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Autism, a neurodevelopmental disorder, presents significant challenges for

diagnosis and classification. Despite the widespread use of neural networks in

autism classification, the interpretability of their models remains a crucial issue.

This study aims to address this concern by investigating the interpretability of

neural networks in autism classification using the deep symbolic regression and

brain network interpretative methods. Specifically, we analyze publicly available

autism fMRI data using our previously developed Deep Factor Learningmodel on a

Hibert Basis tensor (HB-DFL) method and extend the interpretative Deep Symbolic

Regression method to identify dynamic features from factor matrices, construct

brain networks from generated reference tensors, and facilitate the accurate

diagnosis of abnormal brain network activity in autism patients by clinicians. Our

experimental results show that our interpretative method e�ectively enhances

the interpretability of neural networks and identifies crucial features for autism

classification.
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1. Introduction

In the rapidly evolving landscape of deep learning, remarkable strides have been made in

recent years, evincing exceptional outcomes across an expansive array of applications, such

as medical (1–3), vehicular technology (4), image (5), and videos (6). This remarkable feat

has been accomplished through the innovative merging of more layers in neural networks,

thereby generating complex non-linearities, which have yielded unparalleled results in

perception tasks, thereby spurring the interest of researchers across the globe (1, 7). Within

the realm of autism spectrum disorder (ASD), the prospect of early detection using deep

learning technology presents an immensely auspicious prerequisite for timely intervention

and treatment. The far-reaching implications of this breakthrough are staggering and hold

the key to revolutionizing the diagnosis and management of autism, potentially unlocking

a new era of insights into this complex neurological condition. The ramifications of this

cutting-edge technology have the potential to ripple across the entire medical field, yielding

transformative applications in other areas of medicine and beyond.

Despite the impressive achievements of deep learning techniques in various applications,

the underlying rationales and conclusions remain shrouded in mystery, necessitating

the need for greater interpretability from a more detailed and concrete perspective (8).

The interpretability of neural networks can provide valuable insights into refining the

neural network design, drawing more meaningful conclusions, and deepening trust in the

neural network. Within the realm of autism classification, the credibility of the neural

network hinges upon its ability to accurately identify the essential characteristics of autism,

leading to precise classifications (9). Failure to analyze essential characteristics may lead

to decisions based on external factors, noise, or interference, which cannot meet the high

standards of medicine due to excessive false positives. Therefore, it is imperative to develop
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interpretability for neural networks to shed light on the black box

of neural networks, thereby enhancing their credibility, reliability,

and applicability in various domains (10).

At present, the interpretability of functional magnetic

resonance imaging (fMRI) data primarily relies on the elucidation

of features and classification models. In this regard, the literature

has generated noteworthy contributions in both domains, which

are summarized as follows. For example, in the early stage of model

interpretability upon fMRI data, interpretation of weight vectors

of linear models in multivariate neuroimaging was proposed to

determine the origin of cognitive functions and associated neural

processes (11). From then on, the saliency features activated by the

classifier were utilized to interpret reliable biomarkers associated

with identifying ASD (12). Subsequently, interpretability could aid

in detecting patterns in fMRI data that indicate the presence of

autism (13), leading to more accurate diagnoses and personalized

treatment plans. Recently, the integrated Gradients (IG) and

Deep LIFT techniques were utilized to identify the correlations

between brain regions that contribute most to the classification

task (14). Nowadays, a hybrid deep learning framework was

proposed to improve classification accuracy and interpretability

simultaneously (15). By unlocking the power of interpretability

in neural networks, we can harness the full potential of these

technologies and ensure that they are not only effective but also

trustworthy and ethically sound.

However, there exists a lack of research when it comes to

ascertaining the interpretability of deep neural networks for fMRI

data in autism. The present state of research is marked by

a qualitative interpretation, single attention, and limited scope,

particularly as it pertains to static aspects. However, it must be

acknowledged that there is a palpable absence of interpretability of

model dynamics in theory. The intrinsic dynamics of data and the

interpretability of models are intimately linked. Comprehending

the inherent laws and structure of data can aid in the creation

of more precise and dependable analytical models. Concurrently,

to truly grasp the driving mechanism behind the data, the model

itself must attain a certain level of interpretability. As such,

characterizing the intrinsic dynamics of data is a vital objective

in data analysis and modeling. To accomplish this goal, various

methods have been proposed, including deep learning, symbolic

regression, and deep symbolic regression. Deep learning, a

technique based on artificial neural networks, can learn the intrinsic

structure and patterns of data through multiple layers of non-

linear transformations (16) and has achieved remarkable success in

fields such as image recognition, speech recognition, and natural

language processing. Symbolic regression, a technique based on

evolutionary algorithms, can learn interpretable mathematical

expressions from data by searching the possible function space

to find the function expression that best fits the data (17). Deep

symbolic regression amalgamates the strengths of deep learning

and symbolic regression to learn interpretable mathematical

expressions from data and unveil the dynamic laws behind it. By

integrating deep learning and symbolic regression, it can effectively

circumvent overfitting and underfitting issues while enhancing the

interpretability of the model (18).

