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EPD1504: a novel μ-opioid 
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Low doses of μ-opioid receptor (MOR) agonists rapidly ameliorate symptoms 
in treatment-resistant obsessive–compulsive disorder (OCD) patients (10–
50% of OCD patients). However, the utility of MOR agonists is limited by their 
safety liabilities. We  developed a novel MOR partial agonist (EPD1540) that 
has an improved respiratory safety profile when compared to buprenorphine. 
Buprenorphine is a MOR partial agonist primarily used in the treatment of 
opiate-use disorder, which in investigator-led trials, has been shown to rapidly 
ameliorate symptoms in treatment-resistant OCD patients. In this study, we show 
that doses of EPD1504 and buprenorphine that occupy small fractions of MORs 
in the CNS (approximately 20%) are as effective as fluoxetine at ameliorating 
OCD-like behaviors in two different rat models (an operant probabilistic reversal 
task and marble burying). Importantly, effective doses of EPD1504 did not 
impair either locomotor activity, or respiration under normoxic or hypercapnic 
conditions.  Additionally, EPD1504 had effects comparable to buprenorphine in 
the conditioned place preference assay. These results indicate that EPD1504 may 
provide a safer alternative to buprenorphine for the treatment of OCD patients.
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1. Introduction

Approximately 50% of obsessive–compulsive disorder (OCD) patients do not respond to 
first-line serotonergic treatments (1–3). In these treatment-resistant patients, μ-opioid receptor 
(MOR) agonists ameliorate OCD symptoms, whereas in many cases, MOR antagonists 
exacerbate OCD symptoms (4–11).

Several experimental approaches have been developed to investigate circuit and behavioral 
mechanisms underlying OCD (12, 13). These tasks measure behavioral flexibility in both 
humans and rodents; examples include the probabilistic reversal task that is disrupted in OCD 
patients (14), and that is modulated by manipulations targeting serotonin receptors in both 
healthy volunteers (15, 16) and rodents (17, 18). Another widely used model of compulsions 
associated with OCD is marble burying in rodents; in this assay, multiple classes of central 
nervous system (CNS)-active drugs modulate the rodents’ innate behavior to bury marbles 
placed in their cage (19–23).

Although both morphine and tramadol (a prodrug with opioidergic and monoaminergic 
polypharmacology) ameliorate OCD symptoms in treatment-resistant patients (6, 8, 10), their 
utility is limited due to inherent respiratory and abuse liabilities (24); in the case of tramadol 
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additional limitations include variable metabolism (conversion from 
prodrug to active form), nausea, and increased risk of seizures (25, 
26). Compared with both morphine and the metabolites of tramadol 
that bind the MOR, the partial MOR agonist buprenorphine has lower 
intrinsic MOR efficacy and significantly higher MOR affinity (27-29). 
These properties appear to limit its respiratory depressant and 
associated euphoric effects. Because of its better safety profile and high 
affinity for the MOR, buprenorphine is primarily used as a 
maintenance therapy to both relieve cravings for, and to occlude the 
euphoric and respiratory depressant effects of opioids of abuse (30). 
Not surprisingly, in small investigator-led clinical trials buprenorphine 
has been shown to ameliorate OCD symptoms and has a slightly better 
safety profile than the higher efficacy agonists such as morphine and 
tramadol (4, 9). However, its utility is limited due to variable 
pharmacokinetics, including a series of metabolites that are high-
efficacy MOR agonists (31, 32), and respiratory depression that cannot 
be rescued by the standard of care (standard clinical doses of the MOR 
antagonist naloxone) (33). Furthermore, because buprenorphine is 
primarily used in the treatment of opioid abuse, access to 
buprenorphine is highly regulated, e.g., in 2016, buprenorphine was 
removed from the morphine milligram equivalence (MME) scale—a 
scale used to standardize opioid prescriptions (30, 34).

Based on the clinical, regulatory, and preclinical evidence, a 
MOR partial agonist with buprenorphine-like efficacy and 
reduced respiratory liabilities would provide a safer and more 
accessible alternative for treatment-resistant OCD patients. 
Therefore, we  designed and tested the MOR partial agonist 
EPD1504—a MOR partial agonist with buprenorphine-like 
intrinsic MOR efficacy. Our previous study reported on RM1490 
a molecule with significantly lower intrinsic MOR efficacy (35). 
In preclinical rat models, EPD1504 was compared to both 
serotonin (hydroxytryptamine [5HT]) and MOR ligands in two 
models of OCD-like behavior (probabilistic reversal and marble 
burying assays). Serotoninergic ligands included fluoxetine, a 
5HT reuptake inhibitor— that has been shown to ameliorate 
OCD symptoms and to reduce marble burying (20), and mCPP, 
a serotonin receptor and transporter ligand, —that depending on 
on dose, species, and experimental setup, has been shown to both 
exacerbate and attenuate OCD patient symptoms and rodent 
marble burying (20); mCPP was, therefore, used a positive 
control in the probabilistic reversal task. The MOR ligands 
included the partial MOR agonist buprenorphine and the MOR 
antagonist naloxone.

2. Methods

2.1. Compounds

Naloxone, naltrexone, buprenorphine hydrochloride, 
DAMGO, forskolin, IBMX, naloxone hydrochloride, fentanyl, 
and diazepam were obtained from Sigma–Aldrich, St. Louis, MO, 
USA. Carfentanil was obtained from Cayman Chemical, Ann 
Arbor, MI, USA. C Ham-F12 and FBS were purchased from 
Invitrogen, Carlsbad, CA, USA. EPD1504 was provided by R2M 
Pharma, South San Francisco, CA, USA and synthesized as 
reported in our previous study (35); a schematic of EPD1504 is 
shown in Figure  1A. Naloxone, naltrexone, and fentanyl were 

dissolved in 0.9% saline; stock solutions of the other compounds 
were prepared by dissolving in DMSO and kolliphor and then 
diluting with 0.9% saline to working concentrations, which 
contained 1% or less of DMSO and kolliphor; vehicle control 
solutions consisted of 0.9% saline, 1% DMSO, and 1% kolliphor. 
Unless otherwise stated, injection was subcutaneous (s.c.) at 
3–5 mL/kg. ALZET minipumps (2ML1: flow rate 10 μL/h for 
7 days) purchased from Durect Corporation, Cupertino, 
California was used for subchronic dosing.

