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Psychosis spectrum disorders (PSDs), as well as other severe mental illnesses

where psychotic features may be present, like bipolar disorder, are associated

with intrinsic metabolic abnormalities. Antipsychotics (APs), the cornerstone of

treatment for PSDs, incur additional metabolic adversities including weight gain.

Currently, major gaps exist in understanding psychosis illness biomarkers, as well

as risk factors and mechanisms for AP-induced weight gain. Metabolomic profiles

may identify biomarkers and provide insight into the mechanistic underpinnings

of PSDs and antipsychotic-induced weight gain. In this 12-week prospective

naturalistic study, we compared serum metabolomic profiles of 25 cases within

approximately 1 week of starting an AP to 6 healthy controls at baseline to

examine biomarkers of intrinsic metabolic dysfunction in PSDs. In 17 of the case

participants with baseline and week 12 samples, we then examined changes

in metabolomic profiles over 12 weeks of AP treatment to identify metabolites

that may associate with AP-induced weight gain. In the cohort with pre-post

data (n = 17), we also compared baseline metabolomes of participants who

gained ≥5% baseline body weight to those who gained <5% to identify potential

biomarkers of antipsychotic-induced weight gain. Minimally AP-exposed cases

were distinguished from controls by six fatty acids when compared at baseline,

namely reduced levels of palmitoleic acid, lauric acid, and heneicosylic acid, as

well as elevated levels of behenic acid, arachidonic acid, and myristoleic acid

(FDR < 0.05). Baseline levels of the fatty acid adrenic acid was increased in

11 individuals who experienced a clinically significant body weight gain (≥5%)

following 12 weeks of AP exposure as compared to those who did not (FDR =

0.0408). Fatty acids may represent illness biomarkers of PSDs and early predictors

of AP-induced weight gain. The findings may hold important clinical implications
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for early identification of individuals who could benefit from prevention strategies

to reduce future cardiometabolic risk, and may lead to novel, targeted treatments

to counteract metabolic dysfunction in PSDs.
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1. Introduction

Patients with a psychosis spectrum disorder (PSD) and patients

with severe mental illnesses that present with psychotic features,

often develop metabolic comorbidities like obesity, type 2 diabetes,

and dyslipidemia, leading to a 2-fold increase in cardiovascular

mortality rates as compared to the general population (1, 2).

While various factors contribute to the metabolic risk in PSDs,

antipsychotics (APs), the cornerstone of treatment for many PSDs,

worsen elevated baseline risk through metabolic side effects such

as weight gain (3–5). Notably, young patients without prior AP

exposure (i.e., AP-naïve) are especially susceptible to early AP-

induced weight gain (3, 6), although there is individual variability

in the propensity to develop AP-induced weight gain that is not

fully understood. Overall, there is a need to identify biomarkers

and mechanisms of intrinsic and early AP-induced metabolic

dysfunction to guide early targeted metabolic treatment strategies

in PSD.

In addition to the effects of APs, metabolic dysfunction

has been suggested to be intrinsic to the illness of PSDs. For

instance, AP-naïve first-episode psychosis patients demonstrate

higher prevalence of metabolic syndrome, elevated triglyceride

levels, markers of glucose dysregulation, and increased risk for type

2 diabetes as compared to healthy controls, even prior to receiving

AP treatment (7–11). The presence of metabolic abnormalities

in AP-naïve FEP patients, who are minimally affected by two

major confounders, APs and illness duration, is suggestive of

an intrinsic metabolic risk that is conferred by the illness of

PSDs. However, the mechanisms underlying intrinsic metabolic

dysfunction are understudied. Taken together, there is a need

to examine AP-naïve patients to identify biomarkers, predictors,

and mechanisms of intrinsic and early AP-induced metabolic

dysfunction, which would have important implications for guiding

early treatment strategies for individuals with PSDs and developing

novel, targeted treatments for metabolic dysfunction in PSDs.

Metabolomics represents a novel tool with potential to

shed light on metabolic dysfunction in PSD by characterizing

global metabolite profiles. For example, metabolomic studies have

identified that higher baseline concentrations, and change over

time, of the lipid metabolite lysophosphatidylcholine 14:0 were

associated with weight gain following olanzapine treatment in

first-episode schizophrenia (12). Nonetheless, few studies have

examined intrinsic illness markers of metabolic dysregulation and

predictors of AP-induced weight gain in patients with minimal-to-

no previous exposure.