To this end, as a result of our antecedent endeavors, we

have managed to successfully extract the intrinsic non-linear

factors inherent within fMRI via fusing the deep learning and

tensor factorization, namely Deep Factor Learning model on a

Hibert Basis tensor (HB-DFL). Moreover, our team has endeavored

to construct a classifier that can attain the paramount goal

of accomplishing accurate discrimination of Attention Deficit

Hyperactivity Disorder (ADHD) (19) and Parkinson’s (20). This

study will extend our previous works on quantifying the correlation

between attention features and models, elucidating the dynamic

interpretation ofmodels to ensure precise discrimination of autism.

2. Methodology

The workflow of the entire solution is illustrated in Figure 1.

It is a complex and convoluted process that involves multiple

steps of preprocessing, including skull stripping and correction, to

ensure the accuracy of the results. The fMRI frames are then sliced

and fed into HB-DFL (20), a multi-branch convolutional neural

network, where they are mapped to a low-rank space in various

directions, generating non-linear factors. To generate a reference

tensor equivalent to the initial tensor being decomposed, a pre-

defined “constant” kernel tensor is used to perform tensor product

operations with the non-linear factors. The difference between

the reference tensor and the initial tensor being decomposed

serves as the driving force for HB-DFL backpropagation. HB-DFL

is then trained using the mean square error loss function until

the backpropagation algorithm converges. The desired non-linear

factors are then outputted, providing a powerful tool for analyzing

fMRI data (19, 20).

This section aims to shed light on the intricate dynamics and

relationships between the extracted factors involved in Section 2.1,

while providing a comprehensive interpretation of the model in

terms of the brain network (Section 2.2).

2.1. Deep symbolic regression

To better understand the intricate inner workings of complex

data, a approach has been extended from deep symbolic

regression (18). It involves combining deep learning with symbolic

regression techniques, which can yield several benefits. This

method capitalizes on the advanced high-dimensional and non-

linear processing abilities of deep learning while simultaneously

leveraging the compactness, interpretability, and generalization

properties of symbolic models. Ultimately, this integrated approach

enables efficient pattern discovery in high-dimensional spaces in

an end-to-end manner. We achieve the extension of deep symbolic

regression by adding more operators, such as differential operators

and divide operator. The architecture is illustrated in Figure 2.

Firstly, the factor matrix learned by HB-DFL must be

reorganize into a triplet format consisting of (i, j, value) tuples.

The row and column indices, represented by i and j, respectively,

specify the position of each element within the matrix, while the

value component holds the actual value of the element. Once the

matrix has been transformed into this format, it can be input into a

deep symbolic regression network.

In addition, each layer of the network contains not only regular

neurons (g = W • x) but also operators f : ID, +, -, *, /, (•)2, ex,
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FIGURE 1

The workflow of the whole solution.

FIGURE 2

Deep symbolic regression network architecture (two layers as an example).

sin(•), cos(•), relu, and differential operators: y′ etc.
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Then, design the optimization function (18):

L =
∣

∣yi − ŷi
∣

∣

2

F
+ λL∗1

2

(2)

where | • |2F denotes the Frobenius Norm. The yi and ŷi represent

the ground truth and predicted label, respectively. L∗1
2

is the
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regularization term:

L∗1
2

(w) =
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∣

∣
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1/2
|w| < a

(3)

where a is a predefined constant threshold with the same setting

following the strategies of (18) (a = 0.01).

Deep Symbolic Regression networks share the same training

technique with other deep neural networks, relying on the

familiar backpropagation algorithm. Despite this, these networks

exhibit a distinguishing trait they build a regression framework

that correlates elements of the factor feature matrix with their

corresponding subscripts. In other words, given any input row

coordinate i and column coordinate j, the network’s output

forecasts the element’s value ŷi, and the residual error between the

predicted and actual value yi determines the update of network

parameters.