2.2. Cell culture and in vitro assays

Experiments were performed at R2M Pharma, South San 
Francisco, CA, USA. MOR cAMP assays: CHO TAG-LITE human 
MOR stable cell line from Cisbio (NCBI accession No. 
NM_000914.3, Bedford, MA, USA) were seeded and grown to 
approximately 80% confluence in Ham F-12 with 10% fetal 
bovine serum (FBS), 50 U/mL penicillin, 50 μg/mL streptomycin, 
2 mM Hepes, and 1 mg/mL geneticin (Invitrogen, Carlsbad, CA, 
USA). Cells were then harvested using Accutase (Corning, 
Corning, NY, USA), centrifuged at 1,300 g for 5 min, and plated 
at 5,000 cells per 5 μL/well in a 5× dilution of stimulation buffer 
consisting of the HTRF cAMP Gi kit, water, and IBMX at 0.5 mM 
(Cisbio, Bedford, MA, USA) in white HTRF low volume 384-well 
plates (Cisbio, Bedford, MA). Plates were then incubated at 37°C 
in 5% CO2 for 10 min. For the agonist assay, forskolin was added 
to a final concentration of 4 μM. For the antagonist assay, 
forskolin (4 μM) and DAMGO at EC90 final concentration were 
added. Test compounds were dissolved in DMSO and water, then 
serially diluted to working concentrations such that the 
concentration of DMSO was less than 0.1%. Diluted test 
compounds were added at 2.5 μL/well; plates were incubated at 
37°C and 5% CO2 for 15 min and then at room temperature for 
15 min. Next, 5 μL/well of cAMP Eu-cryptate and 5 μL/well of 
anti-cAMP-d2 (both diluted 1:20 in lysis buffer) were added and 
plates were incubated at room temperature for 1 h. Following 
incubation, plates were read in a Synergy Neo2 multimode reader 
(Biotek, Winooski, VT). Plate reader settings were set to 
homogeneous time-resolved fluorescence (HTRF) with excitation 
at 330 nm and emissions of 620 and 665 nm. Emission 
fluorescence was normalized (665/620 nm signal × 1,000). For the 
agonist assay, data were normalized using the maximal DAMGO 
response. The measurements were performed in triplicate, and 
the dose–response curves were fit using non-linear regression.

2.3. Animals

Male Sprague Dawley rats (225–300 g) from Charles River were 
used for all experiments. Unless otherwise stated, animals were 
acclimatized to the local holding facility for at least 3 days after arrival 
from Charles River. Animals were maintained on a 12-h light cycle. 
The experiments involving animals were approved by the Life Source 
Biomedical Services Institutional Animal Care and Use Committee 
(IACUC) in accordance with the animal care standards set forth by 
the Office of Laboratory Animal Welfare (OLAW), the National 
Institutes of Health (NIH).
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2.4. Hot plate

Equipment and procedures were based on the methods discussed in 
our previous study (35). After 2 days of acclimatization, hotplates were 
switched on and set to 52°C. To determine the baseline, vehicle was 
injected, and 15 min later, the animal was placed on the hotplate. An 
experimenter, blinded to the treatment condition, monitored the animal 
for responses including a lick of a hind paw, shake of a hind paw, or 
stomping of the hind paws; after either two of the listed observations, or 
if the animal vocalized, jumped (all 4 feet off the ground), or reached the 
nominal cutoff time of 30 s without exhibiting a detectable response, the 
animal was immediately removed from the hotplate, returned to its home 
cage, and the time was recorded. To determine the test score, on the next 
day, the procedure was repeated following the injection of the test 
compound. If an animal did not respond to touch upon being picked up 
for testing, its righting reflex was tested; animals that did not right in 5 s 
were assigned the cutoff score of 30 s, and were not tested at that time 
point. Percentage maximum possible effect (%MPE) was calculated as 
100*[(test − baseline)/(30 s − baseline)], where 30 s is the cutoff time.  The 
average effect in summary bar graphs was calculated as the average test 
scores between 30 and 120 min.

2.5. Receptor occupancy

Experiments were performed at Melior, Inc. procedures and data 
used for buprenorphine were reported in our previous study (35). 
Concisely, test compounds were injected subcutaneously (s.c.), and 
40 min later, the tracer (carfentanil) was injected intravenously (i.v.) 
through a lateral tail vein. After 20 min, animals were sacrificed, and 
cerebellar and thalamic tissue samples were collected and processed 
for liquid-chromatography tandem mass spectrometry. To calculate 
occupancy, the concentration of carfentanil detected in the thalamus 
(MOR-containing region) was normalized to the levels in the 
cerebellum (MOR-null region).

2.6. Probabilistic reversal: training

Equipment and procedures were based on methods discussed in 
previous studies (17, 18, 36). Training and testing were carried out in 
custom-built operant chambers fitted with equipment from Med 
Associates, Inc. (Fairfax, VT, USA), including a house light, fans, a tone 
generator, and two retractable levers positioned opposite to a food 
magazine fitted with a photo-beam sensor to detect entries. Concisely, 
food-restricted rats (approximately 95% free-feeding weight) were first 
trained to press either lever on an FR1 schedule; each lever press initiated 
a tone, a retraction of both levers, and the delivery of a 45-mg chocolate 
food pellet (Bio-Serv, NJ, USA). The tone continued for 10 s or until the 
reward was collected from the food magazine. The intertrial interval was 
15 s. Once rats earned 30 pellets in 1 h, the probability of a reward was 
reduced to 70% on both levers. Animals showing a bias for one of the 
levers (>70% of response on one lever only) were excluded. After 2 days, 
the reward probability on the levers was set to 80% and to 20%, which 
denoted “correct” and “error” levers, respectively. After eight presses on 
the “correct” lever, the contingencies were reversed (the 80% lever 
becomes 20% lever and vice versa). A schematic of the task is presented 
in Figure 2A.

2.7. Probabilistic reversal: testing

After training, baseline was established: animals were injected 
20 min before each daily session with the vehicle. Each session was run 
for approximately 1 h, or until 200 lever presses were completed. 
Individual baselines were recorded once there were > 6 reversals per 
hour and < 25% difference between the rate of reversals during three 
daily sessions. The rats that failed to meet these criteria in eight 
sessions were excluded. The following day, the rats were injected with 
test compounds 20 min before a session.

