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Suicide is a leading cause of death that demands cross-disciplinary research 
efforts to develop and deploy suicide risk screening tools. Such tools, partly 
informed by influential suicide theories, can help identify individuals at the 
greatest risk of suicide and should be  able to predict the transition from 
suicidal thoughts to suicide attempts. Advances in artificial intelligence have 
revolutionized the development of suicide screening tools and suicide risk 
detection systems. Thus, various types of AI systems, including text-based 
systems, have been proposed to identify individuals at risk of suicide. Although 
these systems have shown acceptable performance, most of them have not 
incorporated suicide theories in their design. Furthermore, directly applying 
suicide theories may be  difficult because of the diversity and complexity 
of these theories. To address these challenges, we  propose an approach 
to develop speech- and language-based suicide risk detection systems. 
We  highlight the promise of establishing a benchmark textual and vocal 
dataset using a standardized speech and language assessment procedure, and 
research designs that distinguish between the risk factors for suicide attempt 
above and beyond those for suicidal ideation alone. The benchmark dataset 
could be  used to develop trustworthy machine learning or deep learning-
based suicide risk detection systems, ultimately constructing a foundation for 
vocal and textual-based suicide risk detection systems.
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1. Introduction

Globally, suicide is a leading cause of death, especially among youth (1). Hence, it is 
essential to identify individuals at risk of suicide. Traditional tools for assessment of 
suicide risk have focused on identifying suicide risk factors such as psychiatric diagnoses, 
agitation, and suicidal behavior (2), but the ability of these tools to predict suicidal 
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thoughts and behaviors using isolated suicide risk factors is only 
marginally better than chance (3). Thus, the use of artificial 
intelligence (AI) to develop accurate suicide risk assessment tools 
has been suggested (4–8). So far, several AI systems have been 
implemented to detect disorder-specific suicidal ideations in 
people with depression (9), or schizophrenia (10), while other AI 
systems have aimed to detect suicidality among social media 
users (11, 12). Indeed, many of these AI systems have been 
developed using either machine learning (ML) (13–16) or deep 
learning (DL) algorithms (17) trained on a variety of linguistic 
and acoustic features (18).

Although AI systems, particularly text-based suicide risk 
detection systems, have demonstrated encouraging performance, 
their routine integration into healthcare settings requires further 
evaluation and validation. The use of these text-based systems 
has been hampered by training data heterogeneity, inconsistent 
quality evaluation, the lack of comparison to standardized clinical 
procedures, and the absence of trustworthiness assessments. One 
primary step to overcome these difficulties is to create a 
benchmark dataset from vocal and textual samples which can be 
collected based on a standardized and systematic manner. Such 
datasets encompass observed and latent linguistic and acoustic 
features that might explicitly and implicitly be linked to relevant 
suicide-related outcomes. Using the features to train ML and DL 
algorithms may lead to developing vocal and textual systems that 
have practical utility for identifying individuals at risk of suicide. 
However, to our knowledge, such datasets are not currently 
available. Therefore, in this paper, we propose an approach for 
creating vocal and textual datasets from vocal samples of 
individuals at risk of suicide based on having a history of suicidal 
ideation alone versus both suicidal ideation and suicide attempt, 
which will permit the identification of risk factors unique to 
suicide attempt. We also briefly review text-based systems 
developed for detecting suicide risk and relevant suicide theories 
that have promise to inform research designs intended to identify 
individuals at risk for transitioning from suicide ideation to 
attempt. This approach can inform future research that capitalizes 
on current advances in AI research to improve language and 
speech-based suicide risk detection systems.

2. Text-based systems for suicide risk 
detection

Recent research (19, 20) has highlighted the potential of suicide 
risk detection systems developed using ML and DL algorithms 
trained on textual data extracted from social media (21), electronic 
health records (22), and therapy transcripts (23). Several studies 
have used textual data from Twitter to identify patients with suicidal 
ideation (24) or intent (25). These systems use natural language 
processing (NLP) techniques for discovering certain textual features 
or identifying users who follow tweets related to suicide (26). For 
instance, some systems categorize suicide-related phrases (e.g., 
cannot go on, talk to someone, overdose) into distinct classes (27) 
while others focus on posts about suicide-related Twitter events 
(28). Other studies suggest that textual parts of posts on Facebook 
and Instagram (14, 29–31) could be useful to develop text-based 
suicide risk detection systems.

