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Perturbation of 3D nuclear
architecture, epigenomic
dysregulation and aging, and
cannabinoid synaptopathy
reconfigures conceptualization of
cannabinoid pathophysiology:
part 1–aging and epigenomics

Albert Stuart Reece1,2* and Gary Kenneth Hulse1,2

1Division of Psychiatry, University of Western Australia, Crawley, WA, Australia, 2School of Medical and

Health Sciences, Edith Cowan University, Joondalup, WA, Australia

Much recent attention has been directed toward the spatial organization of

the cell nucleus and the manner in which three-dimensional topologically

associated domains and transcription factories are epigenetically coordinated to

precisely bring enhancers into close proximity with promoters to control gene

expression. Twenty lines of evidence robustly implicate cannabinoid exposure

with accelerated organismal and cellular aging. Aging has recently been shown

to be caused by increased DNA breaks. These breaks rearrange and maldistribute

the epigenomic machinery to weaken and reverse cellular di�erentiation, cause

genome-wide DNA demethylation, reduce gene transcription, and lead to the

inhibition of developmental pathways, which contribute to the progressive loss of

function and chronic immune stimulation that characterize cellular aging. Both

cell lineage-defining superenhancers and the superanchors that control them

are weakened. Cannabis exposure phenocopies the elements of this process

and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein

and histone synthesis, interferes with the epigenomic machinery controlling both

DNA and histone modifications, induces general DNA hypomethylation, and

epigenomically disrupts both the critical boundary elements and the cohesin

motors that create chromatin loops. This pattern of widespread interference

with developmental programs and relative cellular dedi�erentiation (which

is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate

metabolism (which locks in the stem cell-like hyper-replicative state) and

cannabinoid immune stimulation (which perpetuates and increases aging and

senescence programs, DNA damage, DNA hypomethylation, genomic instability,

and oncogenesis), which together account for the diverse pattern of teratologic

and carcinogenic outcomes reported in recent large epidemiologic studies in

Europe, the USA, and elsewhere. It also accounts for the prominent aging

phenotype observed clinically in long-term cannabis use disorder and the

20 characteristics of aging that it manifests. Increasing daily cannabis use,

increasing use in pregnancy, and exponential dose-response e�ects heighten

the epidemiologic and clinical urgency of these findings. Together, these

findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent

features of cannabis dependence and strongly indicate coordinated multiomics
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investigations of cannabinoid genome-epigenome-transcriptome-metabolome,

chromatin conformation, and 3D nuclear architecture. Considering the

well-established exponential dose-response relationships, the diversity of

cannabinoids, and the multigenerational nature of the implications, great caution

is warranted in community cannabinoid penetration.

KEYWORDS

cannabis, cannabinoid, genotoxicity, epigenotoxicity, transgenerational inheritance

1. Introduction

From recent investigations, four important overarching themes
have emerged, which assist and direct an updated understanding of
cannabinoid pathophysiology. In particular, the integrated multi-
channel study of the genome, epigenome, transcriptome, proteome,
metabolome, and numerous histone modifications has provided

Abbreviations: ATP, Adenosine triphosphate; cAMP, Cyclin adenosine

monophosphate; CB1R, Cannabinoid type 1 receptor; CB2R, Cannabinoid

type 2 receptor; CCL2, Chemokine motif ligand 2; CCL20, Chemokine motif

ligand 20; CDKN1A, Cyclin-dependent kinase 1A; CRLF2, Cytokine receptor-

like factor 2; CTCF, CCCTF-binding factor; DDR, DNA damage repair;

DNMT, DNA methyltransferases; DMG, Di�erentially methylated genes; DSB,

Double-stranded break in DNA; ECS, Endocannabinoid system; GABAAR,

Gamma-aminobutyric acid A receptor; GATA3, GATA-binding protein 3;

GPCR, G-protein coupled receptor; GPR, G-protein receptor; H3K27,

Histone 3 lysine 27; H3K4, Histone 3 lysine 4; H3K4me3, Histone 3 lysine

4 trimethylation; H3K56, Histone 3 lysine 56; H3R2me2a, Histone 3 arginine

2 demethylation; HDAC, Histone deacetylases; HDAC1, Histone deacetylase

1; 5HT3R, 5-hydroxytryptamine receptor; IAP, Inhibitors of apoptosis; ICE,

Inducible changes to the epigenome; IGF2BP2, Insulin-like growth factor 2

binding partner 2; JAK2, Janus kinase 2; KAT, Lysine acetyl transferases; KDM,

Lysine demethylase; KMT, Lysinemethyltransferase; LINE1, Long interspersed

nuclear elements 1; METTL16, Methyltransferase 16, N6-methyladenosine;

MFSD2A, MFSD2 lysolipid transporter A, lysophospholipid; NMDAR, N-

methyl D-aspartate receptor; OPC, Oligodendroglial progenitor cells;

PARP1, Poly (ADP-ribose) polymerase−1; PPARα, Peroxisome proliferator

activator potential receptor α; PPARγ, Peroxisome proliferator activator

potential receptor γ; PRMT, Protein arginine methyltransferase 6; RAD51,

Recombinase/recombination protein A/RAD51 (S. cerevisiae) homolog (E coli

RecA homolog); SIRT, Silencer of information transfer; Sirtuins, Silencer of

information transfer /histone/lysine deacetylases; SMARCA, SWI/SNF-related,

matrix-associated, actin-dependent regulator of chromatin, subfamily A;

SMARCA4, SWI/SNF-related, matrix-associated, actin-dependent regulator

of chromatin, subfamily A, Member 4; SMC, Structural maintenance of

chromosomes; STAG, Stromal antigen. STAG1 is also called SCC1. STAG2 is

also called SCC3B. STAG3 is also called SCC3H3.; STAT5, Signal transducer

and activator of transcription 5; TCA, Tricarboxylic acid cycle, also known

as citric acid cycle and Krebs cycle; TET, Ten eleven translocation DNA

methylcytosine dioxygenase; TRPA1, Transient receptor potential ankyrin 1;

TRPV1, Transient receptor potential cation channel V member 1; TRPV4,

Transient receptor potential cation channel V member 4; TRPV5, Transient

receptor potential cation channel V member 5; UHRF1, Ubiquitin-like with

PHD and ring finger domains 1; VDAC, Voltage-dependent anion selective

channel 1.

unprecedented insights into the control of gene transcription and
cellular behavior both in normal growth and development and in
numerous diseases (1).

First, by introducing DNA breaks (2–8) and inducing global
DNA hypomethylation (9–13), cannabis directly drives cellular
and organismal aging, including epigenomic DNAmethylation age
(14), increases cardiovascular–organismal age (15), and results in
the increased incidence of acute and chronic physical and mental
diseases, including protean psychiatric disorders (16).

Second, by disrupting the basic epigenomic machinery of
DNA methylation (9–13, 17–20), as well as histone methylation
and acetylation (21, 22), the coordination between the histone
code and the methylome (11), and the machinery for nucleosome
repositioning (11), cannabinoids change the way the cell nucleus
processes information, including gene transcription. This includes
perturbation of the chromatin looping structures from which genes
are transcribed by altering the CTCF (CCCTC-binding factor)
boundary elements that delimit and define the loops and by
disrupting the cohesin motors that drive and form DNA loops (11).
Together, these changes significantly alter the nuclear structure
and enhancer–promoter interactions at an ultrafine resolution and
can thereby prime cells for malignant transformation. Such actions
on germ cells (eggs and sperm) lead to congenital anomalies and
conceptus aging.

