history of suicide attempts and riskier 
decisions compared to both patient controls and healthy controls (41, 
42). However, the complexity of the IGT makes it challenging to 
attribute variations in task performance to specific cognitive processes. 
Dombrovski et al. (43) addressed this problem by separating choice 
processes from learning using reinforcement learning (RL) models 
and a three-armed bandit task. The authors showed that suicide 
attempters had impaired value comparison and diminished behavioral 
sensitivity to reinforcement, suggesting impaired reward learning, a 
deficit that scaled with suicide attempt lethality and was partially 
explained by poor cognitive control.

In addition to impairments in decision-making processes, 
decision-making biases may also play a role in STBs (44). Millner et al. 
(45) used a drift-diffusion model (DDM) and RL model to isolate two 
decision-making biases in an Avoid/Escape Go/No-Go task, namely 
active-escape bias (i.e., a bias to “do something” to escape) and an 
inhibitory-avoid bias (i.e., a bias to “do nothing” to escape). The 
authors showed that individuals with STBs exhibited a higher bias for 
active responses to escape an aversive state compared to controls, even 
after controlling for clinical variables such as depression and 
hopelessness. However, the inhibitory-avoid bias was comparable 
between groups, and no significant differences in bias parameters were 
found between suicide attempters and ideators (45). A recent study by 
Myers et al. (46), found that reduced inhibitory control, as measured 
by the Go/No-Go task, was predictive of a suicide attempt within 
90 days, and that the miss rate in the same task was a stronger 
predictor of near-term suicide attempts compared to other commonly 
used measures. These preliminary findings suggest that 
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decision-making biases assessed through cognitive tasks may hold 
clinical predictive value.

One overarching explanation of the above findings is an increase 
in Pavlovian vs. instrumental control (47, 48). Pavlovian control 
dictates reflexive behavior that rigidly specifies stimulus–response 
mappings regardless of outcomes. In contrast, instrumental control 
allows for the adaptation of behaviors to environmental contingencies 
to achieve desired outcomes in a goal-directed fashion. Increased 
Pavlovian control can therefore lead to more impulsive actions and 
biases that are not optimal in the long run. Karvelis and Diaconescu 
(49) used computational modeling to formally conceptualize the 
active-escape and Pavlovian biases in suicidality as a product of 
perturbations in probabilistic learning. According to the model, the 
Pavlovian active-escape bias and other suicide risk markers, including 
hopelessness and reduced cognitive control, may stem from the 
following four mechanistically distinct parameters that capture 
components of learning and stress responsiveness: increased stress 
sensitivity, increased learning from stressors, reduced sense of 
controllability of stressors, and a reduced ability to unlearn 
maladaptive beliefs. The model was validated by simulating 
performance in an Avoid/Escape Go/No-Go task, showing that 
altering each of the four parameters reproduces the findings of 
increased active-escape bias reported by Millner et  al. (45). The 
authors proposed that these four mechanisms, which represent 
different hypotheses about the cognitive mechanisms underlying 
suicidality, may also correspond to distinct subtypes of suicidality. 
Although the model remains to be tested empirically, the authors’ 
proposed hypotheses on the connection between suicide neurobiology 
and cognition/behavior can inform potential mechanisms of action in 
treatments aimed at reducing STBs (we discuss this in more detail in 
Section 4.2).

Pavlovian biases may also explain increased loss aversion in 
STBs. Liu et al. (50) used the balloon analog risk task (BART) to 
investigate decision-making biases in MDD patients with and 
without suicide attempts. The study used Bayesian computational 
modeling to show that the suicide attempter group demonstrated 
stronger loss aversion than the non-attempter group and healthy 
controls. The authors posit that increased loss aversion, as a Pavlovian 
response, may prompt individuals to focus more on current painful 
experiences and may motivate suicide as a means of avoiding future 
psychological pain.

Collectively, these findings suggest that impaired value-based 
decision-making and cognitive control are important factors of 
suicidal vulnerability (51) [see (48) for a review on impaired decision 
processes in suicidal behavior], particularly in social and aversive 
contexts (52). Decision making processes in STBs may be influenced 
by an affective bias, whereby negative outcomes drive learning more 
than positive outcomes (53, 54). Suicidal ideation has been associated 
with a processing bias toward negative stimuli (55), while suicide 
attempts have been associated with blunted positive affective 
forecasting for future positive events (56). This may suggest that 
individuals with STBs fixate on negative outcomes and envision a 
future with predominantly negative events, and even in the presence 
of unexpected positive events, their predictions about the future are 
resistant to change. Over time, an excessive focus on and learning 
from negative outcomes may lead to a general updating bias toward 
negative information and result in the formation of overly precise 
negative prior beliefs (e.g., lower self-esteem, pessimistic worldview). 

These beliefs can exert excessive influence on one’s thoughts leading 
to a state of hopelessness—i.e., the belief that no actions can improve 
one’s situation—and in turn, may result in the adoption of maladaptive 
action policies, which are defined as strategies used by an agent to 
determine the next action based on what they have learned. For 
instance, a reduced sense of behavioral control may foster increased 
Pavlovian learning, leading to increased Pavlovian biases, where an 
agent continues to take actions that do not lead to the highest expected 
reward, such as actively escaping aversive events (45, 49), or avoiding 
loss (50). This bias is problematic as it can prevent the agent from 
exploring potentially more rewarding actions and thus hinder the 
learning of an optimal policy. In a suicidal crisis, vulnerable 
individuals may respond with increasingly stochastic choices due to 
impaired reward valuation (43), leading to a misestimation of the 
value of suicide over superior alternatives (48, 57). Utilizing 
computational models, one can generate novel hypotheses regarding 
impairments in learning and decision-making, which can 
be experimentally tested to develop a mechanistic understanding of 
the neurocognitive processes that underlie the progression of a 
suicidal crisis.

3. Computational accounts of 
ketamine

Ketamine has shown promising therapeutic potential in treating 
suicidal ideation, but its mechanism of action remains unclear. 
Marguilho et al. (58) recently proposed a unified model of ketamine’s 
dissociative and psychedelic properties, suggesting that its therapeutic 
effects are driven by acute modulation of reward circuits and a 
sub-acute increase in neuroplasticity. More specifically, ketamine may 
block NMDAR-dependent bursting activity of neurons in the lateral 
habenula (LHb), a basal ganglia nucleus known as the “anti-reward” 
center, resulting in the disinhibition of downstream monoaminergic 
reward centers. Moreover, the sub-acute increase in neuroplasticity, 
driven by sustained AMPAR activation in excitatory pyramidal 
neurons and potentiating BDNF and mTOR signaling, allows for 
sustained antidepressant effects. Additionally, the authors suggest 
that ketamine’s dissociative and psychedelic properties are driven by 
dose-and context-dependent disruption of the salience network (SN) 
and the default-mode network (DMN). The SN, composed of nodes 
that include the anterior cingulate cortex (ACC) and anterior insular 
cortex (AIC), helps prioritize relevant stimuli for decision-making 
and action, while the DMN, composed of nodes such as the posterior 
cingulate cortex (PCC), medial prefrontal cortex (mPFC), and 
inferior parietal lobule (IPL), is associated with self-referential 
thought. Furthermore, functional connectivity between the DMN 
and ACC has been shown as a key connection for explaining 
ketamine’s rapid antidepressant action (59). Computationally, the 
authors propose that nodes of the SN represent high-level priors 
about the body, and under low doses of ketamine, disintegration of 
the SN leads to relaxed priors about bodily self-experience accounting 
for ketamine’s ‘dissociative’ effects. At high ketamine doses, 
disintegration of the DMN leads to relaxed priors about narrative 
self-experience, accounting for ketamine’s ‘psychedelic’ effects.

The model proposed by Marguilho et al. (58) builds upon earlier 
predictive processing models describing the mechanisms underlying 
the therapeutic effects of classic serotonergic psychedelics. The 
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Relaxed Beliefs Under Psychedelics (REBUS) model by Carhart-
Harris and Friston (60) and self-binding model of psychedelic ego 
dissolution of Letheby and Gerrans (61) share the idea that 
serotonergic psychedelics weaken high-level priors, thereby creating 
an opportunity for belief revision. The REBUS model integrates 
theories of the entropic brain and free-energy principle within the 
framework of predictive coding, and proposes that classic 
psychedelics induce a heightened entropic brain state under high 
levels of serotonin 2A (5-HT2A) receptor agonism. This results in 
increased neural plasticity and a relaxation in the precision weighting 
of high-level priors or beliefs, possibly through reduced connectivity 
within the DMN. Belief relaxation, in turn, may enable increased 
sensitization to bottom-up signaling, rendering aberrant beliefs more 
amenable to revision (60). Letheby’s self-binding model of 
psychedelic ego dissolution on the other hand, focuses on ego 
dissolution by weakening the precision of maladaptive self-
representations. The authors identify both the SN and DMN as 
crucial networks to self-representation, proposing that the SN plays 
a role with a more minimal or embodied sense of self while the DMN 
is implicated in higher-level narrative self-representation. Letheby 
posits that psychedelics reduce the brain’s confidence in expectations 
about reality and the Self, thereby decreasing their influence on 
phenomenal awareness (i.e., the subjective experience of the world 
and oneself), and driving therapeutic change through alterations in 
self-perception possibly through a reduction in the precision-
weighting of high-level priors (61).

All three models converge on the idea that the therapeutic effects 
of these substances involve the relaxation or weakening of high-level 
priors and beliefs, which subsequently allows for the revision of 
entrenched maladaptive beliefs or self-representations (see Table 1 for 
summary of models). Ketamine may achieve this through a different 
mechanism than serotonergic psychedelics by directly affecting 
NMDAR and AMPAR signaling. Previous research has shown that 
glutamatergic NMDARs facilitate the communication of top-down 
predictive signals, while AMPARs communicate bottom-up prediction 
error signals (62–64), and the weighting of these prediction errors is 

driven by neuromodulators such as dopamine and acetylcholine (65–
67). Ketamine’s unique mechanism of action, directly influencing 
NMDAR and AMPAR signaling, offers a distinct pathway for 
addressing its therapeutic impact on maladaptive cognitive processes 
associated with STBs (23).