Indeed Facebook developed an ML-based suicide risk detection 
system to detect users who might be at risk of suicide1, and they have 
built a page for users to report content related to suicide2. Ophir et al. (32) 
proposed two text-based suicide risk detection systems using DL 
algorithms–trained using 1,024-dimensional word embeddings obtained 
by Elmo–that represent effective applications of social media content. 
They found that the system incorporating information about personality, 
psychosocial factors, and psychiatric diagnosis with Facebook text 
predicted suicide risk better than a system reliant on text alone.

Together, these studies have demonstrated the preliminary 
utility of analyzing textual data from social media platforms to 
develop suicide screening tools, which have better predictive ability 
than traditional suicide screening tools (33). Furthermore, the 
popularity of social media among adolescents and young adults (1) 
ensures the availability of textual data for developing these systems. 
However, deploying such systems could transgress privacy, a well-
elaborated issue in studies focused on using AI for social media 
platforms (34, 35). Moreover, integrating these systems into suicide 
care settings remains challenging for many reasons. First, most of 
the textual data sets were collected from posts of users who might 
not have been recruited based on having suicidal ideation or a 
history of attempts (33). Second, many textual datasets lack 
demographic, racial and geographic diversity; Third, Analyzing 
social media posts can cause privacy issues; Finally, any textual or 
vocal benchmark datasets have not been created to evaluate and 
validate the performance of the systems. Furthermore, it is essential 
to understand sources of bias inherent to social media posts–
including the individuals and communities who are incidentally 
excluded—as this limits the trustworthiness of these systems and 
makes them unsuitable systems to be  scaled and deployed into 
suicide care settings. To increase the utility of these systems and the 
public’s trust in their potential applications, standardized methods 
to acquire text and speech data may be helpful as an adjunct to 
existing research using social media.

3. A standardized method to develop 
vocal and textual systems for suicide 
risk detection

We propose a novel approach to develop speech and language 
systems for detecting suicide risk with the potential to enhance the 
burgeoning literature on suicide risk using textual materials (e.g., 
text from social media posts and electronic health records). Our 
approach uses a standardized procedure to acquire spoken 
language data and create a benchmark dataset to establish a pilot 
speech and language-based suicide detection system grounded in 
the ideation-to-action framework of suicide. The benchmark 
dataset could be  used to develop ML and DL classifiers to 
differentiate individuals’ vocal and textual samples based on the 
endorsement of current and/or historical suicide phenomena (e.g., 
suicidal ideation, suicide attempt) or elevations in suicide-related 
constructs (e.g., suicide capability).

1 https://about.fb.com/news/2018/09/inside-feed-suicide-prevention-and-ai/

2 https://www.facebook.com/help/contact/305410456169423
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3.1. Creating speech and language datasets

To create vocal samples and establish a benchmark dataset from 
vocal and textual samples, participants may be recruited from diverse 
ethnic, racial, and socioeconomic statuses in accordance with national 
census data.

Participants would be  instructed to generate speech in 
response to various types of language tasks, including the Picture 
Description Task (PDT; the PDT evaluates semantic knowledge 
(36) and assesses structural language skills (37)), Story Recall 
Task (38) (SRT; the SRT evaluates verbal short-term memory and 
is used to detect language difficulties), and/or Verbal Fluency 
Task (VFT (39); the VFT assesses language and executive 
functioning abilities). As a starting point, we will suggest using 
the “Cookie Theft Picture” (CTP),3 which is one of the popular 
pictures in the PDT of and other standardized pictures. Thus, 
monologue speeches from participants can be collected.

We suggest the CTP as a starting point for generating this 
dataset for several reasons. First, the CTP is one of the components 
of the Boston Diagnostic Aphasia Examination (40), which is 
widely used to assess speech and language functioning. There is 
also precedence for using the CTP for similar purposes: speech-
language pathologists and other health professionals (e.g., 
neurologists, neuropsychologists) have employed the CTP to 
assess speech and language deficits associated with dementia and 
Alzheimer’s disease (41). Second, the DementiaBank dataset, 
prepared by researchers at the University of Pittsburgh’s Alzheimer 
Research Program, is a set of textual and vocal data samples 
obtained from older adults while they completed the picture 
description task, including the CTP description task. It has been 
a benchmark dataset for developing AI-powered speech and 
language assessments for dementia (42–44) and cognitive 
impairment detection (45). Thus, the Dementiabank dataset could 
be used as a pre-trained dataset.

