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Electroconvulsive therapy (ECT) is an important treatment for depression. 
Although it is known as the most effective acute treatment for severe mood 
disorders, its therapeutic mechanism is still unclear. With the rapid development 
of neuroimaging technology, various neuroimaging techniques have been 
available to explore the alterations of the brain by ECT, such as structural 
magnetic resonance imaging, functional magnetic resonance imaging, magnetic 
resonance spectroscopy, positron emission tomography, single photon 
emission computed tomography, arterial spin labeling, etc. This article reviews 
studies in neuroimaging on ECT for depression. These findings suggest that the 
neurobiological mechanism of ECT may regulate the brain functional activity, and 
neural structural plasticity, as well as balance the brain’s neurotransmitters, which 
finally achieves a therapeutic effect.
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Introduction

Depression is characterized by persistent low mood and reduced volitional activity, with 
high incidence, recurrence, and suicide rates, which seriously endanger human physical and 
mental health (1). According to reports, more than 350 million people worldwide suffer from 
depression (2). Therefore, it is of great importance to understand the causes of depression and 
how to combat it. Neuroimaging is now widely used to investigate the pathogenesis of 
depression, and studies have found that structural or functional alterations in the prefrontal 
cortex, hippocampus, amygdala, limbic system, and other regions of the brain are significantly 
associated with the onset of depression.

Electroconvulsive therapy (ECT) is a treatment for mental illness by passing a certain 
amount of electric current through the brain, causing epileptiform discharges. Since ECT was 
invented by Italian scientists in 1938, it has now been used in the treatment of mental disorders 
for more than 80 years (3). As the knowledge of ECT has gradually increased, it has also been 
found to have good effects on the improvement of depressive symptoms, and the general opinion 
is now that ECT is one of the most effective methods for depression (4) and has been widely 
used for severe depressive disorders (5). Some studies have reported that ECT can provide up 
to 70%–80% remission rate of depressive symptoms (6, 7). Also, its benefits include reduced 
patient hospitalization rates, and reduced risk of suicide (8–10).

Even though ECT has remarkable efficacy, but how long does ECT affect the brain is unclear, 
for example, the ECT induced memory loss could last for 2–3 months (11), but some study 
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reported that some still had loss of memory even 3 years after ECT 
(12). More and more neuroimaging studies are used to understand the 
effect of ECT. Neuroimaging techniques, as a means of noninvasive 
observation of brain alterations, can be  used to find markers of 
pathophysiological processes in psychiatric disorders. Previous studies 
on neuroimaging have found that patients with depression may 
experience structural or functional abnormalities (13, 14). 
Neuroimaging studies of depressed patients before/after ECT have 
also found that ECT can alter the structure and function of specific 
brain regions. For example, studies have found that ECT can cause 
changes in hippocampal volume (15, 16). Although there are more 
and more brain imaging studies trying to explore the therapeutic 
mechanisms of ECT, there are inconsistencies in the brain regions that 
cause alterations, so we try to review the brain imaging studies on 
ECT for depression.

Search strategy

References included in the study were identified through multiple 
searches of the Embase and PubMed/MEDLINE for articles published 
until December 2022, using combinations of the following search 
terms: “Depression”, “Major depressive disorder”, “Gray matter 
volume”, “GMV”, “Cortical thickness”, “White matter”, “Functional 
magnetic resonance imaging”, “fMRI”, “Regional homogeneity”, 
“ReHo”, “Amplitude of low frequency fluctuations”, “ALFF’, “Functional 
connectivity”, “FC’, “Magnetic Resonance Spectroscopy”, “MRS’, 
“Positron Emission Tomography”, “PET’, “Single photon emission 
computed tomography”, “SPECT”, “Arterial spin labeling”, “ASL”, 
“electroconvulsive therapy” and “ECT”. Due to the breadth of relevant 
studies, published reviews, meta-analyses, randomised controlled 
trials and recent studies were prioritised to provide a comprehensive 
and up-to-date overview of research on ECT in patients 
with depression.