4. Computational modeling of 
ketamine’s anti-suicidal effects

Throughout the remainder of the paper, we attempt to explain 
ketamine’s anti-suicidal effect using an array of computational 
modeling approaches. Firstly, we explore its therapeutic potential in 
the context of the mismatch negativity and predictive coding 
framework. Secondly, we examine the impact of ketamine on the 
neurocircuits involved in STBs using Karvelis and Diaconescu’s 
model of suicidality (49). Finally, we  discuss Dynamic Causal 
Modeling (DCM), a neurobiologically interpretable model that uses 
neuroimaging data to infer effective connectivity, such as forward 
and backward connection strengths, among brain regions (68–70). 
By studying these parameters, we  can investigate the altered 
connectivity strengths and receptor densities implicated in STBs and 
targeted by pharmacological interventions. The above approaches 
make use of generative models, which allow for an explicit 
description of the underlying mechanisms that produce the data. As 
a result, they provide a detailed disease model and enhance our 
understanding of the anti-suicidal effects of ketamine.

4.1. Ketamine and predictive coding

The auditory mismatch response, or mismatch negativity (MMN), 
has been widely used to study predictive processing in the brain, and 
is thought to reflect NMDAR-mediated glutamate function (71–73). 
The MMN is a measure of pre-attentive sensory processing, and it 
represents the difference between the brain’s response to a frequently 

TABLE 1 Overview of models describing ketamine and/or serotonergic psychedelics mechanism of action.

Model Key features Mechanisms

Unified model of 

ketamine’s 

dissociative and 

psychedelic 

properties (58)

 • Ketamine’s antidepressant effects are driven by its acute 

modulation of reward circuits and sub-acute increase in 

neuroplasticity.

 • Ketamine blocks LHb bursting activity and modulates ACC circuits leading 

to disinhibition of downstream monoaminergic reward centers.

 • Ketamine induces a dissociative and psychedelic state by 

relaxing the precision weighting of “bodily” and “narrative” 

self-representation priors.

 • Ketamine’s dissociative and psychedelic effects are driven by dose-and 

context-dependent disruption of the SN and the DMN.

Relaxed beliefs under 

psychedelics (REBUS) 

model (60)

 • Serotonergic psychedelics relax the precision weighting of 

high-level priors enabling bottom-up information flow and 

the potential revision of maladaptive priors.

 • Psychedelics induce a heightened entropic brain state under high levels of 

serotonin 2A receptor agonism, leading to increased neural plasticity.

 • High-level priors may be relaxed through disintegration of the DMN.

Self-model and ego 

dissolution (61)

 • Under serotonergic psychedelics, perception of the world and 

ourselves remains, but attention is allocated differently.

 • Psychedelic-induced disruption of the SN and DMN are selectively 

associated with disruption to embodied and narrative aspects of self-

representation. • Experiences are intensified and less personal, and emotional 

responses, sense of importance, and motivations become 

detached from personal objectives and history.

LHb, lateral habenula; ACC, anterior cingulate cortex; SN, salience network; and DMN, default-mode network.
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occurring sound (the “standard”) and a less frequent or improbable 
sound (the “deviant”). The MMN is considered a prediction error 
signal within the predictive coding framework, which can be used to 
study the brain’s statistical learning about environmental regularities 
(74). Essentially, the MMN reflects the brain’s ability to recognize and 
respond to unexpected or deviant stimuli, which is thought to 
be  important for our ability to adapt to and learn from 
our surroundings.

The MMN’s potential to serve as a marker for NMDAR function 
indicates that it may be a useful tool for investigating the role of 
NMDAR dysfunction in the pathophysiology of depression (75, 76) 
and STBs (77–79). However, studies of the MMN response in 
suicidality are lacking, and in depression the results are variable. A 
recent meta-analysis (80) found that MMN amplitudes to duration 
deviants, but not frequency deviants, were significantly reduced in 
depressed patients compared to healthy controls, but depression 
severity did not correlate with the MMN response. A second review 
observed a common attenuation in MMN amplitudes of duration 
deviants and an increase in MMN amplitudes of frequency deviants 
in depressed patients (81). In contrast, diminished MMN responses 
have consistently been linked to NMDAR dysfunction in psychosis 
(82–84), and ketamine has been used to model symptoms of 
psychosis (85). Several studies have reported reductions in MMN 
amplitude following ketamine administration (82–84, 86), although 
the results show substantial variations with ketamine dose, paradigm 
choice, and trial definition (87–90). Physiologically, a reduction in 
the MMN amplitude following ketamine administration is thought 
to be  the result of the drug’s inhibition of NMDARs (although 
concomitant effects of AMPAR function may also play a role).

It is worth noting that the effects of ketamine on STBs using the 
auditory mismatch negativity response have not been studied 
extensively. In fact, only one study has investigated ketamine’s 
antidepressant properties in depressed patients using a frequency 
auditory roving paradigm. Sumner et al. (91) found increased MMN 
amplitudes in depressed patients compared to controls 3–4 h post-
ketamine infusion, but this effect was only significant when all 
repetitions of the post-deviant tone were used and was not related 
to improvements in depressive symptoms (see Section 4.3 for 
discussion on the study’s DCM results). This finding is in contrast 
with previous studies that have reported attenuation of the MMN 
following acute ketamine administration in healthy controls (86). In 
comparison, Weber, Diaconescu et al. (92) employed a hierarchical 
Bayesian model of learning to investigate the auditory mismatch 
response in healthy participants during ketamine infusion, finding 
that ketamine reduced MMN amplitudes and the expression of high-
level precision-weighted prediction errors. These findings suggest 
that NMDAR inhibition, as an early effect of ketamine, may disrupt 
high-level inference about environmental volatility. Importantly, it 
should be emphasized that the timing of the studies was different, 
with Sumner et al. (91) investigating post-infusion effects during 
ketamine’s onset of therapeutic action (93) while Weber et al. (92) 
examined the effects immediately following ketamine infusions. This 
disparity in the timing could have contributed to the divergent 
results between the two studies.

Taken together, we  hypothesize that ketamine’s effect on the 
mismatch response may be temporally distinct (75), with reductions 
in MMN amplitude under ketamine infusion being an immediate 
consequence of NMDAR blockade, while restored MMN amplitudes 

may be due to increased sensitivity to bottom-up sensory prediction 
error signaling via AMPAR upregulation post-infusion. Studies 
employing ketamine as a model of psychosis commonly perform 
analyses during the onset of psychotomimetic and dissociative effects, 
which typically peaks 1-h post-infusion. Hence the ketamine-induced 
reduction of MMN amplitudes may stem from the drug’s early 
NMDAR antagonism, while an increased sensitivity to bottom-up 
prediction error signals via AMPAR up-regulation occurs later during 
ketamine’s therapeutic time window. To further elucidate the timing 
effect of ketamine on the MMN response, future studies should 
consider investigating MMN amplitudes at different time points 
during ketamine infusion, as well as post-infusion, to better 
understand the temporal dynamics of NMDAR and AMPAR signaling 
in relation to ketamine’s anti-suicidal effects.

4.2. Neural circuits underlying ketamine’s 
anti-suicidal effects

The MMN provides valuable insight on perceptual processing and 
NMDAR dysfunction; however, it does not address important 
components of STBs, such as stressor controllability and hopelessness. 
As discussed in Section 2, negative emotional states may lead to 
negatively biased prior beliefs and a reduced sense of cognitive 
control. In turn, during times of crisis, stronger Pavlovian influences 
over goal-directed actions may give rise to the inconsistent valuation 
of suicide over alternative solutions. According to the suicidality 
model proposed by Karvelis and Diaconescu (49), a reduced sense of 
stressor controllability underlying STBs may be associated with the 
ventromedial PFC (vmPFC) and the serotonin-producing, dorsal 
raphe nucleus (DRN) pathway. Recruitment of the vmPFC-DRN 
pathway is thought to promote resistance to stress (94) and the vmPFC 
has been implicated in value-based decision-making (95). Suicidal 
behavior and impulsive suicide attempts have been associated with 
disrupted vmPFC value signals (96, 97). Furthermore, reduced 
vmPFC connectivity may lead to reduced cognitive control and during 
a suicidal crisis, this may manifest as a tendency toward stochastic 
choices such that suicide is chosen at the expense of alternatives (48). 
Ketamine may enhance stressor controllability by modulating vmPFC 
activity and increasing DRN serotonin release in the medial PFC 
(mPFC) (30, 31, 98, 99), which in turn could induce its anti-suicidal 
effect via activation of the AMPAR/BDNF signaling pathway and a 
subsequent increase in synaptic function in the mPFC (100).

An additional neurocircuit considered by suicidality model of 
Karvelis and Diaconescu (49) is the locus coeruleus—norepinephrine 
(LC-NE) system together with the amygdala, the dorsal PFC, and the 
anterior cingulate cortex, which may play a central role in mediating 
learning in response to acute stress and volatility. The importance of 
NE in the pathophysiology and treatment of depressive disorders is 
well-established (101), but its specific role in suicide risk remains 
unclear. Current evidence suggests lower NE function in cases of 
suicide, characterized by reduced NE transporter binding, decreased 
density, and a reduced number of NE neurons in the LC of suicide 
victims (102, 103). Ketamine may promote belief flexibility by 
increasing NE in the mPFC and modulating the LC-NE system (104–
107), potentially facilitating belief updating and making rigid prior 
beliefs amenable to revision (108). In healthy humans, ketamine has 
been shown to decrease resting state functional connectivity between 
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the LC and thalamus, potentially increasing nonspecific sensory signal 
detection (109). Taken together, glutamatergic activation of the 
LC-NE system by ketamine may promote belief flexibility, allowing 
individuals to “unlearn” negative prior beliefs and enhance bottom-up 
sensory information processing.

Karvelis and Diaconescu’s (49) model does not consider 
dopamine (DA) and there is limited data with variable results on the 
role of the dopaminergic system in suicidality (110–113). 
Nonetheless, stressors have significant adverse effects on the 
mesolimbic DA system, which projects from the ventral tegmental 
area (VTA) in the midbrain, to the PFC and nucleus accumbens 
(NAc), among other areas, and functions to regulate reward and 
salience (114). In animal models of depression, exposure to chronic 
stress can blunt tonic firing in VTA-DA neurons (29, 115), and 
according to a recent meta-analysis, ketamine administration 
restores VTA-DA neuronal activity and increases NAc-DA levels 
(29). Additionally, ketamine has been shown to regulate VTA-DA 
activity through upstream modulation of glutamatergic mPFC 
activity (115), and drive dopamine receptor activation in the mPFC, 
which may play a role in ketamine’s antidepressant and anti-suicidal 
effects (116). A recent fMRI study in individuals with remitted 
depression found that at 2 h post-ketamine infusion during a 
monetary reward task, brain activity in the VTA during feedback of 
smaller rewards was positively correlated with levels of 
(2R,6R)-HNK, an active metabolite of ketamine that directly binds 
and activates AMPAR (117). Hence, ketamine may improve reward-
related deficits via modulation of response to feedback.