Crucially, to complement the set of our vocal and textual data 
obtained from the CTP, researchers may be encouraged to collect 
more vocal data samples from a novel set of standardized pictures 
with greater relevance to suicide. This could include pictures from 
image databases such as the International Affective Picture System 
(46), as well as images that are nonspecific, but commonly used in 
clinical practice, such as the Cat Rescue (47), the Picnic Scene (48), 
and the Divided Attention pictures (49). Drawing from the ideation-
to-action framework suicide (described below), it may be fruitful to 
include pictorial representations of interpersonal illustrations 
depicting perceived burdensomeness and thwarted belongingness 
that could elicit sentences or phrases pertinent to theories of the 
suicidal ideation. Relatedly, depictions of visual stimuli that invoke 
fear of death or suicide capability could help characterize content 

3 The CTP shows a woman with two children, a boy and a girl, in a kitchen. 

While the woman is drying dishes next to an overflowing sink, two children 

are attempting to get cookies from a jar stored in the upper cupboard of the 

kitchen. The boy stands on an unstable stool with his hands outstretched to 

the jar. The girl stands beside the stool and also has a hand outstretched, ready 

to receive cookies from the boy.

related to the transition from suicidal thoughts to suicide attempts. 
Potential images could include the following:

 • A closeup image of someone hunched over, face lit by a 
computer monitor, tears falling onto their hands that rest on 
a keyboard.

 • A wide-perspective shot of someone sitting under the shade of a 
tree on a sunny day, with a sweater hood pulled over their head, 
viewing a nearby group that is picnicking and laughing.

 • A panorama of someone navigating an immense, dark 
hedge maze.

 • A crime scene of a veiled corpse featuring a tall adjacent building.

Broadly, the set of pictures might reflect gradations in suicide-
related phenomena (e.g., negative affect, thoughts of death, 
hopelessness, suicide capability, escape, interpersonal dilemmas). 
In tandem with nuanced information about current suicidality 
and historical suicide attempt (e.g., suicide attempt recency, 
ideation subtype), the structural and content-related differences 
elicited by pictures such as these might provide predictive value 
beyond that of mere categories (e.g., no history of suicidality, 
current suicidal ideation, current suicidal ideation with past 
suicide attempt).

3.2. Ideation-to-action framework of 
suicide

The ideation-to-action framework of suicide is an architecture for 
risk factors associated with suicide (50). Indeed, it undergirds some of 
the most widely cited and influential theories for suicide, including the 
IPT (51, 52);, Integrated Motivational-Volitional Model (53), 3-Step 
Theory (54), and Fluid Vulnerability Theory (55). These theories 
emphasize the importance of separately considering the so-called 
ideation and action of suicide by distinguishing factors contributing to 
the genesis of suicidal ideation from the transition to suicide attempt. 
Although the risk factors vary between theories (52, 54, 56), the genesis 
of suicidal ideation is often attributable to negative thoughts about self 
and others and/or hopelessness about the mutability of these cognitions; 
the transition from thoughts to action tends to involve an acquisition of 
capability for suicide in which the probability of one acting on their 
suicidal thoughts increases with ability.

Recently, the IPT has been reconceptualized in the Automatic and 
Controlled Antecedents of Suicidal Ideation (ACASIA) (55, 57); 
model. The authors of the ACASIA model employed a dual-process 
account to accommodate the often-eschewed automatic cognitions 
and associations in suicidality that are overshadowed by deliberative 
cognitive processes. Their model echoes some sentiments of 
Dombrovski and Hallquist (58) who asserted that automatic Pavlovian 
learning processes explain self-destructive responses to stress better 
than deliberative decision-making. In ACASIA, automatic processes 
co-occur with suicide motives and opportunity factors in the 
categories of close others, self, future, and capability (57). Given the 
reliance on reflective self-report information in most text-based 
suicide detection systems, grounding our approach in theories of 
suicide might complement existing methods for detecting risk factors, 
even when the text is not generated concerning prompts evocative 
of suicide.
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3.3. ML or DL algorithms and features

Extracting features could be one of the primary steps in 
developing ML or DL -based suicide detection system. There are 
several types of features pertinent to language and vocal data. Python 
libraries such librosa and NLTK can be  used to extract various 
linguistic features, including lexical (e.g., total number of words, 
Brunet’s Index, and Honor’s Statistic (59)), syntactic, semantic, and 
pragmatic features (60).

In terms of transcript content, it may be promising to extract 
words that map to various processes described in suicide theories. 
For instance, words like burden, alone, and hopeless may relate 
most to the risk of developing suicidal ideation while unafraid and 
painless phrases may be  more strongly related to the risk of 
transitioning from suicidal ideation to suicide attempt. Sentiment 
analysis of content such as that expressing apology or feelings such 
as shame and guilt (61) could also be valuable. Additionally, useful 
acoustic features that are not explicitly related to transcript content 
can be extracted from participants’ voices. This could include voice 
activity-related features, silence-related features, and prosodic 
features, and it would be guided by the nascent body of research on 
acoustic features in suicide (60).