The objectives of the current pilot study were to: (1)

examine whether minimally AP-exposed cases and controls present

with different metabolomic profiles that may represent illness

biomarkers not confounded by long-term AP use; (2) identify

predictors of AP-induced weight gain by comparing baseline

metabolomes between minimally AP-exposed cases who do and

do not develop clinically significant body weight (≥5%) following

12 weeks of AP exposure; and (3) examine associations between

changes in the metabolome and body weight over 12 weeks of

AP exposure.

2. Materials and methods

2.1. Participants and study design

Participant data was gathered from three independent

observational studies, where recruitment has been completed

for two case-only studies [(ClinicalTrials.gov ID: NCT02744313.

ClinicalTrials.gov ID is not available for the other study) and is

ongoing for the remaining case-control study (ClinicalTrials.gov

ID: NCT03414151)]. The study protocols were approved by the

Research Ethics Board of the Centre for Addiction and Mental

Health (030/2017 and 060/2014) and University of Michigan

Institutional Review Board (HUM00132484). All participants

provided informed consent using the MacArthur Competence

Assessment Tool for Clinical Research (MacCat-CR) (13) or

the Evaluation to Sign an Informed Consent Document for

Research (14).

Participants (male and female) between the ages of 12–45

were recruited for two arms of the study: cases (N = 25)

and controls (N = 6). Inclusion criteria for the cases were as

follows: (1) Minimal exposure to AP treatment, as defined as

having previous AP exposure for equal to or less than 2 weeks

within the past 3 months, and (2) Diagnostic and Statistical

Manual of Mental Disorders-5 (DSM-5) or DSM-4 diagnosis of

schizophrenia, schizoaffective disorder, schizophreniform disorder,

delusional disorder, brief psychotic disorder, psychotic disorder not

otherwise specified (NOS) or unspecified schizophrenia spectrum,

major depressive disorder with psychotic symptoms, bipolar I

disorder or bipolar II disorder with psychotic features. Psychiatric

diagnosis was assessed at baseline by conducting either the Mini

Neuropsychiatric Interview (MINI) for Psychotic Disorder Studies

Version 7.0.2, Structured Clinical Interview for Axis I DSM-5

Disorders (SCID-5), or a medical chart review. Our diagnostic

inclusion criteria were broad as our goal was to capture the

metabolic effects of antipsychotics that occur early after medication

exposure, and have been documented in multiple severe mental

illnesses that are treated with APs (15). Furthermore, it can be

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1169787
https://ClinicalTrials.gov
https://ClinicalTrials.gov
https://ClinicalTrials.gov
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Lee et al. 10.3389/fpsyt.2023.1169787

challenging to recruit patients with psychotic features in early

medication exposure studies if diagnostic criteria are too narrow,

given that a diagnosis may not be clear early-on in the treatment of

psychotic symptoms (16, 17). The approach of including patients

based on symptoms and not specific diagnoses is also congruent

with the Research domain criteria (RDoC) framework (18, 19).

Controls were included if they had an absence of current

or past DSM-5 diagnosis other than a specific phobia or

adjustment disorder. For both arms, exclusion criteria included

clinically significant medical conditions (e.g., type 1 or 2 diabetes,

kidney/liver disease, cancer, pregnancy), use of select groups of

medications (e.g., treatment for lipids, glucose, or weight, anti-

inflammatory medications, immunosuppressants), and moderate

to severe substance use determined either through medical chart

review or MINI.

Cases were treated naturalistically with APs by their psychiatrist

and followed for 12 weeks. Baseline and endpoint (week 12)

assessments were used for metabolomics assays. Controls were

assessed at baseline only. Assessments for both groups included

anthropometric measures (body weight, height, BMI, and waist

circumference), blood pressure, and fasting laboratory measures

(glucose, insulin, and lipid panel).

2.2. Metabolomic analysis

Metabolomic analysis of serum samples was conducted at

the Michigan Comprehensive Regional Metabolomics Core at the

University of Michigan. All samples were drawn in the morning,

after an overnight fast, and after serum separation they were frozen

on dry ice and stored in−80◦F until time of sample transportation

(on dry ice) and analysis. Samples did not undergo any freeze/thaw

cycles prior to time of assay. Targeted, quantitative metabolomic

analysis was performed for acylcarnitines, amino acids, free fatty

acids, and bile acids after extraction and separation. In brief, the

acylcarnitine assay involved separation by liquid chromatography

and then measurement of metabolites using electrospray ionization

and triple-quadrupole mass spectrometry, as described in more

detail by Chace and colleagues (20). There were similarities in

general separation approach and analysis method for the bile

acids, as well with respect to separation by liquid chromatography

and then analysis with triple-quadrupole mass spectrometry (21).

