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Background: Accurate classification based on affordable objective neuroimaging 
biomarkers are important steps toward designing individualized treatment.

Methods: In this work, we  investigated a deep learning classification model, 
multi-scale convolutional recurrent neural network (MCRNN), to explore 
psychiatric disorder-related biomarkers by leveraging the spatiotemporal 
information of resting-state EEG (rsEEG) using a multiple psychiatric disorder 
database containing 327 individuals diagnosed with schizophrenia, bipolar, major 
depressive disorders, and healthy controls. All subjects were mapped to a shared 
low-dimensional subspace for intuitively interpreting the inter-relationship and 
separation of psychiatric disorders.

Results: Psychiatric disorders were identified using rsEEG with high accuracy 
ranged from 78.6 to 91.3% in patient vs. controls two-class classification, and 
68.2% in four-class classification. The control-to-schizophrenia trajectory 
interpretated by the model was consistent with the disease severity in clinical 
observation.

Conclusion: The MsRNN demonstrated a capability in extracting discriminative 
rsEEG biomarkers for psychiatric disorder classification, indicating its potential to 
facilitate our understanding of psychiatric disorders and monitoring interventions.
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Introduction

Major psychiatric disorders, including major depressive disorder (MDD), bipolar disorder 
(BP), and schizophrenia (SZ), are among the most severe and impactful mental illnesses. They 
lead to decreased quality of life, premature death/disability in many patients, and increased 
health care costs. Major psychiatric disorders are highly comorbid in specific symptoms but are 
heterogenous in underlying mechanisms, causing difficulties in diagnosis and treatment (1, 2). 
Current psychiatric diagnosis guidelines are based on phenomenological descriptions, with no 
assay-based biological criteria underlying diagnosis (3). For instance, due to the overlapping 
clinical symptoms at onset, about 60% of BP patients are initially diagnosed as MDD and have 
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to wait 5–10 years before receiving appropriate diagnoses (4). The 
biological heterogeneity of psychiatric disorders has a substantial 
effect on treatment response, resulting in the unpredictability of 
therapeutic effects. For example, the treatment response of treatment-
resistant major depression using transcranial magnetic stimulation 
(TMS) varies from 45 to 60% (5). Therefore, it is urgent to discover 
biomarkers that can be used for accurate disorder diagnosis.

Non-invasive neuroimaging techniques, such as structural 
magnetic resonance imaging (sMRI) (6), resting-state functional MRI 
(7–9), or rsEEG (10, 11), has been widely studied for identifying 
disorder-related biomarkers or subtypes. In comparison to MRI, EEG 
is an inexpensive measurement with higher time resolution and 
non-magnetic effects, making it a viable healthcare tool in a variety of 
clinical environments. Previous work (10) identified two clinically 
relevant subtypes of post-traumatic stress disorder and MDD based 
on functional connectivity patterns in EEG. Decades of studies in EEG 
provide us with a variety of metrics [e.g., coherence (12), phase 
synchronization (13), and phase-slope index (14)] to quantify neural 
interactions as well as interpreting discoveries (15). However, few of 
the studies directly extracted spatiotemporal representations from 
EEG time series (16). Compared to the standard machine learning 
method, deep learning can encode more robust discriminative 
neuroimaging representations by characterizing potentially non-linear 
high-level patterns existing in the input features (17). Our prior fMRI 
studies have demonstrated the effectiveness of deep learning in 
utilizing spatiotemporal information directly from fMRI time 
sequences (18, 19). Different from the frequency-based EEG methods 
reported by Wu et  al. (20), which separated EEG into predefined 
frequency bands, the convolutional recurrent neural network can 
extract the weighted combinations of EEG channels and then process 
sequential information for more accurate classification.

This study aimed to investigate the feasibility of extracting rsEEG-
based biomarker for major psychiatric disorder classification using 
deep learning models. In this study, we  used an EEG-based deep 
learning method, multi-scale convolutional recurrent neural network 
(MCRNN), to leverage the spatiotemporal information of rsEEG for 
multi-disease classification and subtype discovery. By learning rsEEG 
time series from three major psychiatric disorders, the MCRNN can 
effectively learn nonlinear discriminative feature representations 
which inhibiting the disorder-unrelated covariates by mapping the 
EEG features into the disorder-specific subspace. In addition, the 
MCRNN uses various convolutional filters of different scales to extract 
spatial features from time series. The extracted features are 
concatenated, pooled, and then sent to the Gated Recurrent Unit 
(GRU) module, and finally passes through a fully connected layer and 
a Softmax layer to obtain categorical output.