We propose the use of feature selection methods, such as variance 
threshold and minimal redundancy maximal relevance criterion, to 
select the most informative features. Collected features will be used to 
train ML or DL algorithms, serving as the basis of a pilot suicide risk 
detection system.

We suggest the use of support vector machines (SVMs), with 
linear or Gaussian kernels, as supervised ML algorithms to 
develop baseline models for evaluating our datasets. We suggest 
using SVMs for several reasons: (1) SVM-based classifiers are 
robust and powerful (62); (2) SVMs are popular traditional MLs 
for developing multimodal classifiers (62); (3) SVMs are superior 
to Naive Bayes and Radial Basis Function network classifiers for 
medical data sets (63); and (4) SVMs have been successfully used 
as learning algorithms of several suicide risk detection systems 
(e.g., (11, 17)). However, to develop accurate systems that can 
effectively identify individuals at risk of suicide, it will be essential 
to explore and compare the performance of other ML or DL 
algorithms trained on similar sets of linguistic and acoustic 
features extracted from our collected vocal and textual data.

4. Discussion

Voice is a rich and largely untapped source of data for 
identifying both linguistic and acoustic markers associated with 
suicidal ideation and suicide-relevant constructs. This paper 
describes a proposal to create a vocal and textual benchmark 
dataset that (a) has potential to standardize AI-based speech and 
language assessments; (b) encompasses observable and latent 
linguistic and acoustic features associated with varying suicide risk 
factors; and (c) can be used to train ML or DL algorithms, which 
could serve as the basis of a pilot automatic suicide risk detection 
system, offering a potentially expedient and automatic means for 
identifying individuals at risk of suicide. At this time, research in 
this area is limited by the heterogeneity of textual data samples 
mostly collected from social media platforms. The approach 

we described intends to resolve this limitation through creating 
textual and vocal data samples in response to the CTP and a set of 
standardized pictures. Then, speech and language-based suicide 
risk detection systems can be developed on the basis of ML and DL 
algorithms, trained by a set of linguistic and acoustic features 
extracted from the datasets.

The benchmark datasets could be  used to improve the 
performance of current developed speech- and language-based 
suicide risk detection systems. We  particularly encourage the 
development of suicide risk detection systems that combine 
suicide theories with supervised learning approaches may be 
developed using these datasets. Additionally, the feature sets may 
have utility for comparing clinical groups per the ideation-to-
action framework. It may also validate theoretical advancements, 
such as the incorporation of automatic cognitive associations in 
ACASIA (57). Although data-driven unsupervised learning 
approaches may also have utility for less studied high-risk 
populations, we expect these methods will be initially less helpful 
for encouraging piloting in clinical settings. Indeed, the potentially 
automated nature of suicide risk detection systems offers flexible 
and powerful options for use in primary care settings. At this 
stage, such systems may flag individuals at risk, but are not yet 
positioned to replace clinician judgment. To use risk detection 
systems as adjunctive clinical tools, extensive empirical validation 
and refinement will be required in a variety of care settings. In 
particular, it would be  essential to develop trustworthy and 
explainable suicide risk detection systems which can be  easily 
employed by general practitioners.

Although current suicide risk detection systems can mitigate 
the shortcomings of clinical tools in detecting suicide risk, 
significant enhancements may be  required to use them in care 
settings. Our suggested approach can be lead to develop a suicide 
risk detection system with the great potential to mitigate the 
weaknesses of clinical tools in identifying pre-crisis suicide risk as 
well as the limited personnel resources in mental health care. Once 
standardized datasets are made available, it might encourage other 
research groups to explore whether language and vocal content 
generated in typical intake/follow-ups aligns with our findings. 
Ultimately, we expect this will lead to an uptick in the development 
of trustworthy AI-based suicide risk detection systems.

In conclusion, the feature set derived from our proposed datasets, 
which contains both traditional and nontraditional linguistic and 
acoustic features of suicide risk, could contribute to the development 
and deployment of multi-dimensional classifiers that not only identify 
individuals who are at risk of suicide but could also discriminate 
people with suicidal ideation alone from those who have attempted 
suicide. By implementing this proposed approach in samples of 
individuals at risk for suicide along multiple risk dimensions, vocal 
and textual benchmark datasets could be established, which could 
address current challenges in developing accurate, reliable, and 
trustworthy suicide risk detection systems.
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