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Serine/threonine protein kinases are involved in axon formation and neuronal

polarization and have recently been implicated in autism spectrum disorder (ASD)

and neurodevelopmental disorders (NDD). Here, we focus on BRSK2, which

encodes brain-specific serine/threonine protein kinase 2. Although previous

studies have reported 19 unrelated patients with BRSK2 pathogenic variation, only

15 of 19 patients have detailed clinical data. Therefore, more case reports are

needed to enrich the phenotype associated with BRSK2 mutations. In this study,

we report a novel de novo frameshift variant (c.442del, p.L148Cfs∗39) identified by

exome sequencing in a 16 year-old Chinese boy with ASD. The proband presented

with attention-deficit, auditory hallucinations, limb tremor, and abnormal brain

electrical activitymapping. This study expands the phenotypic spectrumof BRSK2-

related cases and reveals the highly variable severity of disorders associated

with BRSK2.
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Introduction

Children with autism spectrum disorder (ASD, also known as autism) share some

symptoms, such as differences in social communication, and stereotyped, repetitive, or

restricted behaviors or interests, based on the Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition, Text Revision (DSM-5-TR) (1). Themale-to-female ratio of patients

with ASD is 4.2 (2). In addition, the prevalence of autism continues to increase, with serious

implications for affected families and society.

Autism has a strong and diverse genetic background. Recent large cohort studies revealed

that BRSK2 has strong statistical support and is a genome-wide significant risk gene for ASD

(3). Brain selective kinase 2 (BRSK2) is a serine/threonine protein kinase that belongs to the

AMPK-related protein kinase family, which also includes BRSK1 and 11 other kinases (4).

BRSK2 was found to be selectively expressed in the mouse brain, and exhibited the highest

expression in the brain among various human organs (5). Recent studies using KO mice
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suggested that BRSK1 and BRSK2 are essential for the development

of polarity of forebrain neurons, which realizes distinct properties

of axons and dendrites (6). In addition, BRSK2 mutations have

been reported to be associated with ASD and neurodevelopmental

disorders (NDD) (3). However, detailed clinical courses have not

been described in many cases of BRSK2 mutations.

In this study, clinical exome sequencing was performed on

an ASD patient and his family members, and the results revealed

the presence of c.442del, p.L148Cfs∗39, which is a de novo

BRSK2 pathogenic mutation, in this proband. Notably, the patient

exhibited acousma and abnormal EEG. This study expands the

phenotypic spectrum associated with BRSK2 mutations.

Materials and methods

Psychological assessment

The Autism Diagnostic Observation Scale-Second Edition

(ADOS) was used in autism clinical judgment. This scale is one of

the most frequently used research tools, which has a standardized

structure (7). Scale for assessment of negative symptoms (SANS)

has 24 items which was used to measure the severity of negative

symptoms in schizophrenia. Its score ranges between 0-120. Scale

for assessment of positive symptoms (SAPS) has 35 items and its

score ranges between 0 and 165 (8). TheWechsler Intelligence Scale

for Children-Fifth Edition (WISC-V) is a valuable IQ test tool for

assessing cognitive abilities in children between the ages of 6 and 16

years old (9).

EEG recording and data analysis

The EEG recording were obtained with 16-electrode Stellate

Harmonie EEG systems (Natus Medical Incorporated). The EEG

signals were preprocessed using a 0.1–100Hz band-pass filter

and the data was analyzed using Harmonie software (Stellate

HARMONIR 7.0).

Sample preparation and DNA extraction

Peripheral blood of the proband and his family members was

sampled by using EDTA tubes at The Second Xiangya Hospital

of Central South University. DNA extraction was achieved by

utilizing a DNA Blood Midi/Mini kit (Qiagen, Germany), and

DNA concentrations were measured by utilizing a DNA Assay Kit

(Qubit
R©
, Life Technologies, USA).

Exome sequencing and variant
prioritization

Exome sequencing of genomic DNA samples of the patient

and his family members was executed using the Nonaseq 6000

platform (Illumina, USA). An exome library was developed by

utilizing xGen Exome Research Panel V1.0 (Integrated DNA

Technologies, USA). The raw paired-end reads were aligned to

hg38/GRCh38, which serves as a reference genome, with BWA

Enrichment. The Genome Analysis Tool Kit (GATK) was used to

call variants. ANNOVAR was employed for annotation of Variant

Call Format (VCF) acquired previously. The Human Genome

Mutation Database (HGMD) and 1,000 Genomes Project were

applied to characterize the detected variants. All variants were

categorized based on mutation, location, and frequency. The

threshold of low frequency filter was minor allele frequency (MAF)

< 0.05. The synonymous SNVs and unannotated variants were

discarded, and only SNVs observed in splice sites or exons were

further investigated. Missense variants were predicted by utilizing

the bioinformatics mutation prediction software programs (SIFT).