2.8. Marble burying

Equipment and procedures were based on published methods (20, 
21). Clean housing cages were filled with 5 cm of clean home cage 
bedding. Red glass marbles of 1/2 inch diameter were evenly distributed 
onto the bedding using a custom-made plexiglass template with 15 holes. 
Under uniform lighting, a “before” image of the bedding and 15 marbles 
was taken using a Logitech C920 Webcam. The cage was then placed in a 
sound-attenuating box purchased from Med Associates, Inc. (Fairfax, VT, 
USA). The rats were injected with test compounds and after 20 min the 
animals were placed in the cage (one rat per cage with the marbles). The 
cage was then covered with its lid. After 40 min, the rats were removed 
and were returned to their home cage. A second “after” image was then 
taken of the bedding and marbles. Representative images for “before” and 
“after” of the bedding along with marbles on it are shown in 
Figure  3B. Images were analyzed using ImageJ software (NIH). To 
determine the number of marbles buried, the image on the red channel 
(color of the marbles) was converted to a binary image, and each marble’s 
visible area was determined using the analyze particle tool. The visible 
area of each marble was divided by the mean of the marbles’ areas before 
rats were placed into the cage with the bedding and marbles. As shown in 
Figures 3A–D, a marble was considered buried if <0.35 of its area was 
visible. This cutoff agrees with the standard of two-thirds of buried areas 
(i.e., <0.33 visible) as estimated by the experimenter in the previous 
studies (20, 21).

2.9. Conditioned place preference (CPP) 
using opioid–naïve rats

The recording chamber consisted of two webcameras and a custom-
built plexiglass chamber 38′′ × 38′′ × 18′′ that was further enclosed in a 
sound-attenuating box purchased from Med Associates, Inc. (Fairfax, VT, 
USA). Animals were tracked using the videography from the camera 
positioned above the chamber using the Viewer2 software (Biobserve 
GmbH). To determine the baseline time during the pretest, a divider with 
a cutout door (5′′ × 5′′ × 4′′) was used to divide the chamber into two sides 
of equal dimensions; each side of the chamber had distinct visual and 
tactile cues including floors of different consistency (smooth vs. bumpy), 
visual cues (2 cm stripes, vertical vs. horizontal). The time animals spent 
freely exploring each side of the chamber was measured for 20 min 
(1,200 s). To reduce the effect of intrinsic biases, animals that spent >900 s 
on one side of the chamber were excluded from the study. Conditioning 
began the following day: s.c. injection of vehicle in the morning (between 
8 a.m. and 11 a.m.) and test compound 4 h later in the afternoon (between 
12 p.m. and 3 p.m.). After each injection, animals were confined to one 
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side of the chamber for 45 min and then were returned to their home cage. 
The injections and conditioning procedure were repeated 2× at 48 h 
intervals. Two days after the last injection, the divider with the cutout was 
placed in the chamber, and the animals were once again allowed to 
explore both sides of the chamber for 20 min (1,200 s); the time spent on 
the side of the chamber associated with the test compound was 
determined. Preference score (in %) was calculated as 100 × [(test − 
baseline)/(600)].

2.10. CPP/CPA after subchronic EPD1504 
or buprenorphine

The baseline time spent on either side of the CPP chamber was 
determined during the pretest as described in the above sections. 
Subsequently, the animals were implanted s.c. with a 2ML1 osmotic 
minipump (Durect Corporation, Cupertino, CA, USA) containing either 
EPD1504 or buprenorphine. The pumps were removed 5–6 days after 
implantation. After 24 h, the vehicle was injected s.c. in the morning and 
injected with the test compound in the afternoon. The injections and 
conditioning procedures were repeated 2× at 24 h intervals. Preference 
was determined 48 h later as mentioned in the above sections in the CPP 
procedure in opioid–naïve rats.

2.11. Scoring of somatic signs of 
withdrawal

Experimenters blinded to treatment conditions scored 
somatic signs using weighted scores as previously described (37, 
38). During the session, animals were monitored during two 
5-min epochs at 2 and 12 min after injection. The following 
behaviors were counted and assigned weighted scores based on 
the number of occurrences: wet dog shakes (<3 score = 2; >3 
score = 4), and escape attempts (jumps with all 4 feet off the 
ground: 2-4,5-9 and >10 jumps were scored  1, 2, and 3, 
respectively). Any occurrence of teeth chattering/excessive facial 
grooming (score = 2), abdominal constriction (abdominal 
twitches; score = 2), pronounced swallowing movements 
(score = 2), abnormal posture (indicative of visceral discomfort; 
score = 3), ptosis (score = 2), erection or ejaculation (score = 3), 
chromodacryorrhea (porphyrin on the face; score = 5), profuse 
salivation (score = 7), vocalization on handling (score = 3). After 
the session, fecal pellets and/or diarrhea were counted and scores 
assigned (pellets >15/diarrhea; score = 2), and any weight change 
(score = 1 per 1% loss). A global weighted score was then 
calculated per animal per session.

2.12. Open-field test

Individual animals were injected with test compound 20 min prior 
to being placed in an open-field arena: a custom-built plexiglass 
chamber 38′′ × 38′′ × 18′′ height that was further enclosed in a sound-
attenuating box purchased from Med Associates, Inc. (Fairfax, VT, 
USA). Animals were tracked using the videography from the camera 
positioned above the chamber using the Viewer2 software 
(Biobserve GmbH).

2.13. Pharmacokinetics: collection and 
analysis of plasma samples

To determine plasma exposures in the animals implanted with 
ALZET minipumps: the animals were lightly anesthetized with 
isoflurane, approximately 0.75 mL of blood was collected from a tail 
vein and mixed with 0.1 M EDTA. Samples were centrifuged at 4°C 
for 15 min. The supernatant was stored at −80°C until the analysis was 
carried out. The samples were analyzed by LC–MS at Quintara 
Discovery (Hayward, CA, USA). The pharmacokinetics (PK) of 
EPD1504 after acute injection were determined using cannulated rats 
at BioDuro, Inc. (San Diego, CA, USA) using a similar methodology.

2.14. Whole-body plethysmography

Whole-body plethysmograph chambers, hardware, and recording 
software from DSI (St. Paul, MT) were used to record unrestrained 
and unanesthetized respiration, with a negative bias flow of 2.5 L/min. 
Chambers were enclosed in a sound attenuating box purchased from 
Med Associates, Inc. (Fairfax, VT, USA). Animals were acclimatized 
to the chamber for 3 days, 40 min/day. After acclimatization, and for 
experiments in normal air, the animals were placed in the chamber 
and recorded for 30 min; subsequently, the chambers were opened and 
the animals were injected with the test compound. Then the animals 
were returned to their respective chambers, and their respiration was 
recorded for 1–2 h.