Structural magnetic resonance 
imaging

Gray matter volume

Previous studies have found that ECT can increase brain gray 
matter volumes of depressed patients commonly in the hippocampus, 
amygdala, and temporal lobe (17–19). Among all studies, the most 
consistent trend of altered brain structures after ECT is to increase the 
volume of the temporal lobe as well as subcortical areas such as the 
hippocampus, amygdala, striatum, and anterior cingulate gyrus (20). 
Some researchers have explored the relationship between ECT and 
depression, such as Tendolkar et al. (17) found ECT could increase the 
volumes of bilaterally hippocampus and amygdala, and HAMD scores 
as well as depressive symptoms significantly reduced after 
ECT. Gryglewski et  al. (21) also found structural changes in 
hippocampal subregions and amygdala after ECT, and these structural 
changes were closely related to the pathophysiological mechanisms of 
depression and the development of stress-related disorders. Cao et al. 
(22) used the latest hippocampal segmentation method and found that 
ECT could increase the volume of corpus striatum, granule cell layer, 
molecular layer, and hypothalamus, while the efficacy of ECT for each 

patient could be accurately predicted. Jorgensen et al. (23) focused on 
the volume of hippocampus, amygdala, dorsolateral prefrontal cortex 
(DLPFC), orbitofrontal cortex, and hypothalamus and found the 
volume of hippocampus and amygdala in patients increased 
significantly after ECT, while the volume of DLPFC decreased slightly, 
but due to the lack of correlation between changes in these brain 
regions and antidepressant effects, the remodeling of these brain 
structures cannot directly respond to the antidepressant mechanisms 
of ECT. There are also some studies based on voxel-based 
morphometry (VBM) to explore whole brain structural abnormalities, 
such as Ota et al. (24) found that depressed patients had a significant 
increase in the volume of bilateral inferior temporal cortex, and the 
right anterior cingulate gyrus after ECT, and the increased volume 
correlated with clinical improvement. Sartorius et al. (25) analyzed the 
changes in structural magnetic resonance pre/post-ECT, found a more 
pronounced increase in gray matter volume in the bilateral temporal 
lobe, middle cingulate gyrus, insula, and the putamen. Some studies 
even found that after unilateral ECT, only the unilateral hippocampus, 
amygdala, insula, and subgenual cortex volumes increased (16, 26). 
Changes of hippocampus volume were concerned commonly after 
ECT, studies have shown a significant reduction in hippocampal 
volume in depressed patients (27–29). Tendolkar (17) found an 
increase in bilaterally hippocampal volume after ECT, and Abbott (30) 
found a significant increase of right hippocampal volume after 
ECT. All these studies suggest that increased hippocampal volume 
after ECT may be one of the potential antidepressant mechanisms. 
However, there are also different opinions, such as Gbyl et al. (31) who 
argued that current MRI studies have not paid enough attention to the 
hypothesis that ECT may lead to brain damage, and suggested that 
future studies should explore the relationship between brain volume 
changes and cognitive impairment. In addition to focusing on the 
therapeutic mechanism of ECT, there are also many studies that agree 
that the increase of hippocampal volume caused by ECT may 
be  related to cognitive side effects, such as Argyelan et  al. (32) 
suggested that hippocampal enlargements are associated with 
cognitive side effects. van der A et al. (33) found similar change, which 
is ECT-induced left hippocampal enlargement correlated with 
decreases in verbal memory functioning. Gbyl et  al. (34) found 
ECT-related transient increases in the volume of major hippocampal 
subregions within-patients are associated with memory impairment, 
based on previous studies, ECT-induced volume changes can be due 
to vascularization (35), inflammation (36) or vasogenic oedema (37) 
and/or neuroplastic mechanisms including neurogenesis (38), 
synaptogenesis (39) and gliogenesis (40), but further studies are 
still needed.