Finally, the lateral habenula (LHb) plays a critical role in 
processing aversive experiences (118) and encoding reward 
prediction errors (119), and has been implicated in the 
pathophysiology of STBs (120, 121). As outlined in Marguilho et al. 
(58) model of ketamine action (see Section 3), ketamine blocks LHb 
activity (28, 122) and in turn disinhibits downstream monoaminergic 
reward centers through a relay in GABAergic interneurons in the 
dopaminergic VTA or the serotonergic DRN. The LHb receives 
major input from the forebrain, including the mPFC, and may in 
turn affect processing in the mPFC via VTA and DRN projections 
(123). Furthermore, the LHb and the ACC may act jointly to mediate 
decision making and behavioral adjustments during learning, where 
LHb neurons transmit negative outcome signals to the ACC via 
dopamine neurons, which accumulates information across trials (59, 
123). In the processing of reward and punishment, the LHb may 
work in tandem with midbrain dopaminergic neurons, signaling 
prediction errors that arise when reward expectations are violated. 
Computationally, ketamine may attenuate the salience of unexpected 
negative feedback and reduce the impact of negative reward 
prediction errors on belief updates by maintaining tonic firing of the 
VTA and reducing LHb activity. Greater dopaminergic activity may 
increase the salience of positive reward prediction errors, promoting 
greater belief updates from positive stimuli.

Taken together, ketamine appears to enhance serotonin, 
norepinephrine, and dopamine signaling, similar to first-line 
antidepressants [e.g., selective serotonin reuptake inhibitors (SSRI)]. 
More specifically, ketamine may indirectly increase monoamine 
release in the PFC through disinhibition of glutamatergic inputs to 
midbrain nuclei leading to improved feelings of stressor 
controllability (5-HT-DRN), promote belief flexibility (NE-LC), and 
improve reward processing (DA-VTA) (Figure 1). The bidirectional 

activity between the mPFC and these midbrain nuclei may allow for 
ketamine’s antidepressant properties to persist past its removal from 
the body (124). Furthermore, increased monoamine signaling has 
been associated with a strengthening of AMPAR signaling (33, 125) 
and subsequent BDNF expression (100), all of which is necessary for 
ketamine’s therapeutic effects. It is important to note, however, that 
the majority of evidence on the neurocircuitry of suicidality is 
derived from animal studies and future research should focus on 
investigating the proposed neural circuits in human populations to 
confirm and expand our understanding of ketamine’s rapid anti-
suicidal effects.

4.3. Physiological correlates of 
ketamine-mediated effects

While computational models of behavior provide valuable 
insights into learning and decision making, they lack mechanistic 
physiological explanations of how these processes are implemented 
in the brain. Conversely, Dynamic Causal Modeling (DCM) describes 
the dynamics of neuronal populations and aims to explain the 
directed connectivity changes underlying measured brain activity. 
DCM has been used to investigate ketamine-mediated effects in 
healthy controls (88, 126, 127), and only a handful of studies have 
employed DCM to study the antidepressant mechanisms of ketamine 
(91, 128–130). Notably, only one study utilized DCM to compare 
alterations in connectivity estimates associated with suicidal 
ideation (131).

Sumner et  al. (128) conducted an EEG study 3–4 h post-
infusion to investigate the effects of ketamine on neural plasticity 
via visual long-term potentiation (LTP) in depression using 
DCM. While the study found increased forward and intrinsic 
connections related to visual LTP, ketamine had widespread effects 
on forward, backward, and intrinsic connectivity. Notably, both 
visual LTP and ketamine increased forward connections from the 
left middle occipital gyrus to the dorsal (left inferior temporal 
cortex) and ventral (left superior parietal cortex) visual streams. 
However, due to Bayesian model averaging, the observed 
connectivity changes could not be  directly correlated with the 
antidepressant response to ketamine. In a separate study by the 
same group (91), the effects of ketamine on DCM connectivity 
changes during an auditory MMN task were investigated 3–4 h 
post-infusion in the same depressed cohort (see Section 4.1 for 
additional discussion on this study). The study found a significant 
correlation between an increased forward connectivity from the 
right primary auditory cortex (A1) to the right inferior temporal 
cortex (ITC) in response to a deviant tone and a greater 
antidepressant response 24-h post-infusion. When ITC sources 
were replaced with superior temporal gyrus (STG) sources in their 
DCM model, the correlation showed the same trend, but did not 
reach significance. Both studies found that ketamine modulated 
forward connections, suggesting an increased flow of bottom-up 
information, which is consistent with the mechanistic models of 
ketamine outlined in Section 3.

Schmidt et al. (88) conducted a DCM study on the effects of 
ketamine on healthy subjects during an auditory mismatch 
paradigm, and found a significant reduction in the forward 
connection between left A1 and left STG, with a similar but 
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non-significant trend observed for the homologous forward 
connection between right A1 and right STG. These results are 
conflicting with the aforementioned findings of Sumner et  al. 
(91), but as discussed in Section 4.1, the timing of the mismatch 
task and ketamine’s pharmacodynamic profile may explain this 
discrepancy. Schmidt et  al. conducted their study during an 
80-min ketamine infusion, where the reduced forward connection 
between left A1 and left STG may be  an early consequence of 
NMDAR antagonism. In contrast, Sumner et  al. assessed the 
mismatch response 3–4 h post-infusion, where the increased 
forward connection between right A1 and ITC may correspond to 
AMPAR up-regulation.

Multiple studies have utilized DCM in tandem with 
magnetoencephalography (MEG) to explore the neural mechanisms 
underlying ketamine’s antidepressant effects 6–9 h post-infusion in 
treatment-resistant depression (TRD). Specifically, conducted three 
studies in the TRD population to evaluate changes in NMDA-and 
AMPA-mediated connectivity during somatosensory stimulation 
Gilbert et al. (129) and emotional processing tasks (130), as well as 
resting-state activity (131). Across these studies, an association 
between AMPAR connectivity and antidepressant response was 
reported (130, 131), with effects lasting up to 11 days post-ketamine 
(129). However, these studies used a more liberal criterion of 
p < 0.05 uncorrected to determine significance, which may increase 
the likelihood of false positives. Nonetheless, these results add 
support to previous findings demonstrating a key role of AMPAR 

in ketamine-induced antidepressant effects and underscore the 
value of DCM for modeling AMPA- and NMDA-connectivity 
changes associated with ketamine administration and therapeutic 
response. Additional DCM studies are needed to quantify 
ketamine’s acute effect in treating STBs, as well as long-term 
sustained effects.

5. Additional considerations and 
potential applications of 
computational modeling

While theory-driven computational models offer a promising 
approach for bridging existing knowledge of suicidality and ketamine’s 
mechanism of action, multiple questions remain.

5.1. Computational models for individual 
treatment prediction

Computational modeling enables the assessment of competing 
mechanistic hypotheses and the generation of biologically 
interpretable parameters that may be used for model-based patient 
stratification and treatment prediction (Figure  2). For example,  
by analyzing behavioral and/or brain data, computational models 
can be  used to link specific mechanisms, such as impaired 

FIGURE 1

Overview of brain regions included in this paper. (A) Ketamine preferentially binds to N-methyl-D-aspartate receptors (NMDARs) located on GABAergic 
interneurons, predominantly in the medial prefrontal cortex (PFC), resulting in decreased excitability of inhibitory interneurons and as a result, increased 
glutamate release. Midbrain nuclei, including the serotonergic dorsal raphe nucleus (DRN), noradrenergic locus coeruleus (LC), and dopaminergic 
ventral tegmental area (VTA), are activated by this glutamatergic surge, leading to the release of monoamines in the PFC. Ketamine also inhibits 
NMDAR-dependent bursting activity in the lateral habenula (LHb), thus disinhibiting the brain’s reward centers either through a relay of GABAergic 
neurons in the rostromedial tegmental nucleus (RMTg) or via local interneurons within the VTA and DRN. (B) Brain regions and circuits associated with 
suicidal thoughts and behaviors (STBs), including the LHb and midbrain nuclei, which are indirectly activated by ketamine, including the serotonergic-
DRN, noradrenergic-LC, and dopaminergic-VTA. The common activation of midbrain nuclei in both A and B suggests a potential mechanistic link 
between ketamine’s therapeutic effects and the underlying neural circuitry of STBs. NMDAR, N-methyl-D-aspartate receptor; GABA, γ -aminobutyric 
acid; Glu, glutumate; NAc, nucleus accumbens; ACC, anterior cingulate cortex; dPFC, dorsal prefrontal cortex; vmPFC, ventromedial prefrontal cortex; 
5-HT, serotonin; NE, norepinephrine; and DA, dopamine.
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decision-making and cognitive control, to their underlying neural 
causes. Subject-specific computational parameters can be used to 
classify patients into subgroups based on their mechanistic profiles. 
By simulating the impact of treatments on these mechanistic profiles, 
the model could predict the most beneficial treatment for 
each subgroup.

Recently, the combination of computational models of behavior 
with generative models of neuroimaging data, such as DCM, has 
allowed researchers to better quantify how prediction errors and 
learning rates encoded by neuromodulatory systems covary with 
changes in effective connectivity (132). In turn, mechanistically 
interpretable features, such as connectivity parameters, can be used as 
input to machine learning models to predict treatment response – a 
process known as generative embedding (133). Such models could 
generate biologically interpretable predictions, and identify patient 
subgroups who may respond better to targeted medications, such as 
glutamatergic or dopaminergic treatments.

Furthermore, computational models can be  combined with 
mobile technology to collect real-time data to inform suicide risk and 
offer a more temporally fine-grained characterization of brain and 
behavior states (134). Such models may capture sensitive time 
windows associated with the decline of ketamine’s anti-suicidal effects 
or the progression of a suicidal crisis and help identify those at 
imminent risk of suicide. Nevertheless, the use of computational 
models to generate clinically relevant predictions is still in its infancy, 
and the reliability and validity of model-derived parameters must 
be thoroughly tested before they can be used to generate clinically 
relevant predictions (135).