For experiments to monitor the response to 10% CO2, i.e., the 
hypercapnic ventilatory response (HCVR), animals were injected with the 
test compound 20 min before being placed in the chamber, and respiration 
was recorded for 30 min. Then, the negative bias flow was switched off, 
and a hypercapnic gas mixture of 10% CO2, 20% O2, and 70% N2 was fed 
into the chamber at approximately 2 psi. After 2 min, the bias flow was 
restarted, next the hypercapnic gas mixture was switched off. The data 
were normalized by dividing by the average minute volume observed 
during the last 15 min of the initial 30-min period.

2.15. Experimental design and statistical 
analysis

Statistics were performed using Prism (GraphPad Software, Inc., 
San Diego, CA, USA). Unless otherwise stated, for between subjects’ 
comparison, the data were analyzed using one-way analysis of variance 
(ANOVA) and Dunnett’s multiple comparisons post-hoc t-test, and are 
presented as mean ± standard error of measurement (SEM).

3. Results

3.1. EPD1504 is a brain-penetrant MOR 
partial agonist with buprenorphine-like 
antinociceptive activity

3.1.1. EPD1504 is a MOR partial agonist
In CHO cells, stably expressing the human MOR, EPD1504 and 

buprenorphine exhibited similar limited (partial) efficacy compared 
to the high efficacy MOR agonist DAMGO (Emax ± standard deviation 
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[SD] as percent response of DAMGO: EPD1504 56 ± 2%, and 
buprenorphine 63 ± 2%) (Figure 1B). In the Eurofins DiscoverX 78 
safety scan, EPD1504 exhibited good selectivity and high affinity for 
the human MOR (0.0006 μM); potential off-target interactions that 

may occur based on in vitro affinities <10 μM were detected at targets, 
including δ (0.04 μM)- and κ (0.3 μM)-opioid receptors, and the 
dopamine D2 receptor (0.1 μM), i.e., at 67×, 500×, and 167× lower 
affinities than for the MOR. Additional potential off-target 

FIGURE 1

EPD1504 is a brain penetrant MOR partial agonist with buprenorphine-like antinociceptive activity in the hotplate test. (A) Chemical structures of 
EPD1504 and buprenorphine. (B) Representative dose–response curves for cAMP activation in CHO cells expressing human MORs, with EPD1504, the 
full agonist: DAMGO, antagonist: naltrexone, and comparable partial agonist: buprenorphine (n = 3 replicates per experiment, mean ± SD). (C) Coplot of 
dose–response curves for antinociceptive activity in the hotplate test measured as the mean of % maximum possible effect (%MPE) between 30 and 
120 min after injection of the test compound on the y-axis vs. %MOR occupancy in the thalamus at 60 min after injection of the test compound on the 
x-axis (rats per dose: %MOR occupancy, n = 3–4, %MPE antinociceptive activity, n = 6–8). (D) Summary table for dose and percent occupancy of MOR 
for the data shown in (C). The data used to calculate CNS MOR percent occupancy for buprenorphine have been reported in our previous study (35). 
(E) Time course and summary data is shown in (F) of antinociceptive activity in the hotplate test for doses of EPD1504 10 mg/kg and buprenorphine 
that occupy approximately 80% of MOR in the thalamus; note that the antinociceptive activity of both agonists was antagonized by naloxone (1 mg/kg) 
(which crosses the blood–brain barrier), but not by naloxone methiodide 10 mg/kg which does not cross the blood–brain barrier (n = 6–8 rats per dose, 
ANOVA, **p < 0.01, ns = not significant).
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interactions detected between >2 μM and < 10 μM were observed at 
Nav1.5 (2 μM), SERT (3 μM), and nuclear hormone receptor (NR3C1) 
(9 μM). As detailed in the next section, 10 mg/kg s.c. achieves a 
plasma concentration of approximately 0.3 μM. Therefore, these 
off-target interactions unlikely occur in the dose range tested (<3 mg/
kg s.c.).

3.1.2. EPD1504 pharmacokinetics, MORs binding 
and antinociceptive activity in the hotplate test

At 1 h after 10 mg/kg s.c. was injected into rats (n = 3), 
EPD1504 was detected in plasma (171 ± 35 ng/mL) and 
cerebrospinal fluid (17 ± 9 ng/mL) (mean ± SD). The molecular 
weight of EPD1504 is 395 g/mol; therefore, 10 mg/kg s.c. achieves 
a plasma exposure of 171 ng/mL or 0.3 μM, and occupancy of 
>80% of CNS MORs; the half-life of EPD1504 was estimated to 
be 1.5 h. To confirm that EPD1504 binds and activates MOR in 
the CNS, we  used a modified hotplate assay and receptor 
occupancy as described in our previous study (35). In the hotplate 
test, two doses of EPD1504 (1 and 10 mg/kg s.c.) and 
buprenorphine (0.03 and 0.3 mg/kg s.c.) that occupied 
approximately (20 and > 80%) of CNS MORs exhibited dose-
dependent antinociceptive activity (Figures 1C-F). The data used 
to calculate CNS MOR occupancy (in %) for buprenorphine were 
reported in our previous study (35). Importantly although 
naloxone blocked the antinociceptive activity of both compounds 
(EPD1504 10 mg/g (79.6% vs. 13.9%, p < 0.001) and 
buprenorphine (84.5% vs. 1.9%, p < 0.001)), naloxone methiodide 
(39, 40), which does not cross the blood–brain barrier, had no 
effect on the antinociceptive effect of either compound (EPD1504 
10 mg/kg + naloxone methiodide and buprenorphine 0.3 mg/
kg + naloxone methiodide: 67.5 and 70.2%, respectively) 
(Figures 1E,F).

3.2. EPD1504 ameliorates OCD-like 
behaviors with reduced motor impairment

3.2.1. EPD1504 and buprenorphine reduce error 
responses in a probabilistic reversal task

A schematic of the task is shown in Figure  2A. Briefly, a food-
restricted rat can press either lever in the operant chamber to obtain a 
food reward. The probability of a reward after pressing the “correct lever” 
is 80%, whereas the probability of a reward after pressing the “error lever” 
is 20%. After eight correct-lever presses, the contingencies reverse, i.e., the 
correct lever becomes the error lever and vice versa.