Third, there is growing evidence that multiomics interactions
between the metabolome, the microbiome, the immunome,
the genome, and the epigenome are all interdependent and
interrelated and cannot be properly understood without
reference to one another. As cannabis is known to disrupt
each level of this intercalated cascade, this must be borne
in mind when considering its plethoric presentations. For
example, it is known that the metabolome controls the
epigenome in many ways (23, 24) and can reset the lineage
determination set point of the cell away from full differentiation
and toward dedifferentiation and premalignant preparedness
for transformation (the Warburg effect) (25). Cannabis disrupts
the post-translational tubulin code at several points (11, 26),
inducing chromosomal missegregation, micronucleus formation
(27–32), cell transformation, neurodevelopmental and congenital
defects, and fetal loss (27, 33–37). The microbiome signals via the
metabolome and the immunome (38–40). Similarly, the glycome
bidirectionally interacts with the metabolome and the remaining
cellular machinery and modulates the epigenome, the immunome,
the microbiome, and aging (41–52).

Mitochondria are a major signaling hub within the cell (23,
24). The well-known inhibitory activities of cannabinoids on
many mitochondrial functions (53–66) imply mitonuclear stress
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signaling to the nucleus (23, 24), endoplasmic stress response
induction (67–72), and reduced supply of energy and metabolomic
substrates to the epigenomic machinery (23, 24). Mitochondrial
inhibition also increases cellular lactate (73, 74), which, in
turn, increases the lactylation of major rate-limiting enzymes in
glycolysis, oxidative phosphorylation, and related pathways (73,
74), alters the epigenomic structure and again dedifferentiates the
cell, and primes it toward malignant pretransformation (73, 74).
Increased shunting of glucose through the pentose phosphate
pathway changes the synthesis of glycan groups for local and
intercellular use (75) and can thus change the local tissue and
tumor microenvironment.

Fourthly, the physiologic function of endocannabinoids under
normal conditions is to signal the end of a synaptic trafficking
event retrogradely from the post-synaptic membrane to the pre-
synaptic membrane (76–78). It is well established that synapse
formation and growth are activity-dependent and that much of
the computation occurs based on the structure, size, strength,
and chemical nature of the synapse (79–87), that is, the locus of
many computations, including memory, is primarily synaptic (79–
87). Flooding the synapse with xenophytocannabinoids, especially
chronically, clearly grossly disrupts and perturbs this delicate
process, thereby deranging the basic unit of brain computation
(76, 88–90) and inducing downregulation of CB1Rs1 in the ventral
striatum of the midbrain (91, 92). This cannabinoid synaptopathy
is exacerbated by the usually pro-inflammatory actions of many
cannabinoids on brain astrocytes and microglia (93–102), as well
as the powerful negative effect of cannabinoids on oligodendroglial
progenitor cells (OPCs). These cells create the myelin sheaths that
nourish and preserve axons and white matter tracts. Additionally,
the negative effects of cannabinoids on brain neuronogenesis (103–
106) contribute to the exacerbation. These effects have been found
to accumulate and cause a high degree of cortical white matter
disconnection in chronic cannabis users (107).

1.1. Cannabinoid signaling

The complexity of the endocannabinoid system (ECS) in terms
of its two main endogenous ligands and their synthesizing and
metabolizing enzymes, as well as the many lipid molecules that
interact with the ECS, has been described by many authors.
However, for present purposes, it is important to appreciate
that cannabinoid signals are neither simple nor binary, nor do
they occur only at one locus. Endogenous cannabinoid receptors
include but are not limited to the following: CB1R and CB2R2,
vanilloid receptors TRPA1, TRPV1, TRPV4, and TRPV53 (108,
109), nuclear receptors PPARα and PPARγ4, and GPCR119, GPR18
and GPR555 receptors (110–112), the smoothened receptor in the
sonic hedgehog pathway (11, 108, 111, 113–119), NMDAR6 (109),

1 CB1R, Cannabinoid type 1 receptor.

2 CB2R, Cannabinoid type 2 receptor.

3 TRPV, Transient receptor potential voltage-gated channels.

4 PPAR, Peroxisome proliferator activator receptor.

5 GPCR, G-protein coupled receptor; GPR, G-protein receptor.

6 NMDAR, N-methyl-D-aspartate receptor.

GABAARs,7 glycine receptors, 5HT3Rs8 (120), adenosine receptors
(121), voltage-dependent anion channels (VDAC1–L-, N-, and
P/Q-type calcium channels) (109, 122), and potentially others (112,
123). CB1Rs are located on the mitochondrial outer membrane
and in the endoplasmic reticulum (66, 124–127). Between the
inner and outer mitochondrial membranes and the intermembrane
space, mitochondria possess all of the signaling machinery of the
endocannabinoid system (66, 124–127). PPAR receptors are located
in the cell nucleus (128–135). CB1R and CB2R activation leads to
increased calcium fluxes into cells, increased potassium efflux from
cells, and reduced cellular cAMP levels, which lead to the retrograde
suppression of activity in the excitatory and inhibitory pre-synaptic
nerve terminal (121).

Cannabinoid receptors have been observed to heterodimerize
with opioid, dopamine, adrenergic, adenosine, serotonin, and
angiotensin receptor type 2, as well as sonic hedgehog receptors (76,
77, 89–91, 108, 121, 136). CB1Rs also heterodimerize with tyrosine
kinase receptors of the neurotrophin and epidermal growth factor
receptor classes, among others (121). Indeed, heterodimerization
between CB1R and CB2R has also been identified (121, 137). In
most cases, the activities of these heterodimeric receptors are not
well studied (121).

In this first paper, we aim to set out a narrative conceptual
review of how and why gene expression is altered in cannabis
use disorder and in the manner in which this disordered
chromatin architecture is likely to underlie the findings of
modern epidemiologic studies of cannabinoid teratogenesis and
carcinogenesis in large nationwide and continental populations.
Therefore, our perspective is both gene-centric and focused on
a chromatin conformation-based analysis. Therefore, we first
consider aging and then move on to epigenomics and the many
ways in which these two major areas interact with each other.

2. Aging–epigenomic aging

2.1. Twenty stigmata of aging in cannabis
dependence

Fifteen hallmarks of aging have been described in cannabis
dependence, including (1) increased acute and chronic physical
and mental illness (138), (2) acceleration of cardiovascular
and organismal age (15), (3) endocrine disruption, particularly
of the hypothalamo-pituitary-gonadal axis (139, 140), (4)
mitochondrial inhibition (141–144), (5) DNA hypomethylation
and advanced epigenetic age (14, 145–147), (6) neuroinflammation
accompanying cannabis-associated mental illnesses (148–173),
(7) cirrhosis (174–176), (8) degeneration of oocytes and sperm
(177, 178), (9) increased carcinogenesis (28, 179–190), (10)
heightened rates of many congenital anomalies and teratologic
syndromes (27–29, 191–207), (11) telomerase inhibition (11, 208),
(12) chromosomal damage (2, 4, 8, 178), (13) reduction in
histones (5, 21, 26, 209–211), (14) immunostimulation (93, 94, 99–
101, 212–217), and (15) elevated mortality rates in long-term users
(218–229). These are elaborated in detail elsewhere (31, 185, 230).

7 GABAAR, γ-amino-butyric acid receptor.

8 5HT3R, 5-hydroxytryptamine (serotonin) 3 receptor.
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To this list, an additional five features of aging that are also
characteristic of cannabis dependence can be added. These include
(16) a reduced respiratory exchange ratio (the amount of CO2
produced for oxygen taken up by tissues and organisms and clearly
reduced due to the well-characterized inhibition of mitochondrial
metabolism), (17) reduced ATP production by mitochondria, (18)
increased extra-chromosomal DNA circles, (19) an increase in
double-stranded DNA breaks, and (20) a reduction in lamin B (22).
Double-stranded DNA breaks are a severe threat to cell survival,
and the ability of cells to closely control their occurrence correlates
well with organismal lifespan (22). Lamin B is a component of
the internal nuclear envelope that functions to assist with gene
silencing. Its reduction has been linked with increased senescence-
associated β-galactosidase positive cell staining and an increase in
the release of pro-inflammatory interleukin-6, CCL29, CCL2010,
and LINE111 retrotransposons and inhibitors of apoptosis (IAP).