5.2. Computational models for enhancing 
ketamine’s therapeutic effect

Ketamine’s potential as an antidepressant or anti-suicidal 
treatment prompts further research into how to optimally harness the 
drug’s therapeutic effect. For instance, evidence suggests that 
ketamine’s anti-suicidal effect is not entirely explained by its 
antidepressant actions (23, 24). Given that suicide is a trans-diagnostic 
phenomenon, computational modeling could help disentangle the 
specific mechanisms by which ketamine acts on suicidal patients, both 
with and without primary mood disorders. Additionally, the absence 
of a lasting antidepressant or anti-suicidal impact of ketamine, 
especially in treatment-resistant populations, calls for strategies to 
extend these effects beyond repeated administration (136, 137). Future 
research should investigate whether combining psychedelic-assisted 
therapy with ketamine infusions is necessary for the revision of 
negative beliefs, the acceptance of emotions, thoughts, and memories, 
and sustaining therapeutic effects (138, 139). Computational models 
could be used to quantify long-term changes in cognitive processes 
associated with this combined therapeutic approach. Lastly, while the 
intensity of positive “mystical” or “peak” experiences of ketamine have 
been shown to correlate with greater antidepressant response (140, 
141), dissociation may not be necessary for ketamine to be effective 
(142). Ketamine is often administered at lower doses without the same 
attention to sets and settings (i.e., preparation, psychological 
integration, room design, light, and music) that is given to classic 
psychedelic interventions (143). Differences in administration and 
preparation procedures may partly explain why classic psychedelics 

FIGURE 2

Steps involved in model-based patient stratification and treatment prediction for suicide prevention. The process involves (1) collecting brain activity 
and/or behavioral data from patients, which serves as input to a computational model. (2) The computational model is a formally defined model that 
explains observed neural and/or behavioral data and models various factors relevant to suicidal ideation (e.g., emotion regulation, cognitive processing, 
and environmental stressors), resulting in a set of mechanistic parameters. (3) These mechanistic parameters (e.g., coupling strengths between brain 
regions, receptor densities, and prediction errors) are used to infer the underlying mechanisms of suicidal ideation in each patient. (4) The model-
based parameters are then used to stratify patients into subgroups based on similar mechanistic profiles that are most relevant to their 
symptoms. (5) Based on the resulting patient subgroups, the computational model may be used to predict which treatments are likely to be most 
effective for each subgroup by simulating the effects of different treatments on the underlying mechanisms of suicidal ideation and selecting the 
treatment that is most likely to produce the desired effects.
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have longer therapeutic effects lasting weeks to months after a single 
intervention (144) compared to ketamine’s 1 week. Computational 
models could assist in identifying optimal therapeutic settings and 
quantifying changes in learning and decision-making associated with 
ketamine-induced psychedelic experiences (145, 146).

6. Conclusion

In conclusion, while the underlying mechanisms of STBs and the 
anti-suicidal effect of ketamine are still not fully understood, 
computational models can provide valuable insights into the complex 
pharmacology of ketamine and its influence on suicidality. However, 
further studies are needed to optimize modeling approaches and task 
design, as well as evaluate external factors such as set and setting and 
the potential therapeutic value of psychedelic-assisted therapy. With 
continued advancements in computational psychiatry, a more 
comprehensive understanding of ketamine’s anti-suicidal effects may 
be  achieved, ultimately leading to improved treatment options for 
individuals at risk of suicide.

Author contributions

CC, PK, and AD developed the theoretical framework. CC drafted 
a first version of the manuscript. PK, RM, and AD provided edits and 
suggestions, and assisted with draft finalization. All authors 
contributed to the article and approved the submitted version.

Funding

This work was supported by the Krembil Foundation (to AD).

Conflict of interest

RM has received research grant support from CIHR/GACD/
National Natural Science Foundation of China (NSFC) and the 
Milken Institute; speaker/consultation fees from Lundbeck, Janssen, 
Alkermes, Neumora Therapeutics, Boehringer Ingelheim, Sage, 
Biogen, Mitsubishi Tanabe, Purdue, Pfizer, Otsuka, Takeda, 
Neurocrine, Sunovion, Bausch Health, Axsome, Novo Nordisk, 
Kris, Sanofi, Eisai, Intra-Cellular, NewBridge Pharmaceuticals, 
Viatris, Abbvie, and Atai Life Sciences, and is a CEO of Braxia 
Scientific Corp.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. World Health Organisation Suicide (2021). Available at: https://www.who.int/news-

room/fact-sheets/detail/suicide (Accessed June 16, 2022).

 2. Garnett MF, Curtin SC, Stone DM. Suicide mortality in the United  States, 
2000–2020. NCHS data brief, no 433. Hyattsville, MD: National Center for Health 
Statistics (2022).

 3. Bachmann S. Epidemiology of suicide and the psychiatric perspective. Int J Environ 
Res Public Health. (2018) 15:1425. doi: 10.3390/ijerph15071425

 4. Dong M, Zeng LN, Lu L, Li XH, Ungvari GS, Ng CH, et al. Prevalence of suicide 
attempt in individuals with major depressive disorder: a meta-analysis of observational 
surveys. Psychol Med. (2019) 49:1691–704. doi: 10.1017/S0033291718002301

 5. Suominen K, Haukka J, Valtonen HM, Lönnqvist J. Outcome of patients with major 
depressive disorder after serious suicide attempt. J Clin Psychiatry. (2009) 70:1372–8. 
doi: 10.4088/JCP.09m05110blu

 6. Holmstrand C, Engström G, Träskman-Bendz L. Disentangling dysthymia from 
major depressive disorder in suicide attempters’ suicidality, comorbidity and 
symptomatology. Nord J Psychiatry. (2008) 62:25–31. doi: 10.1080/08039480801960164

 7. May AM, Klonsky ED. What distinguishes suicide attempters from suicide ideators? 
A meta-analysis of potential factors. Clin Psychol Sci Pract. (2016) 23:5–20. doi: 10.1111/
cpsp.12136

 8. Klonsky ED, May AM, Saffer BY. Suicide, suicide attempts, and suicidal ideation. 
Annu Rev Clin Psychol. (2016) 12:307–30. doi: 10.1146/annurev-clinpsy-021815-093204

 9. Klonsky ED, Dixon-Luinenburg T, May AM. The critical distinction between 
suicidal ideation and suicide attempts. World Psychiatry. (2021) 20:439. doi: 10.1002/
wps.20909

 10. Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, et al. 
The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic 
review and individual participant data meta-analysis. Am J Psychiatr. (2018) 175:150–8. 
doi: 10.1176/appi.ajp.2017.17040472

 11. Papakostas GI, Salloum NC, Hock RS, Jha MK, Murrough JW, Mathew SJ, et al. 
Efficacy of esketamine augmentation in major depressive disorder: a meta-analysis. J 
Clin Psychiatry. (2020) 81:6603. doi: 10.4088/JCP.19r12889

 12. Bahji A, Vazquez GH, Zarate CA Jr. Comparative efficacy of racemic ketamine and 
esketamine for depression: a systematic review and meta-analysis. J Affect Disord. (2021) 
278:542–55. doi: 10.1016/j.jad.2020.09.071

 13. McIntyre RS, Carvalho IP, Lui LM, Majeed A, Masand PS, Gill H, et al. The effect 
of intravenous, intranasal, and oral ketamine in mood disorders: a meta-analysis. J Affect 
Disord. (2020) 276:576–84. doi: 10.1016/j.jad.2020.06.050

 14. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, 
et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant 
depression: an international expert opinion on the available evidence and 
implementation. Am J Psychiatr. (2021) 178:383–99. doi: 10.1176/appi.ajp.2020.20081251

 15. Witt K, Potts J, Hubers A, Grunebaum MF, Murrough JW, Loo C, et al. Ketamine 
for suicidal ideation in adults with psychiatric disorders: a systematic review and meta-
analysis of treatment trials. Austral NZ J Psychiatr. (2020) 54:29–45. doi: 
10.1177/0004867419883341

 16. Diaz Granados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh 
DA, et al. Rapid resolution of suicidal ideation after a single infusion of an n-methyl-d-
aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin 
Psychiatry. (2010) 71:1605–11. doi: 10.4088/JCP.09m05327blu

 17. Price RB, Iosifescu DV, Murrough JW, Chang LC, Al Jurdi RK, Iqbal SZ, et al. 
Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled 
trial in treatment-resistant depression. Depress Anxiety. (2014) 31:335–43. doi: 10.1002/
da.22253

 18. Xiong J, Lipsitz O, Chen-Li D, Rosenblat JD, Rodrigues NB, Carvalho I, et al. The 
acute antisuicidal effects of single-dose intravenous ketamine and intranasal esketamine 
in individuals with major depression and bipolar disorders: a systematic review and 
meta-analysis. J Psychiatr Res. (2021) 134:57–68. doi: 10.1016/j.jpsychires.2020.12.038

 19. Abbar M, Demattei C, El-Hage W, Llorca PM, Samalin L, Demaricourt P, et al. 
Ketamine for the acute treatment of severe suicidal ideation: double blind, randomized 
placebo controlled trial. BMJ. (2022) 376:e067194. doi: 10.1136/bmj-2021-067194

 20. Taylor MJ, Freemantle N, Geddes JR, Bhagwagar Z. Early onset of selective 
serotonin reuptake inhibitor antidepressant action: systematic review and meta-analysis. 
Arch Gen Psychiatry. (2006) 63:1217–23. doi: 10.1001/archpsyc.63.11.1217

 21. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. 
Rapid and longer-term antidepressant effects of repeated ketamine infusions in 
treatment-resistant major depression. Biol Psychiatry. (2013) 74:250–6. doi: 10.1016/j.
biopsych.2012.06.022

 22. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. Single, 
repeated, and maintenance ketamine infusions for treatment-resistant depression: a 

https://doi.org/10.3389/fpsyt.2023.1214018
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.who.int/news-room/fact-sheets/detail/suicide
https://www.who.int/news-room/fact-sheets/detail/suicide
https://doi.org/10.3390/ijerph15071425
https://doi.org/10.1017/S0033291718002301
https://doi.org/10.4088/JCP.09m05110blu
https://doi.org/10.1080/08039480801960164
https://doi.org/10.1111/cpsp.12136
https://doi.org/10.1111/cpsp.12136
https://doi.org/10.1146/annurev-clinpsy-021815-093204
https://doi.org/10.1002/wps.20909
https://doi.org/10.1002/wps.20909
https://doi.org/10.1176/appi.ajp.2017.17040472
https://doi.org/10.4088/JCP.19r12889
https://doi.org/10.1016/j.jad.2020.09.071
https://doi.org/10.1016/j.jad.2020.06.050
https://doi.org/10.1176/appi.ajp.2020.20081251
https://doi.org/10.1177/0004867419883341
https://doi.org/10.4088/JCP.09m05327blu
https://doi.org/10.1002/da.22253
https://doi.org/10.1002/da.22253
https://doi.org/10.1016/j.jpsychires.2020.12.038
https://doi.org/10.1136/bmj-2021-067194
https://doi.org/10.1001/archpsyc.63.11.1217
https://doi.org/10.1016/j.biopsych.2012.06.022
https://doi.org/10.1016/j.biopsych.2012.06.022