Cortical thickness

Studies have suggested that cortical thickness varies in a variety 
of psychiatric disorders. For example, a study focusing on bipolar 
disorder found that the patient group had reduced cortical thickness 
in the left superior temporal gyrus, bilateral prefrontal compared 
with healthy controls (HCs) (41), and in a study of cortical thickness 
in depressed patients, it was found that cortical thickness of right 
middle frontal gyrus and left anterior cingulate cortex (ACC) were 
thickened in depressed patients compared with HCs (42). It has 
been demonstrated that ECT can change cortical thickness in 
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different brain regions (e.g., superior temporal gyrus, inferior 
temporal gyrus, insula, anterior cingulate gyrus, prefrontal cortex, 
fusiform gyrus) (25, 43). van Eijndhoven et al. (44) evaluated 19 
patients with refractory depression after ECT and found cortical 
thickness in the left temporal pole, left middle temporal lobe, and 
right insula increased significantly after ECT, and the average 
remission rate of depressive symptoms was 57%. A study with a 
6-months follow-up after ECT, exploring the cortical thickness in 26 
brain regions, showed that significant increased cortical thickness 
of frontal, temporal, and insula could be seen immediately after 
ECT, while after 6 months, the thickened cortical thickness returns 
to baseline (45). Some studies suggested that the cortical thickness 
of precentral gyrus, lateral occipital lobe can predict relapse rate 
after ECT for depression (46). Pirnia et al. (43) found that increased 
cortical thickness of bilateral ACC and superior temporal gyrus 
cortex after ECT, especially changes in ACC can predict the early 
efficacy of ECT.

White matter

Alterations in the white matter of the brain are also the focus of 
brain science research, and diffusion tensor imaging (DTI) techniques 
have an important place in the study of white matter by assessing the 
diffuse activity of water molecules in neural tissue, which allows 
noninvasive probing of the direction and intensity of white matter 
trajectories. One study that included 2,937 psychiatric patients with 
depression, schizophrenia, bipolar disorder, or autism, focusing on 
changes in the white matter, found that patients with schizophrenia, 
bipolar disorder, or autism had similar structural changes in the 
corpus callosum, but the similarity change was not found in 
depression patients. The study also found that patients with 
schizophrenia and bipolar disorder had alterations in the limbic 
system compared with HCs, but not found in depressed patients (47). 
Chen et al. (48) conducted a meta-analysis of brain microstructural 
abnormalities in unmedicated depression patients by DTI, and a 
reduction of fractional anisotropy (FA) was found in bilateral anterior 
internal capsule, corpus callosum, right superior frontal gyrus, and 
right inferior temporal gyrus. Gbyl et  al. (31) found ECT could 
increase the integrity of white matter pathways in the frontal lobe as 
well as temporal lobe, but the relationship between increased white 
matter volumes and treatment outcome could not been found. Yrondi 
et  al. (49) used mean diffusivity (MD) to examine patients with 
refractory depression and found a reduction of MD in the 
hippocampus and left amygdala after ECT, and considered that ECT 
could modify microstructural integrity. Gryglewski et al. (50) tried to 
explore white matter changes in refractory depression patients taking 
unilateral ECT and found an increased axial diffusivity (AD) in the 
right posterior limb of internal capsule, but no correlation was found 
between changed AD and clinical effects. Repple et al. (51) analyzed 
changes in white matter structure before and after ECT in depressed 
patients and found increased MD in the right hemisphere after 
ECT. Kubicki et  al. (52) found changed structural connectivity of 
hippocampal neural circuits after ECT. Lyden et al. (53) observed a 
significant increase of FA in the dorsal frontal-limbic circuits in 
depressed patients after ECT. A series of studies using DTI assessment 
suggest that ECT can effectively modulate white matter structure in 
depressed patients.

Functional magnetic resonance 
imaging

Resting-state functional magnetic 
resonance imaging

Blood oxygen level-dependent functional magnetic resonance 
imaging (BOLD-fMRI) has been applied in the field of brain function 
research since the 1990s and is now widely used as a non-invasive 
brain imaging assessment technique for psychiatric disorders. fMRI 
has the following advantages: non-invasive, non-radioactive, and 
reproducible. It can also analyze the dynamic activity of neurons on 
an individual and can analyze different response patterns between 
adjacent cortices. For spontaneous low-frequency activity acquired in 
the resting state, it is thought to reflect the spontaneous brain 
functional activity of the central nervous system in the resting state. 
Therefore, resting-state fMRI (rs-fMRI) has obvious clinical 
advantages. rs-fMRI is also particularly suitable for brain imaging 
studies of depressed patients, and the main analysis methods currently 
available are: regional homogeneity, amplitude of low frequency 
fluctuations, fractional amplitude of low frequency fluctuations, and 
functional connectivity.