Materials and methods

Overview of the study

As shown in Figure  1A, the preprocessed four-class rsEEG 
samplings were sent to MCRNN for model optimization. Leave-
one-out cross-validation strategy was applied for evaluating the 
classification performance. The severity continuum of psychiatric 
disorders was visualized based on the high-level feature learning by 
MCRNN. The occlusion strategy was applied for explaining the 
discriminative power of each EEG channel.

Participants

According to the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5), a total of 327 participants (BP = 72, MDD = 138, 
SZ = 70, NC = 47) were diagnosed after the semi-structured clinical 
interview by experienced psychiatrists. The demographic and clinical 
information of the participants were showed in Table  1. The 
participants were within the 16–40 age range, right-handed. 
Participants were excluded from enrollment if they had a currently 
substance abuse disorder, brain injury, a history of seizures, unstable 
medical condition, current pregnancy, or prior electroconvulsive 
therapy. Healthy controls were recruited from the local community 
after a semi-structured clinical interview to exclude any current or 
lifetime psychiatric disorders. All participants in this study signed 
written informed consent, which was approved by the ethics 
committee of the institutional review board of Second Affiliated 
Hospital, Zhejiang University School of Medicine.

EEG data acquisition and preprocessing

The rsEEG was recorded at the first visit before accepting any 
neuromodulation therapy. Subjects were asked to sit on a chair 
comfortably in a quiet room, with eyes closed while staying awake. 
EEG was recorded using a wired Waveguard cap containing 64 Ag/
AgCl recording channels (ANT Neuro, Hengelo, Netherlands). EEG 
electrodes were located following the 10/20 international placement 
system. Signals were sampled at 1 kHz, impedance were below 20 kΩ, 
referenced relative to CPz, online grounded at AFz, and amplified with 
an eegoTM amplifier (ANT Neuro, Hengelo, Netherlands). The 
electrodes placed at the supra-orbitally to the left eye were the bipolar 
recordings of electro-ocular activity (EOG). Resting-state EEG was 
continuously recorded for over 5 min for each participant.

The resting-state EEG data were processed using EEGLAB1 for 
further MCRNN analysis. The EEG data of each subject was processed 
as follow: downsampling to 250 Hz; band-pass 0.5–70 Hz; 260–300 1-s 
epochs were extracted after artifacts correction. Each epoch is 
represented with a 64 250channel samplings( )× ( ) matrix.

1 https://sccn.ucsd.edu/eeglab/index.php

Abbreviations: SZ, Schizophrenia; BP, Bipolar disorder; MDD, Major depression 

disorder; NC, Normal controls; BRMS, Bech-Rafaelsen Mania rating scale; HDRS, 

Hamilton depression rating scale; PANSS, Positive and negative syndrome scale; 

rsEEG, Resting-state electroencephalography; sMRI, Structural magnetic resonance 

imaging; GRU, Gated recurrent unit; ROC: Receiver operating characteristic; 

UMAP, Uniform manifold approximation and projection.
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Multi-scale convolutional recurrent neural 
network

As shown in Figure 1B, multi-scale convolutional recurrent neural 
network (MCRNN) consisted of multiple 1D convolutional filters with 

different scales, one concatenation layer, one max-pooling layer, a 
gated recurrent unit (GRU), and an averaged layer for integrating the 
spatiotemporal information for classification. The preprocessed EEG 
signals were fed into the MCRNN model for parameter optimization. 
After optimizing the parameters, the model was saved for performance 
evaluation. The detailed architecture and mechanisms of the MCRNN 
were as follows: Multi-scale 1D convolutional layer expanded simple 
convolutional layers by including multiple filters of varying sizes in 
each Conv1D layer. The filter lengths used in the Conv1D were drawn 
from a logarithmic instead of a linear scale, leading to exponentially 
varying filter lengths (2, 4, and 8). Therefore, the dimensions of three 
different scales of convolutional filters are 64 (EEG channels) × 2 (filter 
length) × 32 (number of filters), 64 × 4 × 32, and 64 × 8 × 32. A 
concatenation layer then concatenated the incoming features, resulting 
in feature maps with size of 250 (time points) × 96 (feature dimension). 
Whereafter, a max-pooling layer performed down-sampling operation 
along the time dimensions with filter size 3, resulting in features 
whose size is 83(timepoints) × 96(feature dimension). The down-
sampled features were the input of the subsequent GRU layers. As for 
the GRU layer, the size of the GRU’s hidden state was set to 32. The 
GRU layer could extract the sequential information and hidden states 
of the EEG signals. The extracted hidden states were then sent to the 
average-pooling layer. The fully connected layers and SoftMax were 
finally applied to get the final prediction results. The details of the 
model architecture are shown in Figure 2. More detailed discussions 