Charlton et al. 10.3389/fpsyt.2023.1214018

Frontiers in Psychiatry 10 frontiersin.org

randomized controlled trial. Am J Psychiatr. (2019) 176:401–9. doi: 10.1176/appi.
ajp.2018.18070834

 23. Lee Y, Syeda K, Maruschak NA, Cha DS, Mansur RB, Wium-Andersen IK, et al. A 
new perspective on the anti-suicide effects with ketamine treatment: a procognitive 
effect. J Clin Psychopharmacol. (2016) 36:50–6. doi: 10.1097/JCP.0000000000000441

 24. Price RB, Mathew SJ. Does ketamine have anti-suicidal properties? Current status 
and future directions. CNS Drugs. (2015) 29:181–8. doi: 10.1007/s40263-015-0232-4

 25. Ballard ED, Ionescu DF, Voort JLV, Niciu MJ, Richards EM, Luckenbaugh DA, 
et al. Improvement in suicidal ideation after ketamine infusion: relationship to 
reductions in depression and anxiety. J Psychiatr Res. (2014) 58:161–6. doi: 10.1016/j.
jpsychires.2014.07.027

 26. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of 
ketamine and classical psychedelics. Trends Pharmacol Sci. (2021) 42:929–42. doi: 
10.1016/j.tips.2021.08.003

 27. Miller OH, Moran JT, Hall BJ. Two cellular hypotheses explaining the initiation of 
ketamine’s antidepressant actions: direct inhibition and disinhibition. 
Neuropharmacology. (2016) 100:17–26. doi: 10.1016/j.neuropharm.2015.07.028

 28. Zanos P, Gould T. Mechanisms of ketamine action as an antidepressant. Mol 
Psychiatry. (2018) 23:801–11. doi: 10.1038/mp.2017.255

 29. Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic 
function: meta-analysis and review of the implications for neuropsychiatric disorders. 
Mol Psychiatry. (2018) 23:59–69. doi: 10.1038/mp.2017.190

 30. Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights 
on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. 
Pharmacol Ther. (2019) 199:58–90. doi: 10.1016/j.pharmthera.2019.02.017

 31. Lopez-Gil X, Jimenez-Sanchez L, Campa L, Castro E, Frago C, Adell A. Role of 
serotonin and noradrenaline in the rapid antidepressant action of ketamine. ACS Chem 
Neurosci. (2019) 10:3318–26. doi: 10.1021/acschemneuro.9b00288

 32. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. 
Ketamine and ketamine metabolite pharmacology: insights into therapeutic 
mechanisms. Pharmacol Rev. (2018) 70:621–60. doi: 10.1124/pr.117.015198

 33. Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its 
metabolites as antidepressants. Biochem Pharmacol. (2022) 197:114892. doi: 10.1016/j.
bcp.2021.114892

 34. Nikkheslat N. Targeting inflammation in depression: ketamine as an anti-
inflammatory antidepressant in psychiatric emergency. Brain Behav Immun Health. 
(2021) 18:100383. doi: 10.1016/j.bbih.2021.100383

 35. Niciu MJ, Ionescu DALDF, Guevara S, Machado-Vieira R, Richards EM, Brutsche 
NE, et al. Clinical predictors of ketamine response in treatment-resistant major 
depression. J Clin Psychiatry. (2014) 75:e417–23. doi: 10.4088/JCP.13m08698

 36. Kadriu B, Ballard ED, Henter ID, Murata S, Gerlus N, Zarate CA Jr. Neurobiological 
biomarkers of response to ketamine. Adv Pharmacol. (2020) 89:195–235. doi: 10.1016/
bs.apha.2020.05.003

 37. Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, et al. 
Ketamine as an antidepressant: overview of its mechanisms of action and potential 
predictive biomarkers. Therap Adv Psychopharmacol. (2020) 10:2045125320916657. doi: 
10.1177/2045125320916657

 38. Millner AJ, Robinaugh DJ, Nock MK. Advancing the understanding of suicide: the 
need for formal theory and rigorous descriptive research. Trends Cogn Sci. (2020) 
24:704–16. doi: 10.1016/j.tics.2020.06.007

 39. Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from 
neuroscience to clinical applications. Nat Neurosci. (2016) 19:404–13. doi: 10.1038/
nn.4238

 40. Stephan KE, Schlagenhauf F, Huys QJ, Raman S, Aponte EA, Brodersen KH, et al. 
Computational neuroimaging strategies for single patient predictions. NeuroImage. 
(2017) 145:180–99. doi: 10.1016/j.neuroimage.2016.06.038

 41. Sastre-Buades A, Alacreu-Crespo A, Courtet P, Baca-Garcia E, Barrigon ML. 
Decision-making in suicidal behavior: a systematic review and meta-analysis. Neurosci 
Biobehav Rev. (2021) 131:642–62. doi: 10.1016/j.neubiorev.2021.10.005

 42. Perrain R, Dardennes R, Jollant F. Risky decision-making in suicide attempters, 
and the choice of a violent suicidal means: an updated meta-analysis. J Affect Disord. 
(2021) 280:241–9. doi: 10.1016/j.jad.2020.11.052

 43. Dombrovski AY, Hallquist MN, Brown VM, Wilson J, Szanto K. Value-based 
choice, contingency learning, and suicidal behavior in mid-and late-life depression. Biol 
Psychiatry. (2019) 85:506–16. doi: 10.1016/j.biopsych.2018.10.006

 44. Baek K, Kwon J, Chae JH, Chung YA, Kralik JD, Min JA, et al. Heightened aversion 
to risk and loss in depressed patients with a suicide attempt history. Sci Rep. (2017) 
7:1–13. doi: 10.1038/s41598-017-10541-5

 45. Millner AJ, den Ouden HE, Gershman SJ, Glenn CR, Kearns JC, Bornstein AM, 
et al. Suicidal thoughts and behaviors are associated with an increased decision-making 
bias for active responses to escape aversive states. J Abnorm Psychol. (2019) 128:106. doi: 
10.1037/abn0000395

 46. Myers CE, Dave CV, Callahan M, Chesin MS, Keilp JG, Beck KD, et al. Improving 
the prospective prediction of a near-term suicide attempt in veterans at risk for suicide, 
using a go/no-go task. Psychol Med. (2022) 1–10. doi: 10.1017/S0033291722001003

 47. Dombrovski AY, Hallquist MN. The decision neuroscience perspective on suicidal 
behavior: evidence and hypotheses. Curr Opin Psychiatry. (2017) 30:7. doi: 10.1097/
YCO.0000000000000297

 48. Dombrovski AY, Hallquist MN. Search for solutions, learning, simulation, and 
choice processes in suicidal behavior. Wiley interdisciplinary reviews. Cogn Sci. (2022) 
13:e1561. doi: 10.1002/wcs.1561

 49. Karvelis P, Diaconescu AO. A computational model of hopelessness and active-
escape bias in suicidality. Computational. Psychiatry. (2022) 6:34–59. doi: 10.5334/
cpsy.80

 50. Liu Q, Zhong R, Ji X, Law S, Xiao F, Wei Y, et al. Decision-making biases in suicide 
attempters with major depressive disorder: a computational modeling study using the 
balloon analog risk task (BART). Depress Anxiety. (2022) 39:845–57. doi: 10.1002/
da.23291

 51. Richard-Devantoy S, Berlim M, Jollant F. A meta-analysis of neuropsychological 
markers of vulnerability to suicidal behavior in mood disorders. Psychol Med. (2014) 
44:1663–73. doi: 10.1017/S0033291713002304

 52. Rzeszutek MJ, DeFulio A, Sylvester GE. A systematic review of behavior-outcome 
psychological assessments as correlates of suicidality. Arch Suicide Res. (2022) 
26:1757–93. doi: 10.1080/13811118.2021.2022049

 53. Eshel N, Roiser JP. Reward and punishment processing in depression. Biol 
Psychiatry. (2010) 68:118–24. doi: 10.1016/j.biopsych.2010.01.027

 54. Pulcu E, Browning M. Affective bias as a rational response to the statistics of 
rewards and punishments. elife. (2017) 6:e27879. doi: 10.7554/eLife.32902

 55. Harfmann EJ, Rhyner KT, Ingram RE. Cognitive inhibition and attentional biases 
in the affective go/nogo performance of depressed, suicidal populations. J Affect Disord. 
(2019) 256:228–33. doi: 10.1016/j.jad.2019.05.022

 56. Marroquin B, Nolen-Hoeksema S, Miranda R. Escaping the future: affective 
forecasting in escapist fantasy and attempted suicide. J Soc Clin Psychol. (2013) 32:446. 
doi: 10.1521/jscp.2013.32.4.446

 57. Tsypes A, Szanto K, Bridge JA, Brown VM, Keilp JG, Dombrovski AY. Delay 
discounting in suicidal behavior: myopic preference or inconsistent valuation? J 
Psychopathol Clin Sci. (2022) 131:34. doi: 10.1037/abn0000717

 58. Marguilho M, Figueiredo I, Castro-Rodrigues P. A unified model of ketamine’s 
dissociative and psychedelic properties. J Psychopharmacol. (2023) 37:14–32. doi: 
10.1177/02698811221140011

 59. Alexander L, Jelen LA, Mehta MA, Young AH. The anterior cingulate cortex as a 
key locus of ketamine’s antidepressant action. Neurosci Biobehav Rev. (2021) 127:531–54. 
doi: 10.1016/j.neubiorev.2021.05.003

 60. Carhart-Harris RL, Friston K. Rebus and the anarchic brain: toward a unified 
model of the brain action of psychedelics. Pharmacol Rev. (2019) 71:316–44. doi: 
10.1124/pr.118.017160

 61. Letheby C, Gerrans P. Self unbound: ego dissolution in psychedelic experience. 
Neurosci Consciousness. (2017) 2017:nix016. doi: 10.1093/nc/nix016

 62. Adams RA, Huys QJ, Roiser JP. Computational psychiatry: towards a 
mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 
(2016) 87:53–63. doi: 10.1136/jnnp-2015-310737

 63. Corlett PR, Fletcher PC. Computational psychiatry: a Rosetta stone linking the brain 
to mental illness. Lancet Psychiatry. (2014) 1:399–402. doi: 10.1016/S2215-0366(14)70298-6

 64. Adams RA, Shipp S, Friston KJ. Predictions not commands: active inference in 
the motor system. Brain Struct Funct. (2013) 218:611–43. doi: 10.1007/
s00429-012-0475-5