Therefore, these 20 features of aging together constitute strong
and robust evidence for the acceleration of cellular aging by
cannabis, similar to the evidence observed with tobacco use (22,
231). This implies that studies in aging have a direct relevance to
understanding the effects of various cannabinoids on cell behavior.

2.2. Review of a key aging pathophysiology
study

A team of 64 investigators from Harvard Medical School and
their collaborators used an “Inducible Changes to the Epigenome”
(ICE) protocol in mouse cells to show that the induction of only
20 double-stranded DNA breaks (DSBs) causes the epigenomic
machinery on the genome to regenerate. This regeneration occurs
in such a manner that the overall level of cell definition in
the Waddington epigenetic landscape and the level of DNA
methylation are reduced, while the epigenomic age is advanced.
In the study, the rearrangement of the epigenomic apparatus was
presumed to cause the redistribution of the DNA methylation
machinery, which underlay the reduction in DNA methylation
(22). The study showed that both gene activating (H3K27ac12 and
H3K4me313) and gene repressive (H3K9me314 and H3K27me315)
epigenetic marks were downregulated by DSBs so that the normal
epigenomic definitions between cells were blurred.

Concomitantly, the boundary function that controls chromatin
loop formation and gene expression and directs enhancer–
promoter interactions was reduced so that the enhancer function
became misdirected aberrantly toward anomalous promoters. In
general, cells became less well differentiated. Several examples

9 CCL2, C-C motif chemokine ligand 2 (CCL2). Also known as monocyte

chemoattractant protein 1 (MCP1).

10 CCL20, C-C motif chemokine ligand 2 (CCL20). Also known as liver

activation regulated chemokine (LARC) or macrophage inflammatory protein

3 (MIP3A).

11 LINE1, Long interspersed nuclear elements 1.

12 H3K27ac, Histone 3 lysine 27 acetylation.

13 H3K4me3, Histone 3 lysine 4 trimethylation.

14 Histone 3 lysine 9 trimethylation.

15 Histone 3 lysine 27 trimethylation.

of anomalous cellular dedifferentiation were documented,
including fibroblasts that expressed neuronal genes, muscle
cells that expressed spleen and immune genes, including major
histocompatibility class II genes, and muscle cells that increased
epithelial–mesenchymal transition in renal glomerular parietal
lining epithelial cells (22).

Genes expressed in development, such as HoxA and Wnt
genes, were found to be specific targets of this epigenomic de-
programming. This was believed to be because they were poised
for activation to assist with tissue repair in the event of some local
injury or insult. The proteins coded by these genes are part of the
DSB repair machinery; therefore, they were recruited to the DNA
break sites together with other complexes (22).

Many aspects of aging were accelerated in ICE mice,
including reduced short- and long-term memory and reduced
physical coordination when walking, reduced body weight, reduced
mobility at night, reduced fat mass, reduced strength, reduced
hearing, cataract formation, reduced glomerular size, reduced
skeletal mass, shorter running time and distance, reduced muscle
ATP, mitochondrial DNA, and muscle lactate, hair graying and
thinner skin, and increased brain neuroinflammation, including
1.6x more activated astrocytes and 3.5 times more activated
microglia. The epigenetic age of the blood and skeletal muscle was
50% advanced in ICE mice (22).

The expression of the classic senescence gene CDKN1A16

(encoding P21) was upregulated. The expression of the canonical
epigenomic activators of gene expression H3K27ac and H3K56ac
was downregulated. The expression of H3K27ac was inversely
correlated with its baseline expression, implying that it was most
reduced at promoters where it was previously highly expressed and
vice versa. Since H3K27ac, the classic epigenomic signal for gene
activation, is most enriched at the tissue- and cell lineage-defining
superenhancers, these were the epigenomic loci most weakened by
these rearrangements.

Significantly, 50% of the top 20 programs identified by a
Gene Ontology search were involved in developmental and
organ patterning processes (22). Organ systems that were
inhibited by the ICE treatment included the adult and fetal brain,
heart, lungs, gastrointestinal organs, and muscle cells. Gene
Ontology terms that were suppressed included the following:
regulation of blood coagulation, regulation of transmembrane
receptor serine/threonine kinase pathways, negative regulation
of endothelial cell proliferation, regulation of coagulation,
skeletal system morphogenesis, single organism signaling, pattern
specification processes, bone morphogenesis, tissue development,
skeletal system development, organ development, transcription
from RNA polymerase II promoter, cell communication,
odontogenesis, negative regulation of cell adhesion, specification
of organ identity, bone development, regulation of wound healing,
regulation of smoothened signaling pathway (sonic hedgehog),
and negative regulation of cell proliferation. It is clear from
this extensive list that many key developmental processes were
extensively suppressed.

Along with the weakening of superenhancers, superanchors
were also weakened. This was demonstrated by showing that

16 CDKN1A, Cyclin-dependent kinase 1A.
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aberrant enhancer–promoter interactions occurred when the three-
dimensional chromatin looping was assessed (22). Therefore, these
findings together revealed that cellular identity was weakened and
indeed disrupted.

Importantly, a highly broad and diverse spectrum of immune
gene superenhancers exhibited an increase in H3K27ac in
many cell types, while the transcriptional programs for other
organ genes–such as heart, brain, livers, kidneys and muscle
cells–were suppressed. Immune pathways that were increased
by the application of the Gene Ontology analysis included
cell activation, leukocyte activation, lymphocyte activation,
T-cell activation, regulation of T-cell activation, regulation of
lymphocyte activation, regulation of leukocyte activation, antigen
processing, regulation of immune cell processes, lymphocyte
differentiation, T-cell differentiation, peptide antigen processing
via MHC, regulation of lymphocyte proliferation, positive
regulation of lymphocyte activation, hemopoietic/lymphoid
organ development, regulation of mononuclear cell proliferation,
hemopoiesis, and leukocyte cell adhesion (22). The activity
of the H3K27ac signal in immune superenhancers in the
spleen was approximately double that of controls. This list
demonstrates the profound extent of pro-inflammatory, pro-
immune reprogramming created by the induced pro-aging
genomic–epigenomic damage.

Epigenomic factors known to be involved in DSB repair
included SIRT117, SIRT6, HDAC118, and PARP119. It was shown
that they relocalized from the genome to the sites of DSBs.
This mobilization of epigenomic silencers, in turn, induced the
mobilization of retrotransposons and mobile elements of the
genome, both of which lead to genomic instability and potently
stimulate innate immune pathways (22).

Importantly, they also showed that increased epigenetic age was
linked to an increase in DSBs. Thus, DSBs were shown to drive
epigenomic age, and epigenomic age was shown to drive DSBs,
forming a positive feedback loop.

Importantly, all of these adverse changes could be reversed
by using three of the Yamanaka stem cell factors Oct3/4,
Sox2, and Klf4 (OSK), thereby demonstrating that aging could
be modulated both forward and backward by manipulating
the genome (through DSBs) and epigenome (22). When the
OSK regenerative factors were administered by intravitreal
injection into the eyeball, there was a marked regeneration of
the retinal ganglion cells, which in older mice are normally
highly degenerative. This phenotype was replicated in ICE mice.
Gene Ontology pathways that were enriched in these optic
nerves and retinae included nervous system development, system
development, neurogenesis, generation of neurons, multicellular
organism development, regulation of multicellular processes,
development of anatomic structures, developmental processes,
regulation of localization, regulation of biologic quality, regulation
of transsynaptic signaling, modulation of chemical synaptic

17 SIRT, Silencer of information transfer–a major sirtuin class silencing

gene expression. Sirtuins also possess HDAC activity and together constitute

a major class of HDACs.