The amino acids were analyzed with the Phenomenex EZfaast

kit (Torrance, CA) by Metabolomics Core staff. Finally, for

the free fatty acids analysis, after extraction (22), the lipid-rich

fractions were analyzed for free fatty acids using Agilent 5,890 gas

chromatograph with an Agilent HP 88 column (23).

2.3. Statistical analysis

Demographic and clinical data were compared using Fisher’s

exact test, t-tests, or ANOVA as appropriate using IBM Statistical

Package for the Social Sciences (SPSS) Version 25. All statistical

analyses of the metabolomic datasets were conducted using

Metaboanalyst 5.0 (24). The quantified metabolomic datasets

were transformed and scaled to achieve normal distribution for

conducting parametric statistical analyses. T-tests were used to

compare mean baseline metabolite concentrations between (1)

AP-naïve cases and controls at baseline, and (2) AP-naïve cases

who do and do not develop ≥5% body weight gain at 12 weeks.

Finally, changes from baseline to endpoint between AP-naïve

cases who did (i.e. ≥5%) and did not develop significant body

weight gain were compared with a two-way repeated measures

ANOVA test. Pearson correlations were calculated between change

in weight and change in each metabolite concentrations from week

1 to week 12 for cases. To control for multiple comparisons, a false

discovery rate (FDR) was calculated (25). Metabolites presenting

with an FDR ≤0.05 were considered statistically significant.

Fold-changes comparing metabolite mean concentrations were

calculated to determine the direction of difference between

groups of comparison for metabolites that met statistical

significance criteria.

3. Results

Twenty-five minimally exposed AP cases were enrolled, and

17 cases completed both baseline and 12-week follow up visits,

while the remaining 8 cases had baseline visits only. Six healthy

controls completed baseline visits. Among cases, the most common

diagnosis was unspecified schizophrenia spectrum and other

psychotic disorder (N = 13). The mean duration of AP exposure

at baseline was 7.9 days. Detailed participant demographics are

available in Table 1.

Following 12 weeks of AP exposure, cases experienced

increases in body weight (p < 0.001), BMI (p < 0.001),

waist circumference (p = 0.015), LDL cholesterol (p = 0.009),

and total cholesterol (p = 0.027) (Table 2). Additionally, a

subgroup of cases (N = 9) experienced clinically significant

increases (≥5%) in body weight. The distribution of low

and moderate metabolic risk medications was not significantly

different (p= 0.453; data not shown) between the high and

low weight gain groups (Table 2). There was also no significant

difference between antipsychotic exposure prior to the baseline

visit in the high and low weight gain groups (p = 0.330; data

not shown).

3.1. Baseline serum metabolome features
distinguishing cases from controls

Overall, 20 amino acids, 20 bile acids, 30 fatty acids, and

29 acylcarnitines were identified and quantified. The supplement

contains lists of all metabolites identified in the metabolomics

assays. Six fatty acids differentiated the two groups with an

FDR of <0.05. Behenic acid (22:0), arachidonic acid [20:4 (n-6)],

and myristoleic acid [14:1 (n-5)] were higher at baseline in

cases, and palmitoleic acid [16:1 (n-7)t], lauric acid (12:0), and

heneicosylic acid (21:0) were higher in controls at baseline. The

Supplementary material also contains a table with FDR values for

the six metabolites. No differences were observed for baseline

levels of acylcarnitines, amino acids, nor bile acids between these

two groups.
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TABLE 1 Baseline demographics of cases (N = 25) and controls (N = 6).