 65. Moran RJ, Campo P, Symmonds M, Stephan KE, Dolan RJ, Friston KJ. Free energy, 
precision and learning: the role of cholinergic neuromodulation. J Neurosci. (2013) 
33:8227–36. doi: 10.1523/JNEUROSCI.4255-12.2013

 66. Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M, den Ouden HE, et al. 
Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. 
Neuron. (2013) 80:519–30. doi: 10.1016/j.neuron.2013.09.009

 67. Diaconescu AO, Mathys C, Weber LA, Kasper L, Mauer J, Stephan KE. Hierarchical 
prediction errors in midbrain and septum during social learning. Soc Cogn Affect 
Neurosci. (2017) 12:618–34. doi: 10.1093/scan/nsw171

 68. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. (2003) 
19:1273–302. doi: 10.1016/S1053-8119(03)00202-7

 69. Stephan KE, Penny WD, Moran RJ, den Ouden HE, Daunizeau J, Friston KJ. Ten 
simple rules for dynamic causal modeling. NeuroImage. (2010) 49:3099–109. doi: 
10.1016/j.neuroimage.2009.11.015

 70. Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, et al. Dynamic 
causal modelling revisited. NeuroImage. (2019) 199:730–44. doi: 10.1016/j.
neuroimage.2017.02.045

 71. Sterzer P, Adams RA, Fletcher P, Frith C, Lawrie SM, Muckli L, et al. The predictive 
coding account of psychosis. Biol Psychiatry. (2018) 84:634–43. doi: 10.1016/j.
biopsych.2018.05.015

 72. Kube T, Schwarting R, Rozenkrantz L, Glombiewski JA, Rief W. Distorted 
cognitive processes in major depression: a predictive processing perspective. Biol 
Psychiatry. (2020) 87:388–98. doi: 10.1016/j.biopsych.2019.07.017

https://doi.org/10.3389/fpsyt.2023.1214018
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://doi.org/10.1176/appi.ajp.2018.18070834
https://doi.org/10.1176/appi.ajp.2018.18070834
https://doi.org/10.1097/JCP.0000000000000441
https://doi.org/10.1007/s40263-015-0232-4
https://doi.org/10.1016/j.jpsychires.2014.07.027
https://doi.org/10.1016/j.jpsychires.2014.07.027
https://doi.org/10.1016/j.tips.2021.08.003
https://doi.org/10.1016/j.neuropharm.2015.07.028
https://doi.org/10.1038/mp.2017.255
https://doi.org/10.1038/mp.2017.190
https://doi.org/10.1016/j.pharmthera.2019.02.017
https://doi.org/10.1021/acschemneuro.9b00288
https://doi.org/10.1124/pr.117.015198
https://doi.org/10.1016/j.bcp.2021.114892
https://doi.org/10.1016/j.bcp.2021.114892
https://doi.org/10.1016/j.bbih.2021.100383
https://doi.org/10.4088/JCP.13m08698
https://doi.org/10.1016/bs.apha.2020.05.003
https://doi.org/10.1016/bs.apha.2020.05.003
https://doi.org/10.1177/2045125320916657
https://doi.org/10.1016/j.tics.2020.06.007
https://doi.org/10.1038/nn.4238
https://doi.org/10.1038/nn.4238
https://doi.org/10.1016/j.neuroimage.2016.06.038
https://doi.org/10.1016/j.neubiorev.2021.10.005
https://doi.org/10.1016/j.jad.2020.11.052
https://doi.org/10.1016/j.biopsych.2018.10.006
https://doi.org/10.1038/s41598-017-10541-5
https://doi.org/10.1037/abn0000395
https://doi.org/10.1017/S0033291722001003
https://doi.org/10.1097/YCO.0000000000000297
https://doi.org/10.1097/YCO.0000000000000297
https://doi.org/10.1002/wcs.1561
https://doi.org/10.5334/cpsy.80
https://doi.org/10.5334/cpsy.80
https://doi.org/10.1002/da.23291
https://doi.org/10.1002/da.23291
https://doi.org/10.1017/S0033291713002304
https://doi.org/10.1080/13811118.2021.2022049
https://doi.org/10.1016/j.biopsych.2010.01.027
https://doi.org/10.7554/eLife.32902
https://doi.org/10.1016/j.jad.2019.05.022
https://doi.org/10.1521/jscp.2013.32.4.446
https://doi.org/10.1037/abn0000717
https://doi.org/10.1177/02698811221140011
https://doi.org/10.1016/j.neubiorev.2021.05.003
https://doi.org/10.1124/pr.118.017160
https://doi.org/10.1093/nc/nix016
https://doi.org/10.1136/jnnp-2015-310737
https://doi.org/10.1016/S2215-0366(14)70298-6
https://doi.org/10.1007/s00429-012-0475-5
https://doi.org/10.1007/s00429-012-0475-5
https://doi.org/10.1523/JNEUROSCI.4255-12.2013
https://doi.org/10.1016/j.neuron.2013.09.009
https://doi.org/10.1093/scan/nsw171
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1016/j.neuroimage.2009.11.015
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.neuroimage.2017.02.045
https://doi.org/10.1016/j.biopsych.2018.05.015
https://doi.org/10.1016/j.biopsych.2018.05.015
https://doi.org/10.1016/j.biopsych.2019.07.017


Charlton et al. 10.3389/fpsyt.2023.1214018

Frontiers in Psychiatry 11 frontiersin.org

 73. Van de Cruys S, Evers K, Van der Hallen R, Van Eylen L, Boets B, De-Wit L, et al. 
Precise minds in uncertain worlds: predictive coding in autism. Psychol Rev. (2014) 
121:649. doi: 10.1037/a0037665

 74. Lieder F, Stephan KE, Daunizeau J, Garrido MI, Friston KJ. A neurocomputational 
model of the mismatch negativity. PLoS Comput Biol. (2013) 9:e1003288. doi: 10.1371/
journal.pcbi.1003288

 75. Adell A. Brain NMDA receptors in schizophrenia and depression. Biomol Ther. 
(2020) 10:947. doi: 10.3390/biom10060947

 76. Amidfar M, Woelfer M, Reus GZ, Quevedo J, Walter M, Kim YK. The role of 
NMDA receptor in neurobiology and treatment of major depressive disorder: evidence 
from translational research. Prog Neuro-Psychopharmacol Biol Psychiatry. (2019) 
94:109668. doi: 10.1016/j.pnpbp.2019.109668

 77. Gray A, Hyde T, Deep-Soboslay A, Kleinman J, Sodhi M. Sex differences in 
glutamate receptor gene expression in major depression and suicide. Mol Psychiatry. 
(2015) 20:1057–68. doi: 10.1038/mp.2015.91

 78. Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, et al. Changes 
in cortical n-methyl-d-aspartate receptors and post-synaptic density protein in 
schizophrenia, mood disorders and suicide. Austral NZ J Psychiatr. (2016) 50:275–83. 
doi: 10.1177/0004867415586601

 79. Jimenez-Trevino L, Gonzalez-Blanco L, Alvarez-Vazquez C, Rodriguez-Revuelta J, 
Saiz Martinez PA. Glutamine and new pharmacological targets to treat suicidal ideation. 
Behav Neurobiol Suicide Self Harm. (2020) 46:179–96. doi: 10.1007/7854_2020_168

 80. Tseng YJ, Nouchi R, Cheng CH. Mismatch negativity in patients with major 
depressive disorder: a meta-analysis. Clin Neurophysiol. (2021) 132:2654–65. doi: 
10.1016/j.clinph.2021.06.019

 81. Kangas ES, Vuoriainen E, Lindeman S, Astikainen P. Auditory event-related 
potentials in separating patients with depressive disorders and non-depressed controls: 
a narrative review. Int J Psychophysiol. (2022) 179:119–142. doi: 10.1016/j.
ijpsycho.2022.07.003

 82. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC. Ketamine-
induced deficits in auditory and visual context-dependent processing in healthy 
volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen 
Psychiatry. (2000) 57:1139–47. doi: 10.1001/archpsyc.57.12.1139

 83. Heekeren K, Daumann J, Neukirch A, Stock C, Kawohl W, Norra C, et al. Mismatch 
negativity generation in the human 5HT2A agonist and NMDA antagonist model of 
psychosis. Psychopharmacology. (2008) 199:77–88. doi: 10.1007/s00213-008-1129-4

 84. Schmidt A, Bachmann R, Kometer M, Csomor PA, Stephan KE, Seifritz E, et al. 
Mismatch negativity encoding of prediction errors predicts S-ketamine-induced cognitive 
impairments. Neuropsychopharmacology. (2012) 37:865–75. doi: 10.1038/npp.2011.261

 85. Corlett PR, Honey GD, Fletcher PC. Prediction error, ketamine and psychosis: an 
updated model. J Psychopharmacol. (2016) 30:1145–55. doi: 10.1177/0269881116650087

 86. Rosburg T, Kreitschmann-Andermahr I. The effects of ketamine on the mismatch 
negativity (MMN) in humans–a meta-analysis. Clin Neurophysiol. (2016) 127:1387–94. 
doi: 10.1016/j.clinph.2015.10.062

 87. Oranje B, Van Berckel B, Kemner C, Van Ree J, Kahn R, Verbaten M. The effects 
of a sub-anaesthetic dose of ketamine on human selective attention. 
Neuropsychopharmacology. (2000) 22:293–302. doi: 10.1016/S0893-133X(99)00118-9

 88. Schmidt A, Diaconescu AO, Kometer M, Friston KJ, Stephan KE, Vollenweider 
FX. Modeling ketamine effects on synaptic plasticity during the mismatch negativity. 
Cereb Cortex. (2013) 23:2394–406. doi: 10.1093/cercor/bhs238

 89. Roser P, Haussleiter IS, Chong HJ, Maier C, Kawohl W, Norra C, et al. Inhibition 
of cerebral type 1 cannabinoid receptors is associated with impaired auditory mismatch 
negativity generation in the ketamine model of schizophrenia. Psychopharmacology. 
(2011) 218:611–20. doi: 10.1007/s00213-011-2352-y

 90. Rosch RE, Auksztulewicz R, Leung PD, Friston KJ, Baldeweg T. Selective prefrontal 
disinhibition in a roving auditory oddball paradigm under n-methyl-d-aspartate 
receptor blockade. Biol Psychiatr Cogn Neurosci Neuroimag. (2019) 4:140–50. doi: 
10.1016/j.bpsc.2018.07.003

 91. Sumner RL, McMillan R, Spriggs MJ, Campbell D, Malpas G, Maxwell E, et al. 
Ketamine improves short-term plasticity in depression by enhancing sensitivity to 
prediction errors. Eur Neuropsychopharmacol. (2020) 38:73–85. doi: 10.1016/j.
euroneuro.2020.07.009