18 HDAC1, Histone deacetylase 1.

19 PARP1, Poly (ADP-ribose) polymerase−1.

signaling, regulation of ion transport, neuronal differentiation,
response to external stimuli, neuronal development, regulation
of transport, multicellular organismal processes, synaptic
signaling, and cellular development processes (22). Thus, many
key neural regenerative pathways were strongly restored by
OSK therapy.

Therefore, these workers could ascribe the aging process itself
to a loss of epigenomic information, which was bidirectionally
coordinated with related processes such as genomic breaks,
immune stimulation, and stem cell impairment, as well as
developmental and regenerative programs.

2.3. Relevance to cannabinoid
pathophysiology

As indicated above, these epigenomic and functional
studies of aging are directly relevant to patients exposed to
cannabis for many reasons. As the authors state, there is
no question that such findings apply to tobacco exposure
(22), and since cannabis has currently been shown to be
a more potent genotoxin than tobacco in multiple studies
(189, 191, 202, 232), these observations apply even more so
to cannabinoids.

It is important to note how closely cannabis
phenocopies this described process. DSBs (2–8), DNA
hypomethylation (9–13, 233), and weakened CTCF boundary
elements (11), which are the core components of the
above schema, are all well described following cannabis
exposure (11).

The involvement of key developmental processes Wnt,
HoxA, and sonic hedgehog in the above results explains for
stroke the implication of cannabinoids in a wide variety of
teratogenic, developmental, and neurodevelopmental congenital
anomalies, as documented in Colorado, Hawaii, the USA,
Canada, Australia, and Europe (27–29, 191–205, 207). This
description fits well with the wide variety of congenital anomalies
that have been linked with cannabis, including those of the
cardiovascular, central nervous, gastrointestinal, chromosomal,
limb, uronephrological, body wall, and orofacial systems, as
well as in the general embryo (27–29, 191–205). Congenital
anomalies that have been linked to cannabis exposure in the
USA were anophthalmia/microphthalmia, anotia/microtia,
aortic valve stenosis, atrial septal defect, biliary atresia, bladder
extrophy, choanal atresia, cleft palate alone, cleft lip alone, cleft
lip with cleft palate, cleft lip with or without cleft palate, cloacal
extrophy, club foot, coarctation of the aorta, common truncus,
congenital cataract, congenital dislocation of the hip, congenital
posterior urethral valve, deletion of 22q11.2, diaphragmatic
hernia, Ebstein’s anomaly, encephalocele, epispadias, esophageal
atresia with or without tracheesophageal atresia, Hirschsprung’s
disease, congenital megacolon, hydrocephalus without spina
bifida, hypospadias, interrupted aortic arch, microcephalus,
obstructive genitourinary defect, omphalocele, patent ductus
arteriosus, pulmonary valve atresia, pulmonary valve atresia
and stenosis, rectal and large intestinal atresia and stenosis,
reduction deformity upper limbs, reduction deformity
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lower limbs, renal agenesis and hypoplasia, small intestinal
atresia/stenosis, trisomy 13, trisomy 18, trisomy 21 (Down’s
syndrome), Turner’s syndrome, and ventricular septal defect
(192, 202, 205).

The unequivocal demonstration that cellular dedifferentiation
occurs due to DNA demethylation, weakening of superenhancers
and superanchors, aberrant promoter–enhancer communication,
and retrotransposon activation clearly explains why many
diverse tissues are primed by cannabis for malignant
transformation, which addresses the issue of why so many
cancers have been epidemiologically linked with cannabis
(25, 28, 32, 179–188, 220, 234–247). Cancers that were
linked with cannabis exposure in Europe were all cancers,
excluding non-melanoma skin cancer, bladder, brain, breast,
colorectal, Hodgkin’s, kidney, larynx, liver, lung, melanoma,
multiple myeloma, myeloid and lymphoid leukemias, non-
Hodgkin’s lymphoma, and esophagus, oropharynx, ovary,
pancreas, prostate, stomach, testis, thyroid, and uterine cervix
cancers (189).

For many of these tumors, positive dose-response effects have
been described (220, 238, 240, 241). There are also many examples
of inheritable tumors due to the intergenerational transmission
of major genotoxic lesions (248, 249), including acute lymphoid
and myeloid leukemias, rhabdomyosarcoma, and neuroblastoma
(28, 186, 188, 250–252).

Importantly, cannabis has been shown to be a driver of rising
rates of breast, testicular, liver and pancreatic cancers in adults
(28, 183, 184, 187, 190, 234, 253–255) and of total pediatric cancer
(188) and acute lymphoid leukemia (188) in children. Most of the
studies referred to in this paragraph were conducted in space–time
contexts and in causal inferential paradigms to allow for the formal
quantitative investigation of epidemiologically causal pathways to
be investigated.

Indeed, a question has been formally posed (190, 234) regarding
whether cannabis might be a major factor underlying the modern
resurgence of several types of cancer developing in patients younger
than 50 years (235).

The close, reciprocal, and mutually reinforcing relationship
between theDSB-inducing actions of cannabinoids and epigenomic
dysregulation is also clarified. Moreover, the manner in which
the classically described DSB induction and chromosomal
clastogenicity are linked to the newly defined epigenomic
dysregulation is also explicated.

Multiple cannabinoids are known to impede mitochondrial
and intermediate metabolism (55, 56, 65, 66, 122, 256–263). This
necessarily reduces the availability of methyl and acetyl groups
for methylation and acetylation reactions, which, by definition,
reduces both the epigenomic instructions written to the DNA and
gene availability and, thereby, “flattens” the epigenomic landscape
[related Waddington’s epigenomic valleys (264)].

Furthermore, DSB induction and various levels of epigenomic
dysregulation also clarify not only the occurrence of cannabinoid-
induced aging but also some of its likely cellular mechanisms.

With this argument established on theoretical grounds,
all of these features require verification in the cellular models
of cannabinoid cytotoxicity, genotoxicity, epigenotoxicity,
and aging.

3. Epigenomics

3.1. Enhancer–promoter interactions

The human genome has approximately 25,000 genes and
1,000,000 enhancers (265). There is significant enthusiasm within
the scientific community due to the development of low input
chromosome conformation capture techniques for interrogating
three-dimensional genome architecture within the nucleus, which
allows for a detailed description of the manner in which
genes are transcribed from chromatin loops that are formed
when cohesin motors extrude DNA loops through their lumen
(266). The cohesin complex is known to form loops around
chromatin during chromosomal pairing, which occurs at the
mitotic metaphase and also during gene transcription (267). These
looping structures are constrained by boundary elements, which is
most often CTCF20 (266–270) being the most common element.
These boundary elements divide the chromatin into topologically
defined domains for transcription (269). The minichromosome
maintenance (MCM) complex has also been shown to block
cohesin loop extrusion and act as a boundary element (271).
These domains are carefully constrained to usually contain both
the gene promoter and the enhancers acting in cis (on the same
chromosome), albeit some enhancers act at large distances over
onemegabase or on different chromosomes (in trans). Importantly,
DNA methylation prevents the binding of CTCF to chromatin
(272). These topologically defined domains are organized and
clustered together inside the three-dimensional space of the nucleus
into transcription factories. At present, this looping model has been
demonstrated in many different tissues in both physiologic and
pathologic states, including during embryonic development (273–
276), during chondrogenesis (277), in normal tissues (278, 279), in
the heart (280–282), in the brain (283–290), in T-cell differentiation
(269, 291), for stem cells (292) during cellular reprogramming
and dedifferentiation (22, 293, 294), and within many cancers
(269, 291, 295–302). Thus, these looping structures bring together
both the promoter and enhancers, usually within 300 nm, to
control gene transcription. Indeed, it has been reported that 90%
of the risk genes identified in genome-wide studies are located
within non-coding genomic regions, especially in enhancers (265).
Experimental and biostatistical studies have shown that clusters
of enhancers work together synergistically and combinatorially
(265, 270, 278).