Demographic Cases∗ Controls P Odds ratio Cohen’s d

Age, Mean (SD) 21.8 (4.1) 25.2 (3.5) 0.069 −0.845

Sex, Female, n 8 3 0.638 0.663

Race, n 0.536 5.519

White 12 2

Asian 6 4

Black/African American 2 -

Hispanic 1 -

Middle Eastern 1 -

Mixed 3 -

Tobacco user, n 5 1 1.00 <0.001

Cannabis use, n 3 2 0.183 1.957

Metabolic measures, Mean (SD)

Body weight (kg) 70.8 (13.8) 64.5 (13.7) 0.342 0.458

BMI 24.7 (3.7) 22.6 (4.1) 0.291 0.555

Waist circumference (cm) 84.0 (9.5) 83.6 (12.6) 0.944 0.040

Fasting glucose (mmol/L) 5.1 (0.3) 5.1 (0.34) 0.812 −0.115

Fasting insulin (mmol/L) 8.7 (7.1) 5.2 (2.7) 0.070 0.541

HOMA-IR 2.0 (1.7) 1.2 (0.6) 0.076 0.520

Triglycerides (mmol/L) 0.8 (0.5) 0.9 (0.4) 0.968 −0.017

HDL cholesterol (mmol/L) 1.4 (0.5) 1.7 (0.5) 0.282 −0.527

LDL cholesterol (mmol/L) 2.1 (0.8) 2.8 (0.6) 0.026 −0.936

Total cholesterol (mmol/L) 3.9 (1.0) 4.9 (0.2) <0.001 −1.076

Case diagnosis, n

Unspecified schizophrenia spectrum and other psychotic disorder 14

Bipolar I disorder 2

Major depressive disorder with psychosis 5

Schizophrenia 2

Schizophreniform disorder 1

Schizoaffective disorder 1

Case antipsychotic medication at baseline∗∗

Low metabolic risk, n

• Aripiprazole 10

• Lurasidone 2

Moderate metabolic risk, n

• Risperidone 7

• Paliperidone 2

• Quetiapine 2

• Risperidone+ Quetiapine 1

High metabolic risk, n

Olanzapine 1

Duration of antipsychotic exposure at baseline, Mean Days (SD) 8.0 (4.0)

SD, standard deviation; BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance; HDL, high density lipoprotein; LDL, low density lipoprotein. Bolded indicate

statistical significance (p< 0.05). ∗Two study participants did not have lipid panel, glucose, insulin, or HOMA-IR data. Three participants did not have waist circumference or cannabis use data.

Tobacco and cannabis use data were not available for one control participant. ∗∗AAP risk groups were defined as follows: high = olanzapine or clozapine; moderate = risperidone, quetiapine,

paliperidone, or iloperidone; low= aripiprazole, lurasidone, or ziprasidone. AP exposure duration is missing for one participant.
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TABLE 2 Changes in metabolic measures between baseline and week 12.

Metabolic
measures, mean
(SD)∗

All cases (N = 17) ≥5% weight gain (N = 9) <5% weight gain (N = 8) ≥5 vs. < 5%
Weight Gain

Week
1

Week
12

P Week
1

Week
12

P Week
1

Week
12

P Changes
from week 1

to 12, P

Body weight (kg) 71.0

(11.6)

75.3

(12.6)

<0.001 71.2

(14.3)

77.9

(15.1)

<0.001 70.9 (8.4) 72.3 (9.2) 0.041 <0.001

BMI 25.0 (3.1) 26.5 (3.5) <0.001 25.4 (3.9) 27.9 (4.0) <0.001 24.5 (2.0) 25.0 (2.3) 0.032 <0.001

Waist circumference

(cm)

83.2 (7.8) 86.6 (8.4) 0.015 83.2 (9.0) 89.4 (9.6) 0.004 83.1 (6.8) 83.5 (6.0) 0.765 0.016

Fasting glucose (mmol/L) 5.1 (0.3) 5.1 (0.5) 0.767 5.1 (0.4) 5.1 (0.6) 0.849 5.1 (0.2) 5.1 (0.3) 0.808 0.970

Fasting insulin (mmol/L) 8.5 (5.4) 10.1

(13.4)

0.476 7.9 (5.1) 7.6 (3.4) 0.859 9.1 (6.1) 14.4

(19.4)

0.459 0.402

HOMA-IR 1.9 (1.3) 2.4 (2.7) 0.525 1.8 (1.2) 1.7 (0.7) 0.843 2.1 (1.5) 3.1 (3.9) 0.489 0.431

TG (mmol/L) 0.9 (0.6) 1.1 (0.6) 0.256 0.7 (0.4) 0.9 (0.5) 0.225 1.2 (0.7) 1.3 (0.6) 0.620 0.866

HDL cholesterol

(mmol/L)

1.4 (0.6) 1.3 (0.4) 0.294 1.6 (0.7) 1.4 (0.4) 0.277 1.3 (0.3) 1.3 (0.4) 0.926 0.299