Finally, based on the combination and arrangement of

operators, as well as a predetermined coefficient threshold (≥0.01),

the algorithm converges and outputs a mathematical formula in a

forward direction according to the network structure.

2.2. Brain network

The present study employs a multi-step approach to investigate

brain connectivity in disease states. Firstly, temporal information

is captured by splitting the tensor into 3D fMRI frames, and

factor matrices are obtained using the HB-DFL method previously

developed by the authors (20). Subsequently, fMRI frames are

reconstructed through a tensor product of factor matrices and

Hilbert basis tensors, which are then merged to form a 4D

reference tensor. The regions of interest (ROIs) are defined

using the automated anatomical labeling (AAL) method, and

subsequently parsed into eight distinct subnetworks based on

underlying anatomical structures, namely the Default mode

network (DMN), Auditory network (AN), Visual network (VN),

Soma movement network (SMN), Bilateral edge network (BiN),

Subcortical network (SCN), Cognitive control network (CCN),

and Cerebellum network. To quantify the connectivity between all

ROIs, an entropy-based partitioning approach is employed (21),

whereby the mutual information between two brain regions R1 and

R2 is derived from the entropy H(R1) and H(R2), and joint entropy

H(R1, R2). Based on a threshold value, a connectivity matrix of

size 116×116 is constructed, and ANCOVA analysis is used to

compare the connectivity matrices of control and disease groups

at a significance level of p-value of 0.05 and false discovery rate

(FDR) correction. The proposed approach has demonstrated the

potential to provide a more comprehensive understanding of brain

connectivity in disease states.

3. Results

The experiments in this section serve as a validation and

assessment of the interpretability of the proposed model. We first

introduce the dataset and experimental platform utilized in the

experiments (see Section 3.1). Next, the dynamics of the factor

matrix learned by HB-DFL are analyzed through deep symbolic

regression (see Section 3.2). Finally, the effectiveness of HB-DFL

is evaluated by analyzing the functional connectivity of fMRI

data reconstructed using the reference tensor generated by HB-

DFL (see Section 3.3). In the following section, we will provide a

detailed description of the autistic fMRI data required for these

experiments. The experimental procedures were conducted on a

single desktop system comprising an Intel i7 CPU clocked at

3.33GHz, an Nvidia RTX 2080Ti GPU, and 64GB RAM running

on a 64-bit Windows 7 operating system. This system served as

the primary computational platform for all experimental activities,

ensuring consistent and standardized testing conditions.

3.1. Dataset

The current investigation validates and assesses the proposed

approach by utilizing the ASD fMRI dataset publicly available from

the Kennedy Krieger Institute (KKI) site of the ABIDE II dataset.1

DPABI (22) software is utilized to preprocess both the original fMRI

data and the fMRI data produced by HB-DFL. To be more specific,

for all fMRI data, fMRIPrep generates brain voxels following

skull stripping while disregarding magnetic field inhomogeneity

correction. Later on, bbregister (FreeSurfer) is employed to align T1

images to T1W reference images. Before applying spatiotemporal

filters, FSL 5.0.9 is utilized to evaluate head motion parameters, and

ICA-AROMA is applied to remove motion or noise components.

Finally, the images are resampled into two spaces, including the

fsaverage5 space and the standard MNI152NLin2009cAsym space.

3.2. Dynamic interpretation of factor
matrices

This study employs HB-DFL to perform multidimensional

tensor factorization on fMRI frames, aiming to investigate the

underlying mechanisms of the brain. The resulting factor matrices

are randomized and divided into training (80%) and testing

(20%) sets. The Deep Symbolic Regression method is used to

learn the formula of the factor matrices in the training set, and

the performance is evaluated based on the testing set. Table 1

presents the mathematical formulas and verification accuracy

of different factor matrices learned from various groups. The

study’s findings show that most of the mathematical formulas

derived from the data are straightforward and have an efficacy

rate exceeding 90%, providing evidence of the effectiveness of

the proposed method. Overall, this approach using HB-DFL

allows for the dynamic interpretation of autism fMRI data

with multidimensional attributes and enables the investigation

of the underlying mechanisms of the brain, contributing to the

advancement of research in this area. The results presented in this

study underscore the essentiality of this approach for extracting

meaningful information from fMRI data.

1 http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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TABLE 1 Mathematical formulas and verification accuracy of di�erent factor matrices learned from di�erent groups (Autism group and Normal control

group) in KKI fMRI datasets, where y′ represents the first-order di�erential.