FIGURE 1

Overview of the study. (A) After preprocessing, EEG samples in Dataset are used for optimizing the parameters of MCRNN. The leave-one-out strategy 
is used for evaluating the model performance. The severity continuum of multiple psychiatric disorders is visualized. The model interpretation is 
applied for discovering the most discriminative EEG channels. (B) Details of the MCRNN model. The model has two main modules: multi-scale 1D 
convolutional layers as filters to map the preprocessed EEG sampling into various feature spaces, GRU for aggregating sequential information. MCRNN, 
multi-scale recurrent neural network; TMS, transcranial magnetic stimulation; HDRS, Hamilton depression rating scale; and GRU, gated recurrent unit.

TABLE 1 Demographic and clinical information of the participants.

BP MDD SZ NC Statistic 
value

Gender 

(M/F)
25/47 47/91 28/42 22/25

X2 = 2.860, 

p = 0.414

Age (SD)
27.1 

(7.7)
23.5 (8.2)

25.5 

(7.5)

24.9 

(3.8)

F (3, 323) =  

2.163, p = 0.092

BRMS 

(SD)

9.28 

(2.25)

- - -

HDRS 

(SD)

- 25.56 

(5.17)

- -

PANSS 

(SD)

- - 73.7 

(12.5)

-

BP, bipolar disorder; MDD, major depressive disorder; SZ, schizophrenia; NC, normal 
control; BRMS, Bech-Rafaelsen Mania rating scale; HDRS, Hamilton depression rating scale; 
and PANSS, positive and negative syndrome scale.
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about the model architecture and hyper-parameter effects can 
be found in our previous work (18, 19).

The MCRNN model was trained by minimizing the cross-entropy 
loss using the Adam optimizer. The training batch size was set to 512. 
The learning rate started from 0.001 and decayed after each epoch 
with the decay rate of 0.01. To improve the generalization performance 
of the model and overcome overfitting, dropout (dropout rate: 0.5 for 
the convolutional layers, 0.3 for GRU module, 0.5 for fully connected 
layers), and L1,2-norm regularization (GRU kernel regular L1 = 10−4, 
L2 = 10−4) were also applied for regulating the model parameters. The 
validation samples were randomly generated from 20% of the 
preserved training samples. The training process was stopped when 
the validation loss stopped decreasing for 50 continuous epochs or 
when the maximum epochs (1,000 epochs) had been executed. The 
intermediate model which achieved the highest accuracy on the 
validation dataset was reserved for testing. The MCRNN was 
implemented using TensorFlow.2

2 https://www.tensorflow.org/

Results

Multiple-psychiatric disorder classification 
results and psychiatric spectrum 
visualization

Dataset, which consists of 327 subjects, was used for training the 
MCRNN model. Leave-one-out strategy was applied for evaluating the 
classification performance. The accuracy of the four-class classification 
achieved 68.2% (Figure 3A). The accuracy of two-classification is from 
78.6 to 91.3% (BP vs. NC = 78.6%, MDD vs. NC = 84.9%, and SZ vs. 
NC = 91.3%; Figure 3B). The confusion matrix showed that MDD and 
BP exhibit more overlaps than other psychiatric disorders. To visualize 
the severity continuum of various mental disorders, the 32-dimensional 
feature vectors for each EEG epoch, which were extracted from the 
second-last layer of MCRNN were mapped to a 2D plane using Uniform 
Manifold Approximation and Projection (UMAP). Figure 3C showed 
that the NC were closer to MDD and BP than to SZ. The severity 
“spectrum” also showed that MDD and BP were spatially close to each 
other. By combining with the Positive and Negative Syndrome Score 
(PANSS) information, we  found that the “spectrum” discovered by 
MCRNN was also associated with the disease severity within the 
schizophrenia group (Supplementary Figure S1).

Discriminative features discovery

All one-second-length EEG epochs of 327 subjects were utilized 
for optimizing the parameters of MCRNN. After optimizing the 
trained model, a feature discriminative analysis as mentioned above 
was done for capture the distinct contribution of each channel in 
classification. As shown in Figure  3D, the most discriminative 
channels were located at occipital lobe (O1, O2, and PO4), parietal 
lobe (P3, P7, and P8), and frontal lobe (Fp1, F8). Detailed information 
of the EEG electrodes can be found in Supplementary Table S1.