Regional homogeneity

Regional homogeneity (ReHo) responds to the degree of 
synchronization of neuronal activity in regional brain regions (54). It 
has been shown that the brain can have spontaneous neural activity 
with a high degree of synchrony in BOLD signals (55, 56). Studies on 
the relationship of depression and ReHo are common, such as Li et al. 
(57) found that, compared with HCs, depressed patients had lower 
ReHo in the precuneus. Kong et  al. (58) found that there was a 
significant decreased ReHo in the bilateral superior frontal gyrus after 
ECT and a significant correlation was found between ReHo in the 
right superior frontal gyrus and changed HAMD before and after 
ECT. Mo et  al. (59) found that after ECT, ReHo increased in left 
angular gyrus in depressed patients. Qiu et al. (60) also focused on the 
changed ReHo in depressed patients after ECT and found that patients 
showed increased ReHo in the bilateral frontal lobe, bilateral parietal 
lobe and right caudate nucleus after 8 sessions of ECT, while reduced 
ReHo was found in the left anterior cerebellar lobe, right cingulate 
gyrus, and right superior temporal gyrus. Argyelan et al. (61) found 
ReHo increase significantly in the left angular gyrus in refractory 
depression patients after ECT. Therefore, ReHo has the potential to 
be used as a response indicator for ECT used in depressed patients.

Amplitude of low frequency fluctuations/
fractional amplitude of low frequency 
fluctuations

Amplitude of low frequency fluctuations (ALFF) as well as 
fractional amplitude of low frequency fluctuations (fALFF) have been 
demonstrated valid in the assessment of spontaneous brain activity in 
different psychiatric disorders (62–64). Studies on depression and 
ALFF/fALFF involving different ages and different brain regions, such 
as studies showed abnormal ALFF in the cingulate gyrus in depressed 
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patients (65, 66). Wang et al. (67) found ALFF in the right precuneus 
and posterior cingulate gyrus decreased significantly in depressed 
patients compared with HCs. A study focused on depression 
adolescents showed decreased ALFF in the left somatosensory cortex 
and increased ALFF in the left insula compared with HCs (68). ECT 
could change ALFF/fALFF in different brain regions, such as Kong 
et al. (58) found ALFF in the left middle frontal gyrus increased after 
ECT, while ALFF in the left middle cingulate gyrus, left precentral 
gyrus, right superior frontal gyrus, and right middle frontal gyrus 
decreased. Du et al. (69) found a significant decreased ALFF in the 
right posterior cerebellar lobe of depressed patients after ECT, and 
previous studies found that ECT could increase ALFF in the medial 
prefrontal, orbitofrontal, and perigenual ACC (pgACC) (70, 71). 
Argyelan et al. (61) compared the differences brain function between 
refractory depression patients and HCs, and found increased fALFF 
in the right cingulate cortex in the patient group at baseline, indicating 
brain function hyperactivity, and after ECT, fALFF in the cingulate 
gyrus decreased significantly, indicating that ECT could significantly 
improve abnormal brain functional activity.