LDL cholesterol

(mmol/L)

2.2 (0.8) 2.6 (0.7) 0.009 2.1 (0.8) 2.3 (0.6) 0.179 2.4 (1.0) 3.0 (0.6) 0.027 0.092

Total cholesterol

(mmol/L)

4.1 (1.0) 4.5 (0.8) 0.027 3.9 (1.2) 4.1 (0.7) 0.336 4.4 (1.0) 4.9 (0.8) 0.044 0.263

SD, standard deviation; BMI, body mass index; HOMA-IR, homeostatic model assessment of insulin resistance; TGs, triglycerides; HDL, high density lipoprotein; LDL, low density lipoprotein.

Bolded indicate statistical significance (p < 0.05). ∗Waist circumference, lipid panel, glucose, insulin, or HOMA-IR were not available for 2 participants (one each in ≥ and <5% weight gain

groups). Differences between week 1 and 12 among all cases and within the ≥ and <5% weight gain groups were conducted using paired t-tests. Changes from week 1 to 12 were compared

between the ≥ and <5% weight gain groups using repeated measures ANOVA.

3.2. Metabolome features associated with
variable weight gain (<5 vs. ≥5%) due to
antipsychotics

Among the identified and quantified metabolites, none met

the FDR threshold for significance as being altered from baseline

to week 12 when changes were compared between case groups

who gained <5 or ≥5% of their baseline body weight, or

when examining associations between changes in metabolite

concentrations and body weight over 12 weeks. Amongmetabolites

differentiating these groups at baseline, baseline concentrations of

the fatty acid adrenic acid [22:4(n-6)] were significantly elevated in

cases who had more than 5% body weight gain compared to those

who did not (FDR= 0.0408), as shown in Figure 1.

4. Discussion

Growing evidence supports metabolomic signatures as

potential biomarkers for intrinsic and early AP-induced metabolic

dysfunction in PSD. In this study, comparisons of metabolomic

profiles of minimally AP exposed cases vs. healthy controls at

baseline, identified six differential fatty acids. These include

reduced palmitoleic acid, lauric acid, and henieocosylic acid levels,

and elevated behenic acid, myristoleic acid, and arachidonic acid

levels, of which increased arachidonic acid levels are consistent

with a previous study (26). Palmitoleic acid and arachidonic acid

are particularly interesting due to their roles in inflammation;

inflammation has been proposed to underly intrinsic metabolic

dysfunction in PSDs (27). Specifically, palmitoleic acid-rich

supplementation has been shown to improve dyslipidemia through

anti-inflammatory action (28–30). Alternatively, arachidonic acid

is an omega-6 polyunsaturated fatty acid (PUFA); PUFAs, which

are pro-inflammatory mediators. As such, lower circulating levels

of palmitoleic acid and higher circulating levels of arachidonic

acid may contribute to inflammation and hence intrinsic

metabolic dysfunction in PSDs. Moreover, the conversion of

arachidonic acid into inflammatory prostaglandins produces

lipid peroxidation products, leading to oxidative stress (31),

which in turn has been linked to metabolic dysfunction and

PSD (32–35).

However, several association studies have illustrated that

elevated circulating palmitoleic acid levels are found in individuals

with obesity and metabolic syndrome (36, 37), and associate with

higher triglyceride levels and insulin resistance in the general

population (38, 39), contrary to the reduced palmitoleic acids

observed in our study. Nonetheless, one study demonstrated that in

individuals who are at risk for type 2 diabetes, reduced palmitoleic

acid levels associate with greater insulin resistance (40). These

findings perhaps suggest that the reduction in palmitoleic acid

levels found in this study reflects the early, insulin resistant

state commonly observed among AP-naïve first-episode psychosis

patients (41). Given the small size of this pilot study, an interesting

future direction would be to expand these results to a larger patient

population to determine if reduced palmitoleic acid and increased

arachidonic acid in serum may represent biomarkers of intrinsic

metabolic dysfunction in PSD.
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FIGURE 1

Box and whisker plot of normalized serum adrenic acid concentrations. The asterisk indicates that adrenic acid concentrations in the high-weight

gain group were significantly di�erent from the low-weight gain group (FDR = 0.0408).