The first reversal of each daily session was not included in the 
analysis. The data for 62 rats during their three baseline sessions 
(1,410 reversals) are presented in Figure  2B. During 
approximately 60% of baseline reversals, there were more correct 
responses than error responses (853 reversals in which correct > 
error, and 557 reversals in which error > correct). This result 
indicated that the rats had learned the contingencies of the task. 
The distribution of correct and error responses was not a normal 
distribution (Kolmogorov–Smirnov test: distance 0.1, p < 0.0001). 
Therefore, data were normalized to the interquartile confidence 
intervals (CIs) of baseline responses using the equation: 
(Probability of an error response during a reversal −25% CI)/

(75% CI − 25% CI) as reported previously (41). As a measure of 
motor function, we monitored the rate of lever pressing (correct 
+ errors), as shown in Figure 2C. The rates of lever pressing were 
stable over the 3-day baseline period.

Injection of vehicle did not affect either the lever-pressing rate 
(correct + errors presses per hour) or error responses per reversal 
(Figures 2C,E). Of the two serotonin modulators tested (mCPP and 
fluoxetine), only fluoxetine dose-dependently decreased error 
responses, without reducing the total lever-pressing rate. In contrast, 
although mCPP dose-dependently reduced the rate of lever pressing, 
it did not modulate the fraction of error responses per reversal 
(Figures 2D,E).

Of the three MOR ligands tested, doses of EPD1504 that occupied 
less than 60% of CNS MORs (Figure 2D) reduced the probability of 
an error response without impairing the lever pressing. While 
buprenorphine improved the performance, impaired lever pressing 
was observed at 0.03 mg/kg, a dose that occupies 20% of CNS MORs, 
i.e., buprenorphine reduced lever pressing at a lower level of CNS 
MORs occupancy compared to EPD1504. The MOR antagonist, 
naloxone, did not affect either lever-pressing rate or task performance 
(Figure 2E).

3.2.2. EPD1504 and buprenorphine reduce 
marble burying

To improve consistency between experimenters, we developed 
a semi-automated method to analyze the number of marbles 
buried. In this analysis, the visible area of each marble was 
normalized by dividing by the mean marble area visible before 
the rat was placed in the chamber. Marbles that had a normalized 
area < 0.35 were classified as buried. No marbles were classified 
as buried before the animal was placed into the chamber. The 
mean normalized area and 5–95% CIs for 1,155 marbles before 
the rats were placed in the cage were (1 and 0.87–1.16), 
respectively (Figures 3A–D).

Fluoxetine dose-dependently reduced the number of marbles 
buried (Figure 3E). mCPP was not tested as it impaired lever-pressing 
rates in the probabilistic reversal test (Figure 2D).

Doses of EPD1504 1 mg/kg and buprenorphine 0.01 mg/kg 
that both reduced marble burying and increased the fraction of 
correct responses in the probabilistic reversal task, that improved 
performance in the probabilistic task without impairing the rate 
of lever pressing (as shown in Figure 2) reduced the number of 
marbles buried to the same extent (test compound dose [mg/kg] 
[marbles buried mean ± SEM]: EPD1504 1 mg/kg (3.1 ± 0.7) vs. 
buprenorphine 0.01 mg/kg [3.1 ± 1.1]) (Figure 3E); it is important 
to note that multiple comparisons revealed that no further 
decrease in marble burying was observed at higher doses that 
reduced lever-pressing rates in the probabilistic task: EPD1504 
(1 mg/kg [3.1 ± 0.7] vs. 3 mg/kg [3.4 ± 1.0.8]), buprenorphine 
(0.01 mg/kg [3.1 ± 1.1] vs. 1 mg/kg [1.4 ± 0.7]), and EPD1504 
(1 mg/kg vs. buprenorphine 0.03 mg/kg [p = 0.7]). Although a 
trend was noted, naloxone did not reduce the number of marbles 
buried (Figure 3E).

Doses of EPD1504 1 mg/kg and buprenorphine 0.01 mg/kg did 
not impair locomotor activity in the open-field test (Figure  3F). 
Finally, preinjection with naloxone blocked the effects of EPD1504 
and buprenorphine, indicating that the reduction in marble burying 
is attributable to opioid receptors (Figure 3G).
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3.3. EPD1504 has limited effects on 
respiration

We investigated the effects of EPD1504 on respiration using 
whole-body plethysmography in unrestrained animals under 
three conditions: (1) in normal room air (normoxic conditions), 
(2) with coinjection of diazepam at 3 mg/kg [a dose that has been 
shown to induce place preference in rats (42)], and (3) in elevated 
CO2 (10% CO2 hypercapnic conditions).

In normal room air, EPD1504 and buprenorphine had limited 
effects on respiration, whereas fentanyl (0.3 mg/kg) significantly 
suppressed respiration (Figures 4A–C). When coinjected with 
diazepam, all tested compounds initially (between 30 min and 
approximately 60 min after coinjection) caused a 30–40% 
decrease in respiration compared to animals injected with 
diazepam only. In rats coinjected with diazepam and EPD1504, 
respiration recovered within the 2-h recording period 
(90–120 min). In contrast, at the same time point, no recovery 

FIGURE 2

EPD1504 and buprenorphine reduce error responses in a probabilistic reversal task. (A) Schematic of the probabilistic reversal task. A food restricted rat 
can press either lever in the operant chamber to obtain a food reward. The probability of a reward after pressing the “correct lever” (green with check 
mark) is 80%, whereas the probability of a reward after pressing the “error lever” is 20%. After eight correct-lever presses the contingencies reverse, i.e., 
the correct lever becomes the error lever and vice versa. (B) Histogram of 1,410 reversals during baseline sessions (n = 62 rats). Note that rats had 
learned the contingencies of the task as more correct responses were made during a greater percentage reversal (approximately 60% of reversals). 
(C) Baseline rate of responding for 3 days. (D) Rate of responding during subsequent test trials. Note that doses that reduced the response rate were 
excluded from further analysis. (E) Error responses per reversal normalized to the interquartile range of responses during baseline [data in (B)]; (ANOVA, 
*p < 0.05, **p < 0.01, ***p <0.001, ns = not significant; n = 3–4 rats per group, n = 2 daily sessions).
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was observed after the coinjection of diazepam with 
buprenorphine. Analysis of differences between mean recovery 
(90 min) and initial depression (30 min) revealed that only 
EPD1504 exhibited a significant recovery. It is important to note 
that diazepam (9 mg/kg, i.e., at 3× the dose was coinjected with 

the test compounds) did not suppress respiration (Figures 4D–G). 
Under hypercapnic conditions, EPD1504 did not affect the 
response to 10% CO2, whereas buprenorphine and fentanyl dose-
dependently suppressed the hypercapnic ventilatory response to 
similar extents (Figures 4H,I).