Superenhancers are large groups of enhancers that are clustered
on the genome and control the state of differentiation and cell
lineage determination (267, 303–305). In other words, they are
believed to determine whether a heart cell is a heart cell as
opposed to a neuron or blood cell, for example. Superenhancers are
extremely powerful and perform activities that are several orders
of magnitude above ordinary enhancers; they may act either from
the same chromosome or from another chromosome. The limits of
superenhancers are protected by “superanchors,” which normally
control their activity and reach (269). Clearly, their significant
power confers great risk if their ability to stimulate transcription is
misdirected, as indeed occurs in many cancers (267, 269, 300, 303,

20 CTCF, CCCTF-binding factor.
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304). These phenomena are referred to as “enhancer hijacking” and
“silencer hijacking” (267). DNA hypomethylation caused the loss
of CTCF boundary elements, resulting in the formation of neoloops
even between adjacent chromosomes and leukaemogenesis through
a gain of function related to this enhancer hijacking (267, 269,
306). Contrarily, the superenhancer dependence of many tumors
becomes a particular vulnerability for therapeutic exploitation, and
this is presently being intensively explored (307).

A crucial detailed longitudinal study of the changes in human
and rat sperm induced by cannabis exposure and resolving after a
period of cannabis abstinence has been published (11). Cannabis-
dependent human volunteers and rats were exposed to cannabis
and then underwent 11 weeks of documented abstinence from
cannabis. Eleven weeks is the period one sperm cycle takes in
humans. Epigenomic changes were then documented from a
control state and longitudinally against earlier time points.

Since the control of enhancer–promoter looping interactions
by boundary elements has currently become the basic model
for controlling gene transcription, the observation in the Schrott
dataset (11) that cannabis withdrawal disrupts the expression of
CTCF carries profound implications, since CTCF is the basis
of structure and order in the whole architecture of enhancer–
promoter interactions. In the absence of proper CTCF boundary
function, enhancers and promoters will inevitably be brought into
inappropriate contact with severe sequelae, including disordered
neurodevelopmental outcomes (269, 279, 283, 284, 287, 289, 308,
309) and many cancers (269, 295–302). Cancer can occur when
a promoter region is inappropriately exposed to an enhancer
region, thereby providing an inappropriate stimulus to gene
transcription. Indeed, one powerful scenario is when a tissue
defining superenhancer is brought adjacent to a strong oncogene,
such as Myc or Notch, which can cause run away growth
stimulation, which is a not uncommon scenario both in many
leukaemias and solid tumours (265, 267, 269, 291, 296, 298–300,
310–312).

The main proteins comprising the cohesin ring may be listed
as SMC121, SMC3, RAD5122, and STAG23 proteins. Cohesin
is involved in post-replicative DNA repair and transcriptional
regulation, and it also plays an important role in pairing
chromosomes (313). Therefore, the finding that there were 96
DMRs in the Schrott dataset for the structural maintenance
of chromosomes (SMC) genes, 9 DMRs for RAD51, and 152
DMRs for the STAG proteins, comprising 257 hits, is crucial
(11). Indeed, the significance of RAD51 epigenomic inhibition is
amplified by its primary role as a key enzyme in the high-fidelity
DNA repair pathway known as homologous recombination. When
RAD51 expression is disabled, alternative lower fidelity error-
prone DNA repair processes, such as mismatch repair (in stem
cells) or theta end joining (in oocytes and in many cells) (272),
are employed, and these lower fidelity pathways are inherently
mutagenic. Importantly, sperm were shown to be particularly

21 SMC, Structural maintenance of chromosomes.

22 RAD51, Recombinase/recombination protein A/RAD51 (S. cerevisiae)

Homolog (E coli RecA homolog).

23 STAG, Stromal antigen. STAG1 is also called SCC1. STAG2 is also called

SCC3B. STAG3 is also called SCC3H3.

susceptible to DNA damage owing to their largely unmethylated
DNA state, their DNA compaction in protamine barrels that are
six times more tightly compressed than normal, and the complete
absence of DNA repair machinery (272). For this reason, 80% of
congenital disorders diagnosed postnatally have been ascribed to
paternal contribution (272).

For example, in acute lymphoid leukemia (ALL), which is
the most common childhood cancer that represents inherited
genotoxicity and has previously been linked with community
cannabis exposure (188), it was shown that a key driving mutation
occurs in the GATA3 24 enhancer, which changes chromatin
conformation and gene expression (300). GATA3 is a pioneer
factor that recruits the SMARCA4 (SWI/SNF-related, matrix-
associated, actin-dependent chromatin regulator, subfamily A,
member 4) 25 complex to open up the genome and sets in
train a GATA3/CRLF2 26/JAK2 27/STAT5 28 signaling pathway
to leukaemogenesis (300). SMARCAs perform energy-dependent
repositioning of nucleosomes and increase the accessibility of genes
to the transcription machinery. GATA activation induces a state
switch in the nuclear synthetic compartments (B (silent) to A
(active transcription) compartment switching) for many genes.
GATA3 overexpression induced enhancer hijacking (300). GATA3
activation has also been identified in many other hematologic
malignancies, such as the Reed–Sternberg cells in Hodgkin’s
disease (300). Interestingly, GATA3-binding sites were located
near the Philadelphia-like chromosome break point. However, this
study could not demonstrate a causal link related to this issue.
Widespread B to A compartment switching was also identified in
another study of acute lymphoid leukemia (299). Importantly, the
rs3824662 risk variant in the GATA3 promoter is inheritable (300).

Of further importance, there were 127 hits for GATA in the
Schrott epigenomic cannabis screen (11). There were over 28DMRs
for actin-related proteins in the Schrott dataset (11). Seven DMRs
were identified for SMARCAs 1, 2, 4, and 5 (11). Since SMARCAs
are both ATP- and actin-dependent, and since cannabinoids disrupt
both actin production and ATP synthesis as well as SMARCAs
themselves, it follows that nucleosomal positioning and gene
transcription are necessarily disrupted. SMARCAs have also been
shown to be of pivotal importance in enhancer-addicted prostate
cancer (302).

Therefore, to observe that cannabis significantly disrupts both
CTCF as the fundamental boundary element defining transcription
regions and the machinery and motors that drive chromosomal
loop extrusion and orchestrate gene transcription is to necessarily
point to a major disruption of the fundamental process of
gene transcription.

It should also be observed that normal genomic processes can
induce DNA breaks, including DNA transcription and duplication,
base excision repair, and active DNA demethylation (314, 315).

24 GATA3, GATA binding Protein 3.

25 SMARCA4, SWI/SNF-related, matrix-associated, actin-dependent

regulator of chromatin, subfamily A, member 4.

26 CRLF2, Cytokine receptor-like factor 2.

27 JAK2, Janus kinase 2.

28 STAT5, Signal transducer and activator of transcription 5.
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3.2. Epigenomic memory

It has also been shown that many cell types record histories of
past exposures in the highly complex post-translational codes in
their epigenome, especially their histone codes (145, 146). These
codes formmemories. They are also advantageous in that should an
inflammatory or toxic insult recur, gene cassettes are often poised
for rapid reactivation and usually have a modified response, which
may be either potentiated in the case of an infective insult (145) or
ameliorated in the case of pancreatitis (316–318).