Functional connectivity

Functional connectivity (FC) is a method of calculating the 
similarity in time of blood oxygen signals between different brain 
regions. The signal of each brain region changes over time, and for a 
specific brain region, the sequence of its signal can be extracted from 
the MRI data, and the correlation of the time series between different 
anatomical regions of the brain can be obtained (72, 73). FC analysis 
methods have been widely used to explore the pathogenesis of 
depression, and analysis methods included: seed-based analysis, graph 
theory analysis, and brain network connectivity analysis, etc. Previous 
studies have shown that the hippocampus (74, 75), amygdala (76–78), 
thalamus (79, 80), insula (76, 81), and cingulate gyrus (74, 82), are 
related to emotional or cognitive processing in depressed patients. It 
was found that ECT could increase FC between hippocampus-
occipitotemporal area, the dorsal lateral prefrontal-posterior cingulate 
gyrus, and the prefrontal-limbic system (75–83). Studies showed 
rs-FC changed in brain regions such as bilateral anterior cingulate 
gyrus, dorsomedial prefrontal cortex, bilateral superior frontal gyrus, 
left angular gyrus, left precuneus, bilateral hippocampus, right 
superior temporal gyrus, right insula, and cerebellum after ECT (84). 
Mo et al. (59) found FC increased significantly in the left angular 
gyrus, bilateral inferior temporal gyrus and bilateral middle frontal 
gyrus after ECT in depressed patients, accompanied by improvement 
in emotional symptoms. In FC study which used cingulate gyrus as a 
seed, found that the FC between left pgACC-left parahippocampal 
gyrus increased after ECT (82). Another study found that the FC of 
subcallosal cingulate cortex-bilateral hippocampus, subcallosal 
cingulate cortex-bilateral temporal poles and subcallosal cingulate 
cortex-ventral prefrontal cortex decreased after ECT (83). Some 
studies noted rs-FC of subcallosal cingulate cortex-amygdala and 
subcallosal cingulate cortex-fusiform gyrus changed after ECT. Leaver 
et al. (84) found that rs-FC of the left DLPFC-subcallosal cingulate 
cortex may predict the efficacy of ECT for depression.

Graph theory analysis is applied to complex network functions of 
human brain, which focuses on the relationship between nodes and 
edges. The application of graph theory in the FC analysis of the brain 

can be characterized by different metrics to demonstrate different 
aspects of connectivity. Such as (i) average path length; (ii) clustering 
coefficient; (iii) degree of node; (iv) centrality measures; (v) level of 
modularity, etc. The clustering coefficient reflects the local connectivity 
of the network. The node degree is the simplest metric to quantify the 
total number of connected nodes. A node with a higher degree 
indicates that it plays an important role in the information flow of a 
particular network. Path length is another graph theoretic metric that 
represents the global level of efficiency of the network. Thus, the 
shortest path length represents the minimum number of edges 
required to connect one node to another in the network. Degree 
centrality (DC) has been widely studied in depressed patients, some 
studies found that depressed patients with suicidal ideation had 
elevated DC in the inferior frontal gyrus, orbital part, the 
supplementary motor area compared with HCs (85, 86). Wagner et al. 
(87) found that reduced DC in the frontoparietal network can 
distinguish suicidal ideation and suicide attempts in depressed 
patients. A study on DC alterations after ECT, which focused on 
anhedonia in depressed patients, found that ECT significantly 
increased DC in bilateral dorsomedial prefrontal cortex, right DLPFC, 
and bilateral orbitofrontal cortex, and alterations of anhedonia were 
positively correlated with DC in the abovementioned regions (88).

Brain networks change in depressed patients are commonly 
observed, and a number of studies have also suggested that ECT may 
play a role by modulating brain networks in depressed patients. Wang 
et al. (89) observed the default mode network (DMN), dorsal attention 
network (DAN), executive control network (CON), salience network 
(SN), and sensory-motor network (SMN) and tried to explore the FC 
within each network and between networks, and found that within the 
network, the FC within CON of depressed patients increased after 
ECT, and between different networks, DMN-SN, CON-DMN, 
CON-DAN, and CON-SN increased after ECT. Pang et al. (90) also 
focused on changes of brain networks in depressed patients after ECT, 
and found FC within DMN, and FC of DMN-CEN significantly 
increased after ECT, and could predict the efficacy of depression.

Magnetic resonance spectroscopy

Magnetic resonance spectroscopy (MRS) is used to identify 
abnormal metabolism by measuring changes in tissue concentrations 
of metabolites in humans and observing different peaks and ratios in 
the spectral profile. It is a non-invasive technique that measures 
specific functional areas of the brain and analyzes neuro-biochemicals. 
These compounds include γ-aminobutyric acid (GABA), glutamate 
(Glu), N-acetyl-L-aspartate (NAA), glutamine (Gln), creatine 
(Cr), etc.