Discussion

Due to the heterogeneity and comorbidity in neurobiological 
abnormalities in the clinical definitions of psychiatric disorders, 
discovering objective psychiatric biomarkers is imperative for 
understanding the pathophysiology and improving treatment. In this 
study, for the first time, we  applied a deep learning-based model, 
MCRNN, to rsEEG for psychiatric-disorder classification and biomarker 
discovery. Classification accuracy ranged from 78.6 to 91.3% was 
achieved for the two-class classification, and 68.2% accuracy in four-
class classification task, demonstrating the effectiveness of deep learning 
in extracting nonlinear discriminative information from rsEEG. In 
addition, this research utilized UMAP to visualize the spectrum of 
mental disorders based on the extracted EEG biomarkers.

Diagnosis criteria based on the clinical symptoms is not easy to 
be quantified. Mental disorders with similar symptoms have different 
underlying mechanisms. Given the circumstances, deep learning is a 
viable solution due to its capability in capturing high-level nonlinear 
discriminative features. In comparison to conventional time-
frequency-based analysis, which manually extracts different frequency 
bands of rsEEG to generate functional connectivity features, the 

FIGURE 2

Architecture of MCRNN model. GRU_32, gated recurrent unit with 
32 hidden nodes; Average, the average of the outputs of all GRU 
steps is connected to the next layer; FC_32, full-connected layer 
with 32 hidden nodes; Conv_1D, 1D convolutional layer; and a@b*c, 
the number of kernels is a, the size of kernel is b*c.
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convolutional module of the MCRNN automatically learned spatial 
filters to map the original EEG into subspaces; the recurrent module 
subsequently integrated the sequential information for accurate 
classification. The four-class results demonstrated that the MCRNN 
could efficiently capture the discriminative neural activity patterns 
among psychiatric mental disorders such as MDD, BP, and SZ. The 
four-class confusion matrix and UMAP visualization results showed 
that BP and MDD had more overlaps than with other disorders. This 
phenomenon occurs because BP and MDD had many overlaps in 
clinical symptoms, and the core symptom of MDD can also be found 
in the depressive or mixed states of BP.

Deep learning-based approaches have the potential to facilitate 
psychiatric disorder diagnosis and comorbidity interpretation for two 
reasons: (1) deep learning architecture is quite flexible and suitable for 
various feature dimensions. Second, due to the gradient-descent and 
error back-propagation optimizing strategy, and (2) deep learning 
algorithms can automatically learn the manifold from the training 
data, which has been proved the right projection to the disease-related 
subspace (17, 21).

The ideal biomarkers should be  both sensitive and specific for 
identifying mental disorders. By interpreting the deep learning model, 
we found the bilateral frontal (Fp1, F8) and parietal-occipital (P7, P3, 
P8, PO4, O1, and O2) channels activity contributed most to the 
classification task. The revealed channels, which contributed most to the 
four-class classification task, coincide with the previous resting and task-
related EEG studies. For example, by studying the averaged power 
spectra between schizophrenia patients, Etevenon et al. (22) reported 

alpha peak and the mean RMS amplitude is higher over P3-O1 than 
over P4-O2 for the residual-type of schizophrenic patients, when 
compared to his matched control sub-group of high-alpha subjects, 
which presented almost symmetrical occipital alpha peaks and RMS 
amplitudes. Wix-Ramos et al. (23) found that the mean frequency is 
higher at Fp1 and Fp2  in bipolar disorder patients than in the 
control group.

There exist several potential extensions of the present study. First, 
to comprehensively understand the psychiatric spectrum, samples can 
be further accumulated to form a larger database that includes various 
disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD). 
Second, our sample needs to be further expanded to establish a large 
database to include more kinds of diseases for classification. Second, to 
further enhance the performance of the MCRNN, the demographic 
information (e.g., age, gender) should be considered.

In summary, the deep learning based MCRNN provides a novel 
solution for identifying psychiatric disorders based on resting-state 
EEG. By combining with the visualization techniques, the intrinsic 
relationships among psychiatric disorders are revealed, providing a 
new perspective for understanding the comorbidity and heterogeneity 
of psychiatric disorders.
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FIGURE 3

Classification results and model interpretation. (A) Confusion matrix of four-class classification results. (B) Confusion matrix of each two-class 
classification. (C) UMAP visualization of four-classification model and application, left: UMAP visualization of four-classification model; right: One SZ 
patient’s UMAP location (black dots) in four-classification model. Each dot represents an EEG epoch. (D) MCRNN four-class model interpretation. The 
red-circled are the most discriminative channels in the four-class classification task. UMAP, uniform manifold approximation and projection; MDD, 
major depressive disorder.
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