3.3. Cannabinoid impacts on epigenomic
machinery

The study of Schrott and colleagues (11) also described the
manner in which cannabis dependence and withdrawal disrupt
the basic machinery of epigenetic regulation, including DNA
methylation writers and erasers (DNMT1/329 and TETs30),
histone methylation and acetylation writers and erasers
(KMTs31, KDMs32, KATs33, HDACs34, and sirtuins35), stem
cell regenerative transcription factors, key elements of the
polycomb repressive machinery, major ATP-dependent factors that
reposition nucleosomes and enable new genes to be transcribed
(SMARCA2/436), and coordinators of epigenetic processes,
including DNA methylation and histone post-translational
modifications (UHRF137). UHRF1 is also a key regulator of cell
growth. Growth inhibition explains some of the growth-inhibitory
actions of cannabis, as described in studies involving babies’ heads,
brains, and hearts (191, 195, 196, 201, 203, 205, 207, 319–321).

From this analysis and concise review, it can be observed
that cannabis broadly disrupts the fundamental epigenomic
machinery and necessarily disrupts the basic machinery of
gene transcription, thereby disrupting normal promoter–enhancer
interactions. Deleterious effects on neurodevelopment, patterns
of congenital anomalies, and cancerogenesis, including heritable
cancerogenesis, should be the expected outcomes and are indeed
also the observed outcomes.

Through the induction of genome-wide relative DNA
methylation (9, 12, 13), single- and double-stranded DNAs
and chromosomal breaks (2–8), inhibition of mitochondrial
metabolism by diverse pathways (55, 56, 66, 256–260, 322),
and within the context of widespread epigenomic disruption
and interference with the basic gene looping mechanism
of gene transcription, cannabis will necessarily reorganize
nuclear pathophysiology. This reorganization can lead to

29 DNMT, DNA methyltransferases.

30 TET, Ten-eleven translocation DNA methylcytosine dioxygenase.

31 KMT, Lysine methyltransferase.

32 KDM, Lysine demethylase.

33 KAT, Lysine acetyl transferases.

34 HDAC, Histone deacetylases.

35 Sirtuins, Silencer of information transfer/histone/lysine deacetylases.

36 SMARCA, SWI/SNF-related, matrix-associated, actin-dependent

regulator of chromatin, subfamily A.

37 UHRF1, Ubiquitin-like with PHD and ring finger domains 1.

genomic instability, numerous adverse congenital outcomes,
including neurodevelopmental outcomes, and cellular aging,
according to recent epigenomic pathophysiologic descriptions
(11, 22, 294, 323, 324).

It is also of interest to consider the overlap between
genes described in certain syndromes and those known to
be epigenomically perturbed by cannabis use. Some of the
largest gene databases in the existing literature have been
intersected in this way with the epigenomic cannabis screen of
Schrott and colleagues. This has produced the data shown in
Table 1.

From Table 1, it can be observed that the overlap runs
from 25.17% for acute myeloid leukemia and 25.3% in aging to
77.9% for congenital anomalies and 87.1% for schizophrenia.
The autism screen is also of particular interest. The dataset
used for the assessment was the Sfari database, which
contains 1,095 genes and is the world’s largest autism gene
set database (325). The common intersected fraction identified
with the Schrott epigenomic screen with the autism dataset
was 54.8%.

3.4. Exponentiation

Substantial experimental evidence points toward the
conclusion that the effects of cannabinoids are exponential
and that it must be assumed that this is a normal class effect
in the low micromolar range. This exponentiation applies to
both its genotoxic (8, 113, 326–334) and metabolic effects
(53–58). Since these epigenomics and metabolomics are closely
related, this implies that this exponentiation is compounded in
this case.

The low micromolar serum level is readily reached in patients
who consume cannabis either regularly or daily (335). This issue
is exacerbated by the accumulation of cannabinoids in tissues and
their generally long tissue half-life (335).

The issue of exponential dose-response effects is of great
importance in the public health context. When legislation exists,
which attaches penalties to cannabis use, cannabis use is naturally
discouraged. However, under decriminalized or legalized legislative
frameworks, cannabis use has been shown many times to increase
(336–341), along with an increase in the potency of the THC
or cannabidiol products consumed. This rise is accompanied by
the number of individuals who consume cannabis on a relatively
intense or daily basis. Clearly, this places a significant number
of people in the community into a high cannabis exposure
zone relatively abruptly, where adverse genotoxic and neurotoxic
outcomes become more commonplace.

For these reasons, it is envisaged that the triple confluence
of rising cannabis prevalence rates, intensity of use rates,
and cannabinoid potency will manifest relatively abruptly as
steep rises in adverse mental health, as well as teratologic,
carcinogenic, and age-related outcomes, as are indeed
being observed and documented in several jurisdictions
(16, 25, 27–32, 179–187, 189–205, 207, 232, 234–237, 321,
342–345).
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TABLE 1 Syndromic genes identified in the schrott cannabis epigenomic screen (11).

N Group Disorder Genes identified
in the Schrott

database

Genes
implicated

% Genes
implicated in

Schrott

Reference

1 Brain disorders Schizophrenia 597 685 87.10% Trubetskoy V. Nature 2022;
604(7906): 502–508

2 Congenital
anomalies

Oocytic Zar1
activation

162 208 77.88% Cheng S, Science, 2022; 378 (6617)

3 Congenital
anomalies

Sperm 2,974 4,930 60.34% Chen Y, Cell Res. 2018; 28: 879–896

4 Brain function Purkinje
cells–cerebellum

282 487 57.91% Chen X., Science 605 (7911):
722–727

5 Brain development Mid-fetal brain,
Human, M2 motor
cortex

106 189 56.08% Shibata M, Nature, 2021;
598(7881): 483–488

6 Autism Autism 600 1,095 54.80% Sfari Database

7 Brain disorders Autism 600 1,095 54.80% Sfari Database

8 Cancer Acute myeloid
leukemia–
differentiation
genes

12 22 54.54% Zeng A. Nat. Medicine 2022;
28:1212–1223

9 Brain development Mid-fetal brain,
human, frontal
lobes

43 82 52.43% Shibata M, Nature, 2021;
598(7881): 483–488

10 Aging Ovarian aging–
meta-analysis

2,212 4,378 50.50% Ruth K, Nature 2021;
596(7872):393–397

11 Congenital
anomalies

Congenital heart
disease

1,169 2,320 50.40% Hill M, Nature 2022; 608(7921):
181–191

12 Brain function Brain astrocytes 26 66 39.39% Burda J Nature 2022; 606(7914):
557–564

13 Brain function Brain astrocytes 17 58 29.31% Burda J Nature 2022; 606(7914):
557–564

14 Brain function Brain astrocytes 36 106 33.96% Burda J Nature 2022; 606(7914):
557–564

12 Cancer Medulloblastoma,
gene subset N=4

2 4 50.00% Gershanov S. Front. Oncology
2021; 11:637482

13 Brain disorders Alzheimer’s disease 721 1,614 44.67% Park J, Nat. Commun. 2019; 10(1):
3090–3101

14 Brain development Dorsolateral
prefrontal cortex

596 1,338 44.54% Ma S., Science 2022; 377(6614):
1511–1524

15 Cancer Acute myeloid
leukemia–Lin7
cluster

3 7 42.85% Zeng A. Nat. Medicine 2022;
28:1212–1223

16 Aging Ovarian
Aging–genes

124 290 42.74% Ruth K, Nature 2021;
596(7872):393–397

17 Cancer Acute myeloid
leukemia–most
commonly mutated

15 36 41.67% Bottomley D Cancer Cell 2022;
40(8):850–864

18 Cancer Pancancer–overall 873 2,181 40.02% Chen R Cancer Cell 2022; 40(8):
865–878

19 Brain development Mid-fetal brain,
human, M1 motor
cortex

2 5 40.00% Shibata M, Nature, 2021;
598(7881): 483–488

20 Congenital
anomalies

Preeclampsia 489 1,234 39.62% Moufarrej M, Nature 2022;
602(7898): 689–694

(Continued)
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TABLE 1 (Continued)