Glu plays a key role in the pathophysiology of depression (91). 
There is evidence that the levels of Glu and Gln are reduced in 
pgACC (92, 93), whereas the levels of Glu in DLPFC are unchanged 
(94, 95). ECT induces changes in glutamatergic neurotransmitters 
that may be closely related to their antidepressant effects (96, 97). 
Njau et al. (98) found depressed patients treated with ECT showed 
that Glx (Glu and Gln) increased in the subgenual ACC (sgACC) but 
decreased in the left hippocampus, and these changes were correlated 
with clinical improvement. Some studies found elevated levels of Glx 
in the DLPFC and ACC after ECT (99, 100), but these results could 
not reproducible (96), Overall, the metabolism of Glu is an 

https://doi.org/10.3389/fpsyt.2023.1170625
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Chen et al. 10.3389/fpsyt.2023.1170625

Frontiers in Psychiatry 05 frontiersin.org

important component of ECT efficacy for depression, but the exact 
mechanism still needs further research. The reduction of GABA in 
cerebrospinal fluid and the frontal cortex has been frequently 
reported in patients with depression (101). Meanwhile, some studies 
have confirmed an increased GABA in serum levels and occipital 
lobe after ECT (102, 103). However, Knudsen et al. (104) measured 
changes of GABA in the prefrontal and occipital cortex pre/
post-ECT and found compared with HCs, no significant differences 
were detected by GABA/Cr levels in the prefrontal or occipital lobes, 
while the patient group did not show significant differences in 
GABA, Glu and Gln after ECT, so it was speculated that GABA 
alterations should not be  considered as a key factor of ECT for 
depression. NAA is a marker of neurons and axons, and it can reflect 
the number of neurons as well as their function. Proton MRS 
(H-MRS) showed that ECT could increase NAA levels in the ACC 
and amygdala, suggested that ECT may have a neuromodulation 
effect. Njau et al. (98) examined depressed patients who underwent 
ECT measured by 1H MRS and found decreased NAA in the left 
hippocampus of the patient group compared with HCs. At the same 
time, reduction of NAA in the dorsal ACC (dACC) and right 
hippocampus were found after ECT. Overall, the antidepressant 
effects of ECT may involve different neuro-transporter systems, and 
the mechanisms of neuro-transporter alterations between them are 
not fully understood, which is one of the reasons for the 
inconsistent findings.

Positron emission tomography/single 
photon emission computed tomography

Positron emission tomography (PET) and Single photon 
emission computed tomography (SPECT) monitor local cerebral 
blood flow (CBF) by injecting radionuclides into the body and then 
imaging γ-rays emitted from the body. Studies on CBF with ECT are 
common, but the findings are inconsistent. Mervaala et al. (105) 
found ECT could reduce CBF of temporal lobe and bilateral parietal 
lobe by SPECT, while Milo et al. (106) suggested that increased CBF 
in frontal lobe was significant of ECT for antidepressant effects. 
However, Schmidt et  al. (107) found ECT decreased brain 
metabolism in the anterior and posterior frontal lobes assessed by 
PET. Suwa et  al. (108) also found that ECT could reduce brain 
metabolism in the frontal and lateral temporal lobes, and the 
reduced brain metabolism was correlated with the antidepressant 
effect of ECT (109). On the other hand, previous studies on PET 
probing neurotransmitter changes after ECT, Masuoka et al. (110) 
used [18F] FE-PE2I PET to detect neurotransmitter levels in 
depressed patients before, during and after ECT and found that all 
patients showed reduced dopamine transporters in the striatum, and 
the dopamine system has been shown to be one of the mechanisms 
of ECT. Tiger et al. (111) used PET and [11C] raclopride to detect 
neurotransmitter levels in patients with depression before and after 
ECT, as well as HCs, and found that depressed patients had 
decreased [11C] raclopride binding in all three striatal regions 
compared to HCs. Yatham et al. (112) used [18F] setoperone PET and 
found that depressed patients treated with ECT showed significant 
reduced 5-HT2 receptors in all cortical regions of the brain and the 
decreased 5-HT2 receptors in the right parahippocampal gyrus, 
right lingual gyrus and right medial superior frontal gyrus were 
correlated with improvements in depressive symptoms, this result is 

also consistent with previous studies on antidepressant drugs 
(113–115).