FIGURE 3

EPD1504 and buprenorphine reduce marble burying. (A) Timeline of semi-automated method to quantify marble burying. (B) Representative 
photographs and processed images of marbles on the bedding (n = 15 marbles, before the rat was placed in the chamber), and after the rat had been in 
the chamber for 40 min. (C) Histogram showing cutoff used to determine whether a marble is buried or visible for 1,155 marbles before the rat was 
placed in the chamber (open bars), and after the rat was placed in the chamber (filled bars); note that no marbles were classified as buried before the 
rat was placed in the chamber. (D) Summary data for vehicle treated rats (n = 15). (E) Mean marbles buried for data in (D), and dose–response curves for 
marbles buried by rats injected with either vehicle (n = 18), fluoxetine (n = 10 per dose), buprenorphine (n = 10 per dose), EPD1504 (n = 11 per dose), or 
naloxone (n = 10 per dose). Doses are listed as mg/kg below the x-axis. (F) Doses of fluoxetine (3 mg/kg), EPD1504 (1 mg/kg), and buprenorphine 
(0.01 mg/kg) that reduced the number of marbles buried (did not affect distance traveled in the open-field test, and did not affect rate of lever pressing 
in the probabilistic reversal task as shown in Figure 2). (G) Timeline and data for rats preinjected with naloxone (1 mg/kg) followed by either EPD1504 
(1 mg/kg) or buprenorphine (0.01 mg/kg) [n = 5 per group, *p<0.05, **p<0.01 ANOVA, not significant vs. vehicle treated rats shown in (E)].
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3.4. EPD1504 has a limited dependence 
liability

In opioid–naïve rats, EPD1504 and buprenorphine induced 
comparable levels of place preference (Figures 5A,B). As described in our 
previous study, naltrexone precipitated somatic signs of withdrawal and 
place aversion were used to investigate the dependence liabilities of 
EPD1504 compared to buprenorphine (35). Subcutaneous pumps 
(continuous infusion at 10 μL/h) that achieved comparable levels of 
occupancy of CNS MORs (approximately 70%): EPD1504 (5 mg/mL) 
68 ± 6% (n = 4) and as reported in our previous study for buprenorphine 
(1 mg/mL) (35), were removed after 5 days. After this subchronic 
exposure, naltrexone (0.3 mg/kg) induced fewer somatic signs of 
withdrawal and conditioned place aversion in animals exposed to 
EPD1504 (Figures 5C–F).

4. Discussion

4.1. Evidence for opioids in OCD

MORs modulate both behaviors (e.g., behavioral flexibility) and 
underlying cortico–striatal circuits that are disrupted in OCD  
(43–46). In addition, opioids modulate neurotransmitters implicated 
in OCD, e.g., serotonin (47) and glutamate (48). These mechanistic 
observations motivated a series of investigator-led trials in treatment-
resistant OCD patients; in a subset of these patients MOR agonists 
ameliorated OCD symptomology (4, 6, 8–10), whereas antagonists in 
many cases exacerbated symptoms (7, 11, 49, 50).

Two of the compounds used in the aforementioned OCD 
clinical trials (the partial agonist: buprenorphine and the 
antagonist: naltrexone) are U.S. Food and Drug Administration 

FIGURE 4

EPD1504 has limited effects on respiration. (A–C) Timeline, and summary data (mean minute volume between 30 and 60 min after injection) for effect 
of test compounds on minute volume under normoxic conditions (normal room air). The doses are listed in mg/kg below the x-axis; note that in 
contrast to EDP1504 and buprenorphine, fentanyl suppressed respiration compared to vehicle. (D, E) Timeline and data with inset bars at 30 and 90 min 
after injection that correspond to observed respiratory depression and recovery, respectively after coinjection of diazepam with test compounds. 
(F) Summary data for effect of coinjection of diazepam with test compounds on respiration at the two time points (30 and 90 min) illustrated in (E). 
(G) Volcano plot of differences between mean minute volume observed at 30 and 90 min (recovery – depression); note that although coinjection of 
diazepam with all opioids tested exacerbated respiratory depression in normoxic condition, that only EPD1504 exhibited significant recovery to 
baseline in the at the 90-min time point. (H,I) Timeline and summary data for effect of test compounds on minute volume in 10% CO2 (hypercapnic 
conditions); note that unlike both buprenorphine and fentanyl, EPD1504 did not suppress respiration under hypercapnic conditions (All groups n = 5–6, 
*p < 0.05, ***p <0.001, and +++p <0.001, **p < 0.01 as indicated; ANOVA post-hoc test).
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(FDA)-approved treatments for opioid use disorder, a population 
in which OCD is approximately 10× more prevalent than the 
general population (51–57). Evidence from the opioid use 
disorder population strongly supports the postulate that opioid 
agonists ameliorate OCD symptoms. First, OCD symptoms 
precede opioid misuse in approximately 70% of cases in which 
opioid use disorder and OCD are comorbid; implying that opioid 
misuse may be  an effort to self-medicate for OCD (58, 59). 
Second, OCD symptoms are bi-directionally regulated during 
treatment of opioid use disorder: initially, a reduction in 
symptoms is observed during induction into treatment when 
patients receive higher doses of MOR agonists, whereas an 
exacerbation is observed upon agonist titration (60–64).

4.2. Factors regulating the therapeutic 
efficacy and liabilities of MOR agonists in 
OCD

The therapeutic effects and liabilities (sedation, reward, 
dependence, and respiratory depressant effects) of MOR ligands are 
primarily attributable to a combination of the following 3 factors: (1) 
how the ligand activates the MOR and the intracellular second 

messengers that are recruited, (2) the percentage of MORs bound in 
CNS circuits, and (3) interactions with active metabolites and other 
CNS active ligands, e.g., benzodiazepines.

4.2.1. How the ligand activates the MOR
EPD1504 and buprenorphine are relatively selective partial 

agonists of the MOR. Most partial MOR agonists also exhibit limited 
activation of the second messenger Beta-Arrestin; although, it is an 
area of active research, limited intrinsic MOR efficacy and B-Arrestin 
signaling have been proposed to underlie the reduced liabilities of 
MOR partial agonists (27, 65).