N Group Disorder Genes identified
in the Schrott

database

Genes
implicated

% Genes
implicated in

Schrott

Reference

21 Brain disorders Alzheimer’s disease 26 66 39.39% Burda J., Nature 2022; 606(7914);
557–564

22 Cancer Pancancer–low risk 377 967 38.98% Chen R Cancer Cell 2022; 40(8):
865–878

23 Aging Heterchronic
parabiosis

8,216 21,176 38.79% Ma S Cell Stem Cell 2022;
29:990–1005

24 Aging Aging hemopoietic
stem cells–genes

8,216 21,176 38.79% Adelman E. Cancer Discover. 2019;
9(8):1080–1101

25 Cancer Acute myeloid
leukemia–overall

29 81 35.80% Zeng A. Nat. Medicine 2022;
28:1212–1223

26 Cancer Acute myeloid
leukemia–
druggable
genes

289 810 35.67% Bottomley D Cancer Cell 2022;
40(8):850–864

27 Aging Aging hemopoietic
stem cells–DMR’s

526 1,499 35.09% Adelman E. Cancer Discover. 2019;
9(8):1080–1101

28 Aging Heterchronic
parabiosis–HetO-
IsoO

2,916 8,513 34.24% Ma S Cell Stem Cell 2022;
29:990–1005

29 Brain disorders Spinal cord injury 36 106 33.96% Burda J., Nature 2022; 606(7914);
557–564

30 Brain function Brain astrocytes 9,025 26,688 33.82% Edno F, Science 2022; 378(66619):
514–525

31 Cancer Medulloblastoma,
gene subset N=12

4 12 33.33% Gershanov S. Front. Oncology
2021; 11:637482

32 Cancer Cancer driver genes
(COSMIC)

5,260 15,827 33.23% Sondhka Z Nature Rev Cancer
2018; 18:696–705

33 Brain development Mid-fetal brain,
human, prefrontal
lobes

38 118 32.20% Shibata M, Nature, 2021;
598(7881): 483–488

34 Cancer Medulloblastoma 6,191 20,196 30.65% Gershanov S. Front. Oncology
2021; 11:637482

35 Aging Aging hemopoietic
stem cells–DEG

340 1,133 30.00% Adelman E. Cancer Discover. 2019;
9(8):1080–1101

36 Cancer Pancancer–High
Risk

496 1,214 29.42% Chen R Cancer Cell 2022; 40(8):
865–878

37 Cancer Acute myeloid
leukemia

5 17 29.41% Ng S, Nature 2016;
540(7633):433-−437

38 Brain disorders Endotoxaemia
(with LPS)

17 58 29.31% Burda J., Nature 2022; 606(7914);
557–564

39 Cancer Acute myeloid
leukemia–overall

1,114 3,879 28.71% Bottomley D Cancer Cell 2022;
40(8):850-864

40 Aging Mouse aging 2,847 10,071 28.26% Sleiman M Science 2022;
377(6614): 1508–1520

41 Cancer Medulloblastoma,
gene subset N=32

9 32 28.10% Gershanov S. Front. Oncology
2021; 11:637482

42 Cancer Acute myeloid
leukemia–classifiers

28 100 28.00% Zhang S J. Oncology 2022;
2022:7727424

43 Congenital
anomalies

Oocytes 1,211 4,363 27.75% Cheng S, Science, 2022; 378(6617)

44 Cancer Medulloblastoma,
gene subset N=22

6 22 27.20% Gershanov S. Front. Oncology
2021; 11:637482

(Continued)
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TABLE 1 (Continued)

N Group Disorder Genes Identified
in the Schrott
Database

Genes
Implicated

% Genes
Implicated in

Schrott

Reference

45 Aging Heterchronic
parabiosis–key
genes

253 1,000 25.30% Ma S Cell Stem Cell 2022;
29:990–1005

46 Cancer Acute myeloid
leukemia–DEG’s

37 147 25.17% Zhang S J. Oncology 2022;
2022:7727424

TABLE 2 Daily cannabis use in the entire community and by pregnancy trimesters.

Year Near-daily
use

First trimester
pregnancy

Second trimester
pregnancy

Third trimester
pregnancy

Total pregnancy–
summed

2002 2.00% 2.09% 0.61% 0.77% 3.47%

2003 2.08% 2.23% 1.01% 0.31% 3.55%

2004 2.08% 1.11% 0.56% 1.30% 2.97%

2005 2.01% 1.21% 0.72% 0.38% 2.31%

2006 2.08% 0.41% 2.41% 0.96% 3.78%

2007 2.03% 2.93% 2.82% 0.20% 5.95%

2008 2.22% 1.20% 0.26% 1.23% 2.69%

2009 2.49% 1.83% 0.84% 1.23% 3.90%

2010 2.77% 2.94% 0.16% 0.33% 3.43%

2011 2.70% 1.37% 0.31% 0.41% 2.09%

2012 2.96% 5.10% 0.40% 0.66% 6.16%

2013 3.16% 4.54% 2.89% 0.47% 7.90%

2014 3.57% 1.88% 0.25% 0.53% 2.66%

2015 3.43% 0.43% 1.33% 0.26% 2.02%

2016 3.61% 5.04% 1.73% 0.80% 3.62%

2017 3.96% 5.02% 2.27% 3.89% 11.18%

2018 4.34% 2.82% 1.22% 1.81% 5.85%

2019 4.99% 4.06% 2.89% 3.32% 10.27%

2020 5.31% 3.54% 3.40% 0.01% 6.95%

3.4.1. Fetal alcohol syndrome–fetal cannabinoid
syndrome

The incidence of fetal alcohol syndrome (FAS) is
increasing in many places. Indeed, a recent space–time
and quantitative causal inference study in Europe showed
that FAS was rising in association with increased cannabis
use (201). This result went beyond merely reporting an
association because it has currently been well established
that FAS is mediated largely via the CB1R cannabinoid
receptor (111, 114–117, 346–355), with GABAergic neurons
shown to be particularly susceptible (114). This effect
is also mediated by the sonic hedgehog receptor (shh),
where cannabinoids bind to the shh-smoothened receptor
(113, 114, 116, 118).

Indeed, a remarkably close phenotypic resemblance between
infants exposed antenatally to cannabis and alcohol has been noted
by many investigators (113–115).

Moreover, cannabis and alcohol compound the foetotoxic
effects of each other so that their combined effect is potentiated
(111, 113–115, 347, 351, 356). A corollary of this is that multisystem
foetotoxic effects manifest at otherwise subthreshold doses (113).

Importantly, multisystem VACTERL (vertebral, anal, cardiac,
tracheo-esophageal, renal, and limb) disorder has also been shown
to be more common across Europe and has been formally causally
related to cannabis exposure (201). As noted, this is a multisystem
disease, and sonic hedgehog interference has been implicated in
its pathoaetiology (357–359). Since cannabis is known to interfere
with sonic hedgehog signaling both directly (111, 114–117, 346–
355) and epigenomically (11), this further implicates cannabis in
the teratology of these seven systems.

It has also been noted that teratologic syndromes otherwise
uncharacterized have arisen across space and time in a manner
causally related to cannabis exposure in Europe across the same
period (201).
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FIGURE 1

Daily cannabis use, the USA, 2002–2020. (A) Near daily cannabis use as reported at the national levels by NSDUH annual PDAS. (B) Near daily

cannabis use in each of the trimesters of pregnancy by NSDUH. (C) Near daily cannabis use summed across all three pregnancy trimesters.