The variations were categorized into groups of benign, likely

benign, uncertain significance, likely pathogenic, and pathogenic

by using American College of Medical Genetics and Genomics

(ACMG). The AlphaFold tool was used to model and visualize the

mutant and wild-type protein structures.

Sanger sequencing

The BRSK2 mutation was confirmed by Sanger sequencing of

exon5, as well as its flanking intron regions (NM_001256627.2)

of the proband and his family members. DNA amplification

was achieved by utilizing PCR with gene-specific primers, and

purification of the PCR products was achieved by utilizing a

PCR Purification Kit (Qiagen, Germany). Additionally, Sanger

sequencing using the ABI 3730xl DNA Analyzer (Applied

Biosystems, USA) was executed on the purified PCR products to

confirm BRSK2 mutation, and the results were investigated by

utilizing SnapGene V.4.1.9 (SnapGene, USA).

Results

Clinical description

The patient was a 16-year-old boy who is the first child

of a healthy, non-consanguineous couple. There was no family

history of neurodevelopmental disorders. He was born at 39 weeks

gestation with the following auxological parameters: length 50 cm

and weight 3,900 g. The mother reported that the proband began

crawling at 8 months, walking independently at the age of 1

year, saying single words at the age of 2 years, and saying simple

sentences at 30 months. Meanwhile, eye contact with the patient

exhibited no problems, and sphincter control was obtained at 24

months. At the age of 5 years, the proband was still unable to

perform fine motor tasks, such as tying shoelaces, but interaction

with peers was normal. The patient entered school at the age of 6,

but exhibited severe difficulties in learning Chinese and inattention.

The mother reported that the boy had auditory hallucinations and

giggled involuntarily at the age of 11. The boy told his mother

that he heard a male teacher talking to him and telling him to do

things. This patient was first diagnosed with mental retardation in

the Children’s hospital in Tianjin at the age of 11. After 2 years

of functional training and rehabilitation exercises, there was no

significant improvement. However, the patient was found to have

limb tremors at the age of 13. Although the proband did not have
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any dietary changes, he had a sleep disorder. He was too agitated

to fall asleep for 2 days every month. The Wechsler Intelligence

Scale for Children, Fifth Edition (WISC-V) was used to test the

patient’s level of intellectual functions. His full-scale intelligence

quotient (FSIQ) score was 38, which was below 70, and he was

considered to have moderate intellectual disability. The Autism

Diagnostic Observation Schedule (ADOS) score and the autism

cut-off score of the proband were 18 and 10, respectively. The scale

for the Assessment of Positive Symptoms (SAPS) and the scale for

the Assessment of Negative Symptoms (SANS) were also used to

assess the patient’s schizophrenia symptoms. The scores of SAPS

and SANS were 10 and 40, respectively, both below the cut-off

score of 50. Based on these assessment results, the boy was second

diagnosed with autistic spectrum disorder at Xiangya Hospital at

the age of 13. The MRI results of his brain were normal, while the

EEG results showed abnormal changes in brain electrical activity

mapping (BEAM). The power of the theta band increased in the

patient compared to typically developing (TD) boy of the same age

(see Figure 1). Although the BEAM of this patient was altered, his

mother reported that he never had a seizure.

Through literature review, we identified 19 cases with BRSK2

pathogenic mutations. Fifteen of the 19 cases reported partial

clinical data. All cases with partial clinincal data were diagnosed

with autism and presented with speech delay (100%, 15/15). Three

of the 15 cases were female, and their age ranged from 3 to

19 years at first report. Twelve of the 15 cases presented with

motor delay (80%, 12/15). In addition, some were reported to

have sleep disorders (20%, 3/15), feeding problems (13.34%, 2/15),

epilepsy (13.34%, 2/15), and schizophrenia (6.67%, 1/15). Details

are presented in Supplementary Table S1.

Genetic analysis

Exome sequencing was performed on the proband and

his family members. The mean depth of coverage was 20X.

The mapping rates of all samples exceeded 98%. The analysis

revealed the presence of c.442del, p.L148Cfs∗39, which is a

de novo frameshift variant in exon 5 of BRSK2 gene on

chromosome 11 (Figure 2A). Sanger sequencing demonstrated that

the heterozygous variant was present in the proband, but not in

his parents or his sister (Figure 2B). This C-deletion mutation in

BRSK2 leads to a premature translation termination codon and

a 187 amino acid truncated protein (Figure 2C). This de novo

frameshift deletion was identified for the first time in this study and

is not present in the SPARK or SFARI gene databases (Figure 2D)

(one sequence deletion, two non-sense variants, six frameshift

variants, six missense variants, and six splice-site variants).

Discussion

This study reports a novel pathogenic BRSK2 variant in an

ASD patient. The proband presented with speech delays, attention-

deficit, and acousma. Exome sequencing demonstrated the

presence of c.442del, p.L148Cfs∗39, which is a de novo frameshift

variant predicted to be deleterious. Previous publications have

reported 19 non-sense, splice alteration, frameshift, and deleterious

missense variations in BRSK2. These mutations were likely

responsible for the phenotypes of these patients with or without

ASD (3, 10–16). We compared the reported clinical phenotypes

caused by the mutations located in the same catalytic domain.