Compared to other partial agonists (with comparable or 
lower intrinsic MOR efficacy), EPD1504 (like buprenorphine) is 
somewhat unique in that it exhibits limited off-target agonist 
activity; examples of other partial MOR agonists with off-target 
agonist activity include nalbuphine and butorphanol that are 
both potent MOR and kappa opioid receptor agonists, the latter 
has been shown to induce hallucinations and dysphoric effects 
(66, 67). Other examples include the prodrug tramadol and 
tapentadol, which are both partial MOR agonists and potent 
amine modulators, importantly the metabolites of tramadol are 
high-efficacy MOR agonists (68, 69). Our experiments confirmed 
that the limited activation of MORs (by both EPD1504 and 

FIGURE 5

EPD1504 has a limited dependence liability. Timelines and summary data: in (A,B) for conditioned place preference observed in opioid–naïve rats in 
(C,D) for somatic signs of withdrawal precipitated by naltrexone following subchronic exposure to EPD1504 and buprenorphine in subcutaneous mini 
pumps. Note that as detailed in the main text plasma levels observed for both compounds achieve approximately 70% occupancy of CNS MORs. In 
(E,F) for conditioned (E,F) place aversion observed after injections of naltrexone (Nltrx) (All groups n = 6–11, ns = not significant, *p < 0.05, **p < 0.01 as 
indicated; ANOVA post-hoc test).
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buprenorphine) was sufficient to reduce OCD-like behaviors in 
2 rat models, and that the MOR antagonist naloxone blocked the 
effects of both partial agonists in the hotplate and marble-
burying assays.

4.2.2. The percentage of MORs bound in the CNS
To investigate dose-dependent occupancy of CNS MORs by 

EPD1504 and buprenorphine, we used two assays; the first was a 
modified hotplate assay previously shown to provide an estimate 
of CNS MOR occupancy (35). In this assay, naloxone methiodide, 
a naloxone derivative that does not cross the blood–brain barrier 
(39, 40, 70, 71), did not affect the antinociceptive effects of either 
compound. In contrast, naloxone (which crosses the blood–brain 
barrier) antagonized the antinociceptive effects of both 
compounds. In the second experiment, we  determined the 
fraction of carfentanil binding to MORs 1 h after injecting the test 
compounds. Doses of both molecules that occupied less than 20% 
of CNS MORs modulated behavior in both models of OCD-like 
behavior (probabilistic reversal task and marble burying assays). 
Critically, EPD1504 exhibited a much larger therapeutic window 
compared to buprenorphine, wherein EPD1504 impaired lever 
pressing at approximately 60% occupancy of CNS MORs, whereas 
at 20% occupancy of CNS MORs, buprenorphine impaired both 
lever pressing and respiration (the hypercapnic ventilatory 
response to CO2).

Our observations that low doses of buprenorphine reduce 
OCD-like behaviors in rat models, but that buprenorphine has a 
limited therapeutic window (limited separation between 
therapeutic and adverse events) is in agreement with clinical 
results. In clinical studies, low doses of buprenorphine (0.2–4 mg) 
ameliorate OCD symptoms (4, 9); [for comparison, the approved 
daily dose for sublingual buprenorphine in opioid use disorder 
treatment is significantly higher: 8–24 mg (72)]. Although the 
bioavailability and pharmacokinetics of buprenorphine are highly 
variable, pharmacokinetic models that predict dose-dependent 
plasma exposure and percent occupancy of CNS MORs have been 
developed (30, 73). From these clinical studies, 0.6 mg i.v. and 
4 mg sublingual achieve a steady state plasma concentration of 
approximately 1–2 ng/mL; 1 ng/mL is estimated to occupy 
approximately 50% of CNS MORs in heroin-dependent 
volunteers (30). Therefore, the dose range used in the 
aforementioned OCD trials (0.2–4 mg) is projected to achieve a 
maximum plasma concentration of 1 ng/mL and to occupy 
approximately 2.5 to 50% of CNS MORs; caveats to this 
calculation include comparison of doses across studies and 
differences in MOR availability between healthy volunteers vs. 
opioid-dependent volunteers (74). Despite these caveats, it is 
interesting to note that in healthy volunteers, doses in (and 
below) this range induce dizziness and impair both cognition and 
balance; the dose range reported in previous studies is 0.075–
0.6 mg i.v. (75–78). This body of clinical work on buprenorphine 
implies that there is a narrow dose range (and corresponding 
narrow CNS MOR occupancy range) in which buprenorphine 
ameliorates OCD symptoms without adverse events (including 
sedation and impaired cognition).

Given that both molecules (EPD1504 and buprenorphine) have 
similar in vitro properties and, as mentioned naloxone sensitive 
antinociceptive activity in the hotplate test, potential explanations for 

the larger therapeutic window of EPD1504 include off-target binding 
of buprenorphine that is sufficient to regulate its analgesic effects (69, 
79), and as discussed in the following sections, the three active 
metabolites of buprenorphine.

4.2.3. Interactions with active metabolites and 
other CNS active ligands, e.g., benzodiazepines

Compared to both buprenorphine and morphine, the in vivo 
effects of EPD1504 should be  more predictable because they can 
be attributed to the intrinsic MOR efficacy of the parent compound; 
conversely, the results of both legacy molecules (buprenorphine and 
morphine) are less predictable as they can be  attributed to a 
combination of off-target effects of the parent compound and/or its 
metabolites, i.e., buprenorphine and its higher efficacy metabolites 
including norbuprenorphine (31, 80–84) and morphine and its 
metabolite M6G (85, 86).

In a clinical study (85), morphine was compared to 
oliceridine: more predictable pharmacodynamics were observed 
with oliceridine (a MOR agonist which does not have an active 
metabolite); in contrast, a dissociation between the 
antinociceptive and respiratory depressant effects of morphine 
was observed and attributed to its active metabolite M6G. Our 
results comparing EPD1504 to buprenorphine are comparable: 
both compounds produced similar levels of anti-nociception in 
the hot plate test (during the 4-h period after injection as shown 
in Figure  1), but buprenorphine inhibited the respiratory 
response to CO2 and had prolonged respiratory depressant effects 
when combined with diazepam. Although the disparity in 
kinetics between EPD1504 and buprenorphine can in part 
be  attributed to the difference in half-lives of the molecules 
(EDP1504: 1.5 h vs. buprenorphine 5 h) (87), we also observed 
that naltrexone precipitated fewer somatic signs of withdrawal 
and place aversion in rats after 5 days of continuous subchronic 
exposure to EPD1504; these results indicate that a higher level of 
dependency had developed for buprenorphine. As mentioned, 
given that the molecules have similar intrinsic efficacy at the 
MOR and that the ALZET minipumps provide continuous 
exposure, the observed differences are likely due to the higher 
efficacy metabolites of buprenorphine (35). Therefore these data 
indicate that EPD1504 will have more predictable 
pharmacokinetic and pharmacodynamic effects. As observed in 
our studies, this led to a broader therapeutic window in which 
EPD1504 could be dosed up to approximately 60% occupancy of 
CNS MORs without adverse effects being observed.