 92. Weber LA, Diaconescu AO, Mathys C, Schmidt A, Kometer M, Vollenweider F, 
et al. Ketamine affects prediction errors about statistical regularities: a computational 
single-trial analysis of the mismatch negativity. J Neurosci. (2020) 40:5658–68. doi: 
10.1523/JNEUROSCI.3069-19.2020

 93. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. 
A randomized trial of an n-methyl-d-aspartate antagonist in treatment-resistant major 
depression. Arch Gen Psychiatry. (2006) 63:856–64. doi: 10.1001/archpsyc.63.8.856

 94. Grizzell JA, Clarity TT, Graham NB, Dulka BN, Cooper MA. Activity of a vmPFC-
DRN pathway corresponds with resistance to acute social defeat stress. Front Neural 
Circuits. (2020) 14:50. doi: 10.3389/fncir.2020.00050

 95. Fellows LK, Farah MJ. The role of ventromedial prefrontal cortex in decision 
making: judgment under uncertainty or judgment per se? Cereb Cortex. (2007) 
17:2669–74. doi: 10.1093/cercor/bhl176

 96. Brown VM, Wilson J, Hallquist MN, Szanto K, Dombrovski AY. Ventromedial 
prefrontal value signals and functional connectivity during decision-making in suicidal 
behavior and impulsivity. Neuropsychopharmacology. (2020) 45:1034–41. doi: 10.1038/
s41386-020-0632-0

 97. Schmaal L, van Harmelen AL, Chatzi V, Lippard ET, Toenders YJ, Averill LA, et al. 
Imaging suicidal thoughts and behaviors: a comprehensive review of 2 decades of 
neuroimaging studies. Mol Psychiatry. (2020) 25:408–27. doi: 10.1038/
s41380-019-0587-x

 98. Abe R, Okada S, Nakayama R, Ikegaya Y, Sasaki T. Social defeat stress causes 
selective attenuation of neuronal activity in the ventromedial prefrontal cortex. Sci Rep. 
(2019) 9:1–10. doi: 10.1038/s41598-019-45833-5

 99. Hare BD, Pothula S, DiLeone RJ, Duman RS. Ketamine increases vmPFC activity: 
effects of (R) - and (S) - stereoisomers and (2R, 6R) - hydroxynorketamine metabolite. 
Neuropharmacology. (2020) 166:107947. doi: 10.1016/j.neuropharm.2020.107947

 100. Fukumoto K, Fogaça MV, Liu RJ, Duman CH, Li XY, Chaki S, et al. Medial PFC 
AMPA receptor and BDNF signaling are required for the rapid and sustained 
antidepressant-like effects of 5-HT1A receptor stimulation. Neuropsychopharmacology. 
(2020) 45:1725–34. doi: 10.1038/s41386-020-0705-0

 101. Moret C, Briley M. The importance of norepinephrine in depression. 
Neuropsychiatr Dis Treat. (2011) 7:9. doi: 10.2147/NDT.S19619

 102. Mathews D, Richards E, Niciu M, Ionescu D, Rasimas J, Zarate C. Neurobiological 
aspects of suicide and suicide attempts in bipolar disorder. Transl Neurosci. (2013) 
4:203–16. doi: 10.2478/s13380-013-0120-7

 103. Oquendo MA, Sullivan GM, Sudol K, Baca-Garcia E, Stanley BH, Sublette ME, 
et al. Toward a biosignature for suicide. Am J Psychiatr. (2014) 171:1259–77. doi: 
10.1176/appi.ajp.2014.14020194

 104. Kubota T, Anzawa N, Hirota K, Yoshida H, Kushikata T, Matsuki A. Effects of 
ketamine and pentobarbital on noradrenaline release from the medial prefrontal cortex 
in rats. Can J Anaesth. (1999) 46:388–92. doi: 10.1007/BF03013235

 105. Kubota T, Hirota K, Anzawa N, Yoshida H, Kushikata T, Matsuki A. 
Physostigmine antagonizes ketamine-induced noradrenaline release from the medial 
prefrontal cortex in rats. Brain Res. (1999) 840:175–8. doi: 10.1016/
S0006-8993(99)01793-X

 106. Ago Y, Tanabe W, Higuchi M, Tsukada S, Tanaka T, Yamaguchi T, et al. (R)-
ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and 
ketamine metabolites via an AMPA receptor-independent mechanism. Int J 
Neuropsychopharmacol. (2019) 22:665–74. doi: 10.1093/ijnp/pyz041

 107. Zhao Y, Sun L. Antidepressants modulate the in  vitro inhibitory effects of 
propofol and ketamine on norepinephrine and serotonin transporter function. J Clin 
Neurosci. (2008) 15:1264–9. doi: 10.1016/j.jocn.2007.11.007

 108. Sales AC, Friston KJ, Jones MW, Pickering AE, Moran RJ. Locus coeruleus 
tracking of prediction errors optimises cognitive flexibility: an active inference model. 
PLoS Comput Biol. (2019) 15:e1006267. doi: 10.1371/journal.pcbi.1006267

 109. Liebe T, Li M, Colic L, Munk MH, Sweeney-Reed CM, Woelfer M, et al. Ketamine 
influences the locus coeruleus norepinephrine network, with a dependency on 
norepinephrine transporter genotype–a placebo controlled fMRI study. NeuroImage 
Clin. (2018) 20:715–23. doi: 10.1016/j.nicl.2018.09.001

 110. Roy A, Karoum F, Pollack S. Marked reduction in indexes of dopamine 
metabolism among patients with depression who attempt suicide. Arch Gen Psychiatry. 
(1992) 49:447–50. doi: 10.1001/archpsyc.1992.01820060027004

 111. Mann JJ. Neurobiology of suicidal behaviour. Nat Rev Neurosci. (2003) 4:819–28. 
doi: 10.1038/nrn1220

 112. Ryding E, Lindström M, Träskman-Bendz L. The role of dopamine and serotonin 
in suicidal behaviour and aggression. Prog Brain Res. (2008) 172:307–15. doi: 10.1016/
S0079-6123(08)00915-1

 113. Fitzgerald ML, Kassir SA, Underwood MD, Bakalian MJ, Mann JJ, Arango V. 
Dysregulation of striatal dopamine receptor binding in suicide. 
Neuropsychopharmacology. (2017) 42:974–82. doi: 10.1038/npp.2016.124

 114. Baik JH. Stress and the dopaminergic reward system. Exp Mol Med. (2020) 
52:1879–90. doi: 10.1038/s12276-020-00532-4

 115. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Xiao L, Kozorovitskiy 
Y. Attenuated dopamine signaling after aversive learning is restored by ketamine to 
rescue escape actions. elife. (2021) 10:e64041. doi: 10.7554/eLife.64041

 116. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic 
stimulation of medial prefrontal cortex drd 1 neurons produces rapid and long-lasting 
antidepressant effects. Nat Commun. (2019) 10:1–12. doi: 10.1038/s41467-018-08168-9

 117. Kotoula V, Stringaris A, Mackes N, Mazibuko N, Hawkins PC, Furey M, et al. 
Ketamine modulates the neural correlates of reward processing in unmedicated patients 
in remission from depression. Biol Psychiatr Cogn Neurosci Neuroimag. (2022) 7:285–92. 
doi: 10.1016/j.bpsc.2021.05.009

 118. Matsumoto M, Hikosaka O. Representation of negative motivational value in the 
primate lateral habenula. Nat Neurosci. (2009) 12:77–84. doi: 10.1038/nn.2233

 119. Watabe-Uchida M, Eshel N, Uchida N. Neural circuitry of reward prediction 
error. Annu Rev Neurosci. (2017) 40:373–94. doi: 10.1146/annurev-neuro-072116-031109

https://doi.org/10.3389/fpsyt.2023.1214018
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://doi.org/10.1037/a0037665
https://doi.org/10.1371/journal.pcbi.1003288
https://doi.org/10.1371/journal.pcbi.1003288
https://doi.org/10.3390/biom10060947
https://doi.org/10.1016/j.pnpbp.2019.109668
https://doi.org/10.1038/mp.2015.91
https://doi.org/10.1177/0004867415586601
https://doi.org/10.1007/7854_2020_168
https://doi.org/10.1016/j.clinph.2021.06.019
https://doi.org/10.1016/j.ijpsycho.2022.07.003
https://doi.org/10.1016/j.ijpsycho.2022.07.003
https://doi.org/10.1001/archpsyc.57.12.1139
https://doi.org/10.1007/s00213-008-1129-4
https://doi.org/10.1038/npp.2011.261
https://doi.org/10.1177/0269881116650087
https://doi.org/10.1016/j.clinph.2015.10.062
https://doi.org/10.1016/S0893-133X(99)00118-9
https://doi.org/10.1093/cercor/bhs238
https://doi.org/10.1007/s00213-011-2352-y
https://doi.org/10.1016/j.bpsc.2018.07.003
https://doi.org/10.1016/j.euroneuro.2020.07.009
https://doi.org/10.1016/j.euroneuro.2020.07.009
https://doi.org/10.1523/JNEUROSCI.3069-19.2020
https://doi.org/10.1001/archpsyc.63.8.856
https://doi.org/10.3389/fncir.2020.00050
https://doi.org/10.1093/cercor/bhl176
https://doi.org/10.1038/s41386-020-0632-0
https://doi.org/10.1038/s41386-020-0632-0
https://doi.org/10.1038/s41380-019-0587-x
https://doi.org/10.1038/s41380-019-0587-x
https://doi.org/10.1038/s41598-019-45833-5
https://doi.org/10.1016/j.neuropharm.2020.107947
https://doi.org/10.1038/s41386-020-0705-0
https://doi.org/10.2147/NDT.S19619
https://doi.org/10.2478/s13380-013-0120-7
https://doi.org/10.1176/appi.ajp.2014.14020194
https://doi.org/10.1007/BF03013235
https://doi.org/10.1016/S0006-8993(99)01793-X
https://doi.org/10.1016/S0006-8993(99)01793-X
https://doi.org/10.1093/ijnp/pyz041
https://doi.org/10.1016/j.jocn.2007.11.007
https://doi.org/10.1371/journal.pcbi.1006267
https://doi.org/10.1016/j.nicl.2018.09.001
https://doi.org/10.1001/archpsyc.1992.01820060027004
https://doi.org/10.1038/nrn1220
https://doi.org/10.1016/S0079-6123(08)00915-1
https://doi.org/10.1016/S0079-6123(08)00915-1
https://doi.org/10.1038/npp.2016.124
https://doi.org/10.1038/s12276-020-00532-4
https://doi.org/10.7554/eLife.64041
https://doi.org/10.1038/s41467-018-08168-9
https://doi.org/10.1016/j.bpsc.2021.05.009
https://doi.org/10.1038/nn.2233
https://doi.org/10.1146/annurev-neuro-072116-031109