PET is also widely used to assess ECT-induced changes of 
[18F]-fluorodeoxyglucose (FDG). One of the most consistent findings 
was decreased glucose metabolism in the bilateral medial and inferior 
frontal regions, and increased glucose metabolism in the 
hippocampus, middle temporal lobe, left occipital lobe, and parietal 
lobe (116). Bak et al. (117) used [18F]-FDG PET to study the efficacy 
of ECT in a 55 years-old woman with late-onset depression and found 
that PET/CT images of the patient’s brain showed decreased brain 
metabolism, whereas after ECT, the PET imaging returned to normal 
brain metabolism. Hassama et al. (118) found decreased metabolic in 
the frontal, parietal and temporal cortices before ECT assessed by 
18F-FDG-PET/CT, and after 8 ECT sessions, hypometabolism revealed 
significant improvements in the left parietal cortex, the left temporal/
occipital cortex, and bilateral frontal lobe. These improvements in 
brain glucose hypometabolism levels may represent a neurobiological 
mechanism of ECT for psychiatric disorders. However, inconsistent 
results were also reported by Reininghaus et  al. (119). They used 
FDG-PET to assess changes of brain glucose metabolism before and 
after ECT in patients with depression and found the patients did not 
have significant changes of glucose metabolism levels before and after 
ECT; therefore, they did not believe that FDG-PET could assess 
changes in brain function after ECT.

Arterial spin labeling

In recent years, the development of magnetic arterial spin-labeled 
perfusion fMRI (ASL-fMRI) has provided a new method to study 
CBF. Like PET and SPECT, ASL-fMRI can explore CBF, and without 
radiation. Now ASL-fMRI has been widely used to study the neural 
mechanisms of depression, but there are few ASL-fMRI studies on 
ECT. Shi et al. (120) focused on ASL differences in depressed patients 
by frontotemporal ECT and found significantly reduced rCBF in the 
bilateral frontal lobes before ECT, and after ECT, decreased rCBF was 
found in the left amygdala, parahippocampal gyrus, olfactory cortex, 
right occipital lobe, while increased rCBF was found in the bilateral 
frontal lobe. More studies using ASL-fMRI mainly focused on 
alterations in the hippocampus. Recently, Leaver et al. (121) tried to 
predict the clinical outcome of ECT measured by ASL, and found 
lower whole-brain CBF levels in the patient group at baseline 
predicted a better ECT outcome, while after acute treatment of ECT 
and 4 weeks follow-up, it showed elevated rCBF in the right anterior 
hippocampus, regardless of clinical outcome. On the other hand, this 
study found an elevated CBF in the dorsal thalamus as well as in the 
motor cortex and a decreased CBF in the frontotemporal areas in 
patients with a clinical response to ECT. Another study focused on the 
difference in cerebral perfusion in the hippocampus between 
responding group and non-responding group after ECT assessed by 
ASL and found that patients who did not respond to ECT showed 
increased CBF in the bilaterally anterior hippocampus, while patients 
who responded to ECT showed increased CBF in the bilateral 
posterior part of hippocampus (122). However, in a recent study, 
Bracht et  al. (123) also focused on the CBF changed in the 
hippocampus, and found CBF increase in the hippocampus were 
observed in the ECT-group but not in treatment response group, 
showing that CBF in the hippocampus was not associated with 
antidepressant response.
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Conclusion

The development of brain imaging provide an important approach 
to the study of depression and ECT, Table  1 gives a summary of 
relatively consistent findings. However, there are still some limitations, 
and also should consider the directions for future research, mainly in 
the following aspects: (1) there are many choices of statistical methods, 
together with the different subjects, different MRI equipment 
parameters, resulted in a large number of inconsistent findings, so 
future research with more samples in multi-center is needed; (2) there 
are more studies focusing on the efficacy of ECT, but fewer studies on 
its side effects, such as cognitive impairment or delirium after ECT, 
and this is needed to be further investigated; (3) the efficacy of ECT 
may be related to multiple mechanisms, but there are few animal MRI 

studies on ECT, and it is difficult to study the mechanism, so in the 
future, more animal studies on ECT is needed.
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