Importantly, the effects of alcohol have been shown to
be mediated in part by the endocannabinoid system and
associated epigenomic changes to the DNA methylation, histone
structure, and chromatin architecture (360, 361). This implicates

cannabinoids in the full spectrum of fetal alcohol spectrum
disorders (FASD) in adults and young adults, in addition to
their increasingly recognized role in developmental and congenital
disruptions (360, 361).
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TABLE 3 Modeled daily cannabis use (smoothed data).

Year Daily Cannabis Use Trimester 1 Trimester 2 Trimester 3 All trimesters summed

2002 0.02037 0.01400 0.01263 0.00808 0.03650

2003 0.02023 0.01507 0.01128 0.00736 0.03490

2004 0.02031 0.01619 0.01018 0.00681 0.03381

2005 0.02062 0.01736 0.00935 0.00642 0.03321

2006 0.02114 0.01858 0.00877 0.00619 0.03312

2007 0.02189 0.01985 0.00846 0.00612 0.03353

2008 0.02285 0.02117 0.00841 0.00622 0.03445

2009 0.02404 0.02254 0.00862 0.00648 0.03587

2010 0.02546 0.02396 0.00909 0.00690 0.03779

2011 0.02709 0.02543 0.00982 0.00749 0.04022

2012 0.02894 0.02695 0.01081 0.00824 0.04314

2013 0.03102 0.02852 0.01206 0.00915 0.04658

2014 0.03332 0.03014 0.01357 0.01022 0.05051

2015 0.03584 0.03182 0.01534 0.01146 0.05495

2016 0.03858 0.03354 0.01737 0.01286 0.05989

2017 0.04155 0.03531 0.01967 0.01442 0.06533

2018 0.04473 0.03714 0.02222 0.01615 0.07128

2019 0.04814 0.03901 0.02504 0.01804 0.07773

2020 0.05177 0.04094 0.02811 0.02009 0.08468

Interval Rise Rise Rise Rise Rise

2002–2010 1.249 1.711 0.719 0.854 1.035

2010–2020 2.034 1.709 3.094 2.910 2.241

3.4.2. Daily cannabis use
Since much of the evidence points to high-dose cannabis use

as being of utmost concern, it is of interest to quantify and define
this key variable that is of the highest relevance to genotoxic and
neurotoxic outcomes. As the best dataset for doing this is in the
USA, the USA will be the nation of interest.

The most recent data on national drug use rates in the
USA is available from the National Survey of Drug Use and
Health conducted annually by the Substance Abuse and Mental
Health Services Administration (362). Accessing the Public Use
Data Analysis System website38 and running the data input code
MRJMDAYS allows one to study the rates of daily or near-daily
cannabis use39 across the whole population of individuals older
than 12 years on an annual basis. The rate of near-daily cannabis
use across the entire adult US population rose, as shown in Table 2,
Figure 1A. This indicates that the rate of growth of cannabis
devotees who smoked almost daily rose 265.5% nationally during
2002–2020. It should also be pointed out that the largest group in
the survey comprised those who did not use cannabis at all, which
in 2020 was 88.5%. Figure 1B shows the rate of near-daily use in
each of the pregnancy trimesters. Figure 1C shows the rate of daily
cannabis use summed across the three pregnancy trimesters.

38 URL: https://pdas.samhsa.gov/#/ (accessed January 27th, 2023).

39 Use of cannabis 20-30 days per month.

These lines show a high degree of year-on-year variation.
If one uses simple mathematical smoothing on these data and
the quadratic polynomial, which is the most appropriate of
the common models in the predict function in R, the data
presented in Table 3 for smoothed modeled values is derived.
If one compares the first period 2002–2010 to the second
decade 2010–2020, the rise in the rate is clear in all cases.
Daily cannabis use rose 24.9% in the first trimester and then
103.4% in the second trimester. The use in the second- and
third-trimester use rose from −22.1% to 209.4% and −14.6%
to 191.0%, respectively. The sum across all three pregnancy
trimesters rose from 3.5% in the first period to 124.1% in the
second period. Hence, these data demonstrate a greater rise across
the board nationwide in near-daily cannabis use in all metrics
and trimesters in the second decade. The first trimester is the
only exception, where the relationship showed a linear modeled
response across the whole period. These lines are all graphed in
Figure 2.

3.5. Epitranscriptomic metabolomics

RNA is subject to over 200 post-transcriptional modifications.
The most common of these is m6 adenosine methylation (m6A).
It has been shown that the m6A modification is applied to
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FIGURE 2

Modeled daily cannabis use.

METTL16 40 uniquely in leukaemic stem cells (LSCs), which creates
a particular therapeutic vulnerability of LSCs. METTL16 deposits
an m6A mark on the first and second codons for branched-chain
amino acids (BCAA, including valine, leucine, and isoleucine)
transaminases (BCAT1/2), which stabilizes the BCAA mRNAs
and establishes them as a fundamental metabolic fuel for LSCs
(363). Thus, the pathway is the METTL16/m6A/BCAT1/2/BCAA
axis. Cancer-associated metabolic reprogramming has been shown
to profoundly affect gene expression, differentiation, and tumor
progression and is an emerging hallmark of malignancy. BCAT1/2
upregulation has been shown to be a marker of tumor
aggressiveness across many tumor types. BCAAs are requisite
to protein synthesis; they replenish TCA 41 intermediates and
act as a nitrogen source for nucleotide synthesis via the
glutamine–glutamate pathway. Therefore, the upregulation of
BCAAs metabolically reprograms oxidative phosphorylation, the
citric acid cycle, and nucleotide synthesis to fuel the rapid growth
of malignant cells. AML cells are known to be addicted to BCAAs.
METTL16 inhibition has been shown to drop LSC frequency 10-
200-fold (363).

40 METTL16, Methyltransferase 16, N6-methyladenosine.

41 TCA, Tricarboxylic acid cycle, also known as citric acid cycle and Krebs

cycle.

Some researchers worked with a standard model of acute
myeloid leukemia and found that the mRNA for IGF2BP242

is an m6A reader. This m6A reader stabilized the m6A
modification of PRMT643, which post-translationally modified
histone H3R2me2a44. This modification suppressed the lipid
transporter MFSD2A45, thereby reducing the lipid transport
into LSCs (364). Indeed, approximately 60% of m6A targets
were only observed in LSCs. It was also noted that m6A
mRNA targets are enriched in immune checkpoint targets, which
might be a key explanation of how LSCs avoid or subvert
immunosurveillance (364).

4. Conclusion

The above considerations clearly demonstrate the salience
and centrality of the epigenome, including the three-dimensional
architecture of the nucleus, for determining gene expression and
its major perturbation by cannabis exposure. Well-documented

42 IGF2BP2, Insulin-like growth factor 2 binding partner 2.

43 PRMT, Protein arginine methyltransferase 6.

44 H3R2me2a, Histone 3 arginine 2 demethylation.

45 MFSD2A, MFSD2 lysolipid transporter A, lysophospholipi.
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rising rates of daily cannabis use, cannabis use in pregnancy,
and the currently amply demonstrated exponential cannabis
genotoxic dose-response relationship imply that such studies are
of primary importance and are a major research priority for
addiction medicine, neuropsychiatric understandings, and public
health management. These issues are pursued further in Part 2,
which examines the metabolic and immunomic underpinning of
these features and the manner in which these issues apply to
neuronal toxicity and epigenotoxicity, along with the disruption of
key events at the synapse. Specifically, these investigations elegantly
demonstrate the importance and relevance of all of the considered
levels of cellular machinery dysregulation.
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