4.3. OCD models used, pharmacology in 
OCD models used, and limitations

4.3.1. OCD models used
The validity of OCD behavioral models (face, predictive, and 

construct validity) has been reviewed extensively (13, 22, 88). 
Concisely, face validity gauges how well the animal’s behavior 
recapitulates pathological human behavior. If pharmacological 
responses or circuit pathologies of the model are comparable to those 
observed in patients, then it is considered to have good predictive and 
construct validity. As mentioned in the introduction, the probabilistic 
reversal task can be  applied to humans and rodents, and task 
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performance is disrupted in OCD patients (14). Additionally, first-line 
OCD approaches, including serotoninergic manipulations, regulate 
performance in healthy volunteers (15, 16) and in rodents (17, 18).

Marble burying in rodents is proposed to model compulsions 
observed in OCD patients. Pharmacological agents that reduce marble 
burying without reducing locomotor activity in the open-field test are 
predicted to be anxiolytic or to ameliorate OCD-like compulsions 
without inducing significant sedation or motor impairment (19–23).

4.3.2. Pharmacology in the OCD models used
In keeping with previous work reviewed by (20, 21), we observed 

that the SSRI, fluoxetine, ameliorated OCD-like behaviors in both 
models. In contrast, mCPP: a 5HT2C-preferring agonist that also binds 
serotonin transporters that dose-dependently exacerbates both rodent 
marble burying and OCD symptoms in patients (20, 89), impaired 
lever pressing in the probabilistic reversal task. These results with 
fluoxetine and mCPP indicate that the rate of lever pressing measured 
sedation and/or motor impairment.

In mice, acute opioids increase locomotor activity and decrease 
marble burying; in contrast, in rats acute opioids reduce locomotor 
activity (23, 90). Despite the opposing effects on locomotion (in rats 
and mice), we  observed that the MOR agonists (EPD1504 and 
buprenorphine) reduced marble-burying at doses that did not impair 
locomotor activity. A similar dose-dependent separation between 
amelioration of OCD-like behavior and sedation (reduction in 
forward locomotion) was observed for buprenorphine in a model of 
OCD induced by a 5HT2A agonist (91). In the probabilistic reveral 
task, opiate users being treated with the MOR agonist methadone are 
significantly slower than both healthy volunteers and other substance 
use disorder patients (92). Furthermore, ketamine modulates 
performance on the task in rats (18) as well as ameliorates OCD 
symptoms in patients (93). Although ketamine is primarily considered 
an NMDA receptor antagonist, its effects are blocked by MOR 
antagonists in patients and rodents suggesting downstream activation 
of MORs (94, 95).

4.3.3. Limitations of OCD models used
OCD is often comorbid with other psychiatric indications. 

Depending on etiology (genetic predispositions, comorbidities, or 
endophenotypes, e.g., alcoholism, or ticks), MOR antagonists (rather 
than agonists) will likely be more appropriate therapeutics (58, 96, 97). 
In our studies using wild-type animals, the MOR antagonist 
(naloxone) did not affect behavior in the two models tested. Therefore, 
future studies using genetic or pharmacological models will be needed 
to investigate the role of MOR antagonists in distinct subsets of 
OCD-like behaviors (98). Another limitation beyond the scope of the 
current study is that we did not seek to correlate observed behavioral 
effects and levels of CNS MOR occupancy with either biomarkers 
associated with OCD (99) or with potential mechanisms, e.g., 
neuronal circuit function.

4.4. Safety

The therapeutic efficacy of MOR agonists must be balanced 
with the associated risks of abuse and respiratory depression. 
Although buprenorphine and tramadol have lower abuse 

liabilities compared to full efficacy MOR agonists, they are 
abused (or misused to self-medicate) in populations with 
restricted access to opioids (25, 82, 100). In preclinical studies, 
both buprenorphine and tramadol induce place preference (as 
reviewed in (101)). In our studies, EPD1504 and buprenorphine 
induced comparable levels of place preference indicating 
comparable reward liabilities, but EPD1504 induced significantly 
less dependence as measured by naltrexone-induced somatic 
signs of withdrawal and place aversion (35, 102). Compared to 
buprenorphine, EPD1504 had reduced respiratory liabilities at all 
doses tested. These findings are consistent with the effects of 
other agonists with lower intrinsic MOR efficacy based on the 
same molecular scaffold as EPD1504 (35). Although future 
studies will be  needed to confirm these results, our results 
indicate that EPD1504 should have reduced respiratory and 
dependence liabilities compared to buprenorphine.

4.5. Summary

OCD affects a substantial fraction of the population (2–3%) and 
is associated with high rates of disability (1, 103, 104). Current first-
line treatments have a slow rate of onset and are ineffective in 
approximately half of OCD patients. In a subset of these treatment-
resistant patients, low doses of MOR agonists rapidly ameliorate OCD 
symptoms; e.g., (4, 8, 10); notably, MOR agonists have a long history 
of efficacy in psychiatry conditions (48, 105). Notwithstanding the 
complex etiology of psychiatric disorders (including OCD), preclinical 
MOR pharmacology and pharmacokinetic translate surprisingly well 
to clinical studies; in our studies, despite the many caveats, levels of 
occupancy of CNS MORs correlated well with the levels of occupancy 
in human studies that, respectively, provide therapeutic effects, and 
sedation. In addition, as discussed above, the probabilistic reversal 
task has provided translatable insights into the pharmacology and 
circuit basis of OCD pathology.

Despite solid clinical and supporting translational evidence, the 
utility of MOR agonists is limited by their inherent dependence, 
abuse, and respiratory liabilities. The improvements offered by 
EPD1504 and like molecules on these liabilities (i.e., reduced 
respiratory effects and dependence), and more predictable 
pharmacokinetics and pharmacodynamics, coupled with recently 
developed abuse deterrent approaches (e.g., slow-release 
subcutaneous implants) should dramatically improve the utility of 
opioids in psychiatric indications.
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