Mode Group Equation Accuracy (%)

Coronal plane
Autism 0.14cos(sin(log| − 0.165cos( X1

0.05
)|)− 0.11X2) 91.3

Normal 1
√

|(
relu(sin(0.624− 1

X2
))

0.568 )+X1−5.29|
90.61

Sagittal plane
Autism cos(

√

|27.709+ relu(sin(X1 + 1
cos(

√
|4.71X2 |) ))|) 93.41

Normal cos(e0.017log(|X1X2−4.2X2 |)) 92.15

Axis plane
Autism 0.431y’-0.055 cos( 1

X1e
cos 1

X1

+ X2) 94.25

Normal sin(cos(17.65
√

|log|X1||)sin(X2)) 91.74

FIGURE 3

Di�erences in functional connectivity between di�erent brain regions and their associated subnetworks. (A) A circular graph depicting di�erences in

functional connectivity. (B) A connectivity matrix showing the partitioning of subnetworks. (C) A functional connectivity map of the cerebral cortex.

The original tensor X = G ×1 f (A) ×2 f (S) ×3 f (C), which

is based on the HB-DFL multidimensional tensor factorization

theory (20), can be understood as a composite function comprising

factor matrices from each dimension and the core tensor G.

By obtaining the dynamics of the factor matrices f (A), f (S),

and f (C) when G is known, the composite function can be

utilized for the dynamic interpretation of Autism fMRI data with

multidimensional attributes. The direct extraction of mathematical

formulas from fMRI frames yields a maximum verification

accuracy of only 70% with highly complex formulas, highlighting

the essentiality of factor decomposition via the HB-DFL utilized in

this study.

3.3. Brain network of reference tensor

The utilization of HB-DFL methodology in this study allowed

for the analysis of brain functional connectivity networks using

a substantial number of reference tensors reconstructed from

the KKI dataset. The resulting brain network demonstrated

significant functional connectivity and was further analyzed.

Figure 3A presents the functional connectivity of subnetworks and

the differential connectivity of corresponding brain regions, which

revealed noteworthy findings. Additionally, connectivity matrices

of subnetworks (Figure 3B) and cortical brain regions (Figure 3C)

provided insight into significant statistical differences in functional
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connectivity between different groups of regions of interest (ROIs).

These results provide valuable information on the functional

connectivity of the brain, and contribute to the advancement of

research in this area.

The findings of the present study replicate those of three

prior investigations. Insufficient activation was observed in the

DMN (23) and VN (24) of individuals with ASD, in terms of

functional connectivity within the network. Enhanced functional

connectivity was observed in individuals with ASD between the

DMN and VN (25), DMN and AN (26), and DMN and SMN (27),

in terms of functional connectivity between networks. Additionally,

enhanced functionality was observed between the angular gyrus

and insula (28) at the functional brain region level. These results

illustrate the effectiveness of HB-DFL in compressive sensing,

thereby maximizing information extraction.

4. Discussions and conclusions

Autism, a neurodevelopmental disorder characterized by social

interaction and communication difficulties, as well as repetitive and

stereotyped behaviors, is often studied using fMRI to investigate

brain activity patterns. However, the complexity of fMRI data

presents significant challenges, such as high dimensionality, noise,

and redundancy, which make data interpretation and analysis

difficult. To address these challenges, this paper proposes a model

based on HB-DFL and deep symbolic regression techniques, which

reduces the dimensionality of fMRI data and explains its dynamics.

By representing high-dimensional data as a combination of low-

dimensional latent factors, the HB-DFL can provide interpretable

and understandable factors, each corresponding to a specific

pattern of activity in a group of neurons, which can help us

understand changes in brain activity in individuals with autism.

The factormatrix, the core component of theHB-DFL, contains

the low-dimensional representation of brain activity for each

participant and can be interpreted as specific brain networks or

functional patterns. The mathematical formula of the factor matrix

can thus help us identify and explain changes and abnormalities in

brain activity in individuals with autism. However, as a case study,

the validation of a single dataset is insufficient to demonstrate

the generalizability of the method. To address this, the proposed

method will be applied to a wider range of datasets, and cross-

validation between different datasets will be performed in the future

to demonstrate its robustness.

In conclusion, the proposed model based on deep non-linear

decomposition provides a valuable approach to understanding

patterns of brain activity in individuals with autism. The

interpretability of the model through the mathematical formula of

the factormatrix can help us better understand the pathophysiology

of autism, and may contribute to the development of future

treatment and intervention strategies.
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