Charlton et al. 10.3389/fpsyt.2023.1214018

Frontiers in Psychiatry 12 frontiersin.org

 120. Ambrosi E, Arciniegas DB, Curtis KN, Patriquin MA, Spalletta G, Sani G, et al. 
Resting-state functional connectivity of the habenula in mood disorder patients with 
and without suicide-related behaviors. J Neuropsychiatr Clin Neurosci. (2019) 31:49–56. 
doi: 10.1176/appi.neuropsych.17120351

 121. Marks RB, Wee JY, Jacobson SV, Hashimoto K, O’Connell KL, Golden SA, et al. 
The role of the lateral habenula in suicide: a call for further exploration. Front Behav 
Neurosci. (2022) 16:812952. doi: 10.3389/fnbeh.2022.812952

 122. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the 
lateral habenula to rapidly relieve depression. Nature. (2018) 554:317–22. doi: 10.1038/
nature25509

 123. Baker PM, Jhou T, Li B, Matsumoto M, Mizumori SJ, Stephenson-Jones M, et al. 
The lateral habenula circuitry: reward processing and cognitive control. J Neurosci. 
(2016) 36:11482–8. doi: 10.1523/JNEUROSCI.2350-16.2016

 124. Marcus DJ, Bruchas MR. Antidepressants: where ketamine and dopamine collide. 
elife. (2021) 10:e70148. doi: 10.7554/eLife.70148

 125. Sun X, Zhao Y, Wolf ME. Dopamine receptor stimulation modulates AMPA 
receptor synaptic insertion in prefrontal cortex neurons. J Neurosci. (2005) 25:7342–51. 
doi: 10.1523/JNEUROSCI.4603-04.2005

 126. Shaw AD, Muthukumaraswamy SD, Saxena N, Sumner RL, Adams NE, Moran 
RJ, et al. Generative modelling of the thalamo-cortical circuit mechanisms underlying 
the neurophysiological effects of ketamine. NeuroImage. (2020) 221:117189. doi: 
10.1016/j.neuroimage.2020.117189

 127. Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall J, Moran R, Saxena N. 
Evidence that subanesthetic doses of ketamine cause sustained disruptions of NMDA 
and AMPA-mediated frontoparietal connectivity in humans. J Neurosci. (2015) 
35:11694–706. doi: 10.1523/JNEUROSCI.0903-15.2015

 128. Sumner RL, McMillan R, Spriggs MJ, Campbell D, Malpas G, Maxwell E, et al. 
Ketamine enhances visual sensory evoked potential long-term potentiation in patients 
with major depressive disorder. Biol Psychiatr Cogn Neurosci Neuroimag. (2020) 5:45–55. 
doi: 10.1016/j.bpsc.2019.07.002

 129. Gilbert JR, Yarrington JS, Wills KE, Nugent AC, Zarate CA Jr. Glutamatergic 
signaling drives ketamine mediated response in depression: evidence from dynamic 
causal modeling. Int J Neuropsychopharmacol. (2018) 21:740–7. doi: 10.1093/ijnp/
pyy041

 130. Gilbert JR, Galiano CS, Nugent AC, Zarate CA. Ketamine and attentional bias 
toward emotional faces: dynamic causal modeling of magnetoencephalographic 
connectivity in treatment-resistant depression. Front. Psychiatry. (2021) 12:995. doi: 
10.3389/fpsyt.2021.673159

 131. Gilbert JR, Ballard ED, Galiano CS, Nugent AC, Zarate CA Jr. 
Magnetoencephalographic correlates of suicidal ideation in major depression. Biol 
Psychiatr Cogn Neurosci Neuroimag. (2020) 5:354–63. doi: 10.1016/j.
bpsc.2019.11.011

 132. Iglesias S, Tomiello S, Schneebeli M, Stephan KE. Models of neuromodulation 
for computational psychiatry. Wiley Interdiscip Rev Cogn Sci. (2017) 8:e1420. doi: 
10.1002/wcs.1420

 133. Brodersen KH, Schofield TM, Leff AP, Ong CS, Lomakina EI, Buhmann JM, et al. 
Generative embedding for model-based classification of fMRI data. PLoS Comput Biol. 
(2011) 7:e1002079. doi: 10.1371/journal.pcbi.1002079

 134. Torous J, Larsen ME, Depp C, Cosco TD, Barnett I, Nock MK, et al. Smartphones, 
sensors, and machine learning to advance real-time prediction and interventions for 
suicide prevention: a review of current progress and next steps. Curr Psychiatry Rep. 
(2018) 20:1–6. doi: 10.1007/s11920-018-0914-y

 135. Karvelis P, Paulus MP, Diaconescu AO. Individual differences in computational 
psychiatry: a review of current challenges. Neurosci Biobehav Rev. (2023) 148:105137. 
doi: 10.1016/j.neubiorev.2023.105137

 136. Wilkinson ST, Rhee TG, Joormann J, Webler R, Lopez MO, Kitay B, et al. 
Cognitive behavioral therapy to sustain the antidepressant effects of ketamine in 
treatment resistant depression: a randomized clinical trial. Psychother Psychosom. (2021) 
90:318–27. doi: 10.1159/000517074

 137. Price RB, Spotts C, Panny B, Griffo A, Degutis M, Cruz N, et al. A novel, brief, 
fully automated intervention to extend the antidepressant effect of a single ketamine 
infusion: a randomized clinical trial. Am J Psychiatr. (2022) 179:959–68. doi: 10.1176/
appi.ajp.20220216

 138. Wolff M, Evens R, Mertens LJ, Koslowski M, Betzler F, Gründer G, et al. Learning 
to let go: a cognitive-behavioral model of how psychedelic therapy promotes acceptance. 
Front Psychol. (2020) 11:5. doi: 10.3389/fpsyt.2020.00005

 139. Muscat SA, Hartelius G, Crouch CR, Morin KW. Optimized clinical strategies for 
treatment-resistant depression: integrating ketamine protocols with trauma-and attachment-
informed psychotherapy. Psychology. (2022) 4:119–41. doi: 10.3390/psych4010012

 140. Sumner RL, Chacko E, McMillan R, Spriggs MJ, Anderson C, Chen J, et al. A qualitative 
and quantitative account of patient’s experiences of ketamine and its antidepressant properties. 
J Psychopharmacol. (2021) 35:946–61. doi: 10.1177/0269881121998321

 141. Aust S, Gärtner M, Basso L, Otte C, Wingenfeld K, Chae WR, et al. Anxiety 
during ketamine infusions is associated with negative treatment responses in major 
depressive disorder. Eur Neuropsychopharmacol. (2019) 29:529–38. doi: 10.1016/j.
euroneuro.2019.02.005

 142. Ballard ED, Zarate CA. The role of dissociation in ketamine’s antidepressant 
effects. Nat Commun. (2020) 11:1–7. doi: 10.1038/s41467-020-20190-4

 143. Safron A. On the varieties of conscious experiences: altered beliefs under 
psychedelics (ALBUS). PsyArXiv [Preprint] (2020). doi: 10.31234/osf.io/zqh4b

 144. Andersen KA, Carhart-Harris R, Nutt DJ, Erritzoe D. Therapeutic effects of 
classic serotonergic psychedelics: a systematic review of modern-era clinical studies. 
Acta Psychiatr Scand. (2021) 143:101–18. doi: 10.1111/acps.13249

 145. Dore J, Turnipseed B, Dwyer S, Turnipseed A, Andries J, Ascani G, et al. 
Ketamine assisted psychotherapy (KAP): patient demographics, clinical data and 
outcomes in three large practices administering ketamine with psychotherapy. J 
Psychoactive Drugs. (2019) 51:189–98. doi: 10.1080/02791072.2019.1587556

 146. Mathai DS, Mora V, Garcia-Romeu A. Toward synergies of ketamine and 
psychotherapy. Front Psychol. (2022) 13:1203. doi: 10.3389/fpsyg.2022.868103

https://doi.org/10.3389/fpsyt.2023.1214018
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://doi.org/10.1176/appi.neuropsych.17120351
https://doi.org/10.3389/fnbeh.2022.812952
https://doi.org/10.1038/nature25509
https://doi.org/10.1038/nature25509
https://doi.org/10.1523/JNEUROSCI.2350-16.2016
https://doi.org/10.7554/eLife.70148
https://doi.org/10.1523/JNEUROSCI.4603-04.2005
https://doi.org/10.1016/j.neuroimage.2020.117189
https://doi.org/10.1523/JNEUROSCI.0903-15.2015
https://doi.org/10.1016/j.bpsc.2019.07.002
https://doi.org/10.1093/ijnp/pyy041
https://doi.org/10.1093/ijnp/pyy041
https://doi.org/10.3389/fpsyt.2021.673159
https://doi.org/10.1016/j.bpsc.2019.11.011
https://doi.org/10.1016/j.bpsc.2019.11.011
https://doi.org/10.1002/wcs.1420
https://doi.org/10.1371/journal.pcbi.1002079
https://doi.org/10.1007/s11920-018-0914-y
https://doi.org/10.1016/j.neubiorev.2023.105137
https://doi.org/10.1159/000517074
https://doi.org/10.1176/appi.ajp.20220216
https://doi.org/10.1176/appi.ajp.20220216
https://doi.org/10.3389/fpsyt.2020.00005
https://doi.org/10.3390/psych4010012
https://doi.org/10.1177/0269881121998321
https://doi.org/10.1016/j.euroneuro.2019.02.005
https://doi.org/10.1016/j.euroneuro.2019.02.005
https://doi.org/10.1038/s41467-020-20190-4
https://doi.org/10.31234/osf.io/zqh4b
https://doi.org/10.1111/acps.13249
https://doi.org/10.1080/02791072.2019.1587556
https://doi.org/10.3389/fpsyg.2022.868103

	Suicide prevention and ketamine: insights from computational modeling
	1. Introduction
	2. Computational accounts of suicidality
	3. Computational accounts of ketamine
	4. Computational modeling of ketamine’s anti-suicidal effects
	4.1. Ketamine and predictive coding
	4.2. Neural circuits underlying ketamine’s anti-suicidal effects
	4.3. Physiological correlates of ketamine-mediated effects

	5. Additional considerations and potential applications of computational modeling
	5.1. Computational models for individual treatment prediction
	5.2. Computational models for enhancing ketamine’s therapeutic effect

	6. Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