There were four missense mutations, three splice alterations,

two non-sense mutations and one single-base deletion in the

same domain. Three of the four missense mutations were

all G to A variations, but they caused different symptoms,

including intermittent horizontal nystagmus, sleep disorder and

undescended testis. One splice alteration caused mild gait ataxia

and tremor in a female patient. This symptom is similar to the

limb tremor of the patient in our study. Although facial features

have been reported in some probands, no consistent set of features

was observed in our case. Previous publications indicated the

heterogeneity among different mutation sites. Hence, more detailed

case reports are necessary to expand the phenotypic spectrum

associated with BRSK2 mutations. In this study, abnormal brain

electrical activity mapping and acousma were reported for the

first time in an ASD patient with BRSK2 mutation. Although the

patient’s theta band power was altered, he never had seizures.

In previous studies, Pablo Billeke and his group assessed the

electroencephalographic activity of ASD and TD subjects during a

working memory task. They found that impaired theta modulation

correlated with autistic symptoms (17), which is consistent with our

findings. It has been suggested that the alteration of the theta band

may be related to the physiopathology of ASD.

BRSK2, also known as SAD-A, is located at 11p15.5 and

encodes 736 amino acids. The protein comprises multiple domains,

including a proline-rich domain (aa 424-468), a kinase-associated

domain (KA1; aa 530-653), a protein kinase (aa 19-270), and a

ubiquitin-associated domain (UBA; aa 297-339) (18). BRSK2 is

highly conserved in evolution and exclusively expressed in the

vertebrate brain (14). In fact, BRSK2 is involved in axonogenesis

and cortical neuron polarization (4, 6, 19, 20). Previous studies

have reported that BRSK2 interacts with NDD-associated genes

such as autism and developmental delay (DD) and/or intellectual

disability (ID). BRSK2 can phosphorylate TSC2 and suppress

mTORC1 activity (21, 22). As a component of the TSC signaling

pathway, TSC2 regulates cell size and growth. The TSC signaling

pathway is associated with autophagy during early axonal growth.

Also, BRSK2 interacts with PTEN, which is associated with

various developmental disorders (e.g., autism). PTEN knockout

mice exhibit neuronal structure malformation and autistic features

caused by aberrant TSC-mTORC1 signaling (23, 24). A previous

publication reported that single mutant BRSK1 or BRSK2 mice

were healthy and fertile, but BRSK1 and BRSK2 double knockout

mice showed perinatal lethality with a severe defects in axon

differentiation and died within 2 h after birth (4). Conversely,

another study demonstrated that on a C57BL/6N background,

BRSK2 is essential for cortical development. The BRKS2 knockout

mice died within a few days after birth (10). Meanwhile, BRSK2-

mutant zebrafish exhibited ASD-like features (e.g., developmental

delay, social impairment) (4, 14).

BRSK1, also known as SAD-B, is the homolog of BRSK2.

BRSK1 acts as a multifunctional regulator, by phosphorylating its

downstream proteins it is involved in many biological processes.

BRSK1 can phosphorylateγ-tubulin to regulate centrosome

duplication, and phosphorylate CAST to control active zone
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FIGURE 1

Electroencephalogram of the patient. (A) The power of theta band was observed increased in the patient (right) compared to a typical developing

boy (left), colors depicted represent power (µV2) within theta bands across regions. Blue areas correspond to the lower power for theta band and the

red areas correspond to higher power. (B) A representative EEG trace recorded from the patient during resting condition. The arrow marks the

increase in the theta band in frontal brain region.

vesicle recycling for synaptic depression (25, 26). Furthermore,

BRSK1 knockout mice showed impaired contextual fear learning.

BRSK1 plays a critical role in controlling vesicle release properties

and regulating hippocampal function in the mature brain (27).

However, when we queried the SFARI Gene database, which tracks

the ever-expanding genetic risk factors of autism, surprisingly, we

found that BRSK1 has not yet been included among the autism

risk genes. Although the evidence suggests that BRSK1 and BRSK2

play a key roles in cortical and neurodevelopmental processes, the

functional compensation between BRSK1 and BRSK2 has not been
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FIGURE 2

Mutation analysis of BRSK2. (A) Pedigree of the family described in this report. (B) Sequences around the BRSK2 mutation in the patient and his family.

The patient carries a C deletion, which leads to a loss function variant, and his family carrier normal sequence. (C) The computational modeling of

wild type and mutant BRSK2 in human. (D) Genomic structure of BRSK2 mutations reported previously are shown and the mutation found in this

study is shown in a box.

sufficiently studied. Hence, more work is needed to investigate the

function of BRSK1 and BRSK2.

In conclusion, we report a pathogenic de novo

BRSK2 mutation in an ASD patient, and our findings

expand the phenotypic spectrum associated with

BRSK2 mutations.
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