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Editorial on the Research Topic

Clinical application of machine learning methods in psychiatric disorders

Introduction

With the increasing prevalence of psychiatric disorders, there has been a significant

increase in the demand for effective psychiatric disorder treatments in recent years. However,

the complexity of neuronal degeneration and the heterogeneity of patients make early

diagnosis and treatment of these disorders difficult. To meet these challenges, scientists,

clinicians, and patients can benefit from the application of machine learning theories and

algorithms. Machine learning, which includes methods for feature extraction, selection,

and classification, has demonstrated significant benefits in the pathological analysis of

psychiatric disorders (1). These methods can learn features from brain neuroimaging data

and adapt to data variation, thereby improving the reliability, performance, and accuracy of

disease-specific diagnostic systems. Furthermore, machine learning can accurately assess the

conditions of patients. With the use of cutting-edge machine learning algorithms, clinical

diagnosis, and clinical interventions, along with clinical neuroimaging data of the brain, this

Research Topic aims to incorporate theoretical and technological innovations and assess the

performance of machine learning in clinical studies on psychiatric disorders.

Machine learning methods in psychiatric disorders

Deep learning-based natural language processing techniques were applied to assess

depressive symptoms in clinical interviews. The F1 score (a measure of model performance,

harmonic mean of accuracy, and recall) was 0.719 when classifying the four-level severity

of depression, and 0.890 when identifying the presence of depressive symptoms (Li et al.).

Multidimensional speech feature diagnosis and evaluation system (MSFDA) combining

multidimensional speech features and deep learning in the auxiliary diagnosis of major

depressive disorder in children and adolescents. The sensitivity (92.73% vs. 76.36%)
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and specificity (90.91% vs. 85.45%) of the MSFDA system were

significantly higher than those of HAMD-24. The area under the

curve of the MSFDA system is also higher than that of HAMD-24.

The difference between the two groups was statistically significant

(p < 0.05), and the diagnostic accuracy was higher in both groups.

In addition, the diagnostic efficiency of the MSFDA system is

higher than that of HAMD-24 in terms of Youden index, diagnostic

accuracy, likelihood ratio, diagnostic odds ratio and predictive

value (Luo et al.).

The combination of artificial intelligence and imaging data

to guide clinical diagnosis and intervention is a major direction

for future clinical research. Venkatapathy et al. present an

integrated model for resting-state functional MRI data analysis

and graph convolution networks based on graph theory. For

the classification of patients with major depressive symptoms

and healthy controls, the ensemble models achieved 71.18%

upsampling accuracy and 70.24% downsampling accuracy. When

comparing patients with first-episode major depressive symptoms

to those with recurrent major depressive symptoms, the accuracy

of upsampling was 77.78% and the accuracy of downsampling

was 71.96% (Venkatapathy et al.). A multimodal MRI image-based

imagingomics study predicted prognostic outcome of stroke with

an accuracy of 0.831, sensitivity of 0.739, specificity of 0.902, F1

score of 0.788 and area under the curve of 0.902 (Yu et al.). Resting-

state-based amplitude of low-frequency fluctuation and support

vector machine models help distinguish schizophrenia patients

from healthy controls (Gao et al.).

Peripheral blood is easy to obtain and less invasive, making it

an ideal specimen for clinical trials. Lymphocyte subpopulation-

based features help distinguish bipolar depression from major

depressive disorder with an accuracy of >90% (Su et al.). The

accuracy of the peripheral non-enzymatic antioxidant combined

with the xGboost model for differentiating bipolar disorder from

major depressive disorder was 0.849 and for differentiating bipolar

disorder with depressive episodes from major depressive disorder

was 0.899 (Gong et al.).

Conclusion

Each paper focuses on a different but equally important aspect

of clinical application of machine learning methods in psychiatric

disorders. We believe that by presenting and highlighting

the latest novel and emergent machine learning technologies,

implementations, and applications relating to psychiatric disorders,

we will raise awareness in the scientific community. Finally, we’d

like to thank all of the authors who contributed to this Research

Topic with their research. We would also like to thank the many

experts in the field who participated in the review process and

offered helpful suggestions to the authors to improve the articles’

contents and presentations.
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