With respect to the other fatty acids identified as differentiating

the cases and controls at baseline, behenic acid has been associated

with anti-inflammatory activity in mice (42), and proinflammatory

activity in humans (43). Heneicosylic acid appears to be minimally

studied but may be inflammatory when considering it is a

saturated fatty acid (44), whereas myristoleic acid and, conversely,

the saturated lauric acid have been linked to anti-inflammatory

activity (45–47). Figure 2 describes associations between fatty acids

identified as significantly different between cases and controls in

this pilot study, and whether published literature generally supports

their role as inflammatory, or anti-inflammatory.

Following 12 weeks of AP exposure, cases had increased in

body weight, BMI, waist circumference, total cholesterol, and

LDL cholesterol. This increase in weight despite the fact that

many of the cases were using antipsychotics with lower weight

gain propensity is not necessarily surprising, given that research

has suggested all antipsychotics cause weight gain in patients

with minimal past exposure, but that the extent of weight gain

is different between individual medications (3). Additionally, a

subgroup developed clinically significant body weight gain (≥5%)

and were distinguished at baseline by elevated levels of the fatty

acid, adrenic acid. Studies have shown that specific triacylglycerols

predict increases in body weight and BMI following AP treatment

in first-episode psychosis patients (12). Our study extends these

findings, suggesting elevation of adrenic acid as an additional

novel early predictor of AP-induced weight gain. However, we

were not able to replicate research from other teams with respect

to the extent of changes in lipids; likely this was attributable

to different testing platforms and identifiable metabolites, among

other differences in study design, including length of medication

exposure (48, 49). It is notable that elevations in adrenic acid

have been associated with obesity (50), supporting its potential

physiological relevance as a predictor of AP-induced weight gain.

Adrenic acid is an omega-6 PUFA, which acts as pro-inflammatory

mediators. Thus, it may contribute to inflammation, which may

underly AP-induced metabolic dysfunction in patients with PSD

(27). These findings may have important clinical implications to

help identify individuals who are at high risk for AP-induced weight

gain and may benefit from early prevention strategies. However,

given the preliminary nature of this study, these results must be

replicated in larger studies with longer duration of follow up.

Taken together, the prominence of fatty acid dysregulation in

this study extends previous findings suggesting that dysregulated

lipid metabolism may underlie psychosis illness and AP-induced

metabolic dysfunction (12, 26). Our findings corroborate the

growing body of evidence supporting individual variabilities in

risk for AP-induced metabolic dysfunction and the importance of

identifying early biomarkers that predict AP-induced weight gain.

While the physiological relevance of the identified biomarkers

reinforces the clinical value of the findings, several limitations

should be noted. First, relative to the case group, the control

group had a small sample size, resulting in part from COVID-19

pandemic restrictions, where treatment studies with patients were

allowed to continue, whereas healthy control studies were halted.

The control group also had a larger percentage of patients who

identified as Asian, as compared to the case group. These factors

may have limited the statistical power in the analyses. Other

potential confounders include physical activity levels and diet

patterns, which were not considered in the present investigation.

Furthermore, the heterogeneity of APs and diagnoses among cases

may also have confounded the findings. While there is evidence

demonstrating that the impact of antipsychotics on metabolic side

effects is potentially disease agnostic (15), there are documented

differences among antipsychotics in their ability to cause metabolic
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FIGURE 2

Venn diagram shows the pro and anti-inflammatory fatty acid metabolites that were significantly di�erent between cases and controls, with behenic

acid, arachidonic acid, and myristoleic acid observed to be higher in cases while palmitoleic acid, lauric acid, and heneicosylic acid were higher in

controls. Behenic acid appears to have both pro and anti-inflammatory actions while arachidonic acid and heneicosylic acid have pro-inflammatory

actions. Palmitoleic acid, myristoleic acid, lauric acid appear to have anti-inflammatory actions.

side effects (51, 52). This may, in part, explain why there were no

detected changes in metabolites over 12 weeks of AP treatment

associated with body weight change. Finally, the minimally exposed

AP cases in the study had some AP exposure at baseline, which may

have hindered examination of illness metabolomics independent of

AP exposure. Thismay also have prevented investigation of the very

early metabolic changes induced by APs, especially considering that

changes in glucose metabolism can be induced by a single dose

of APs (53). Nonetheless, there are ethical challenges to keeping

patients AP-naïve for research purposes, which renders it difficult

to impose too many exclusion criteria for an already difficult

population to recruit. It is also possible that studies in patients with

minimal, vs. absent, antipsychotic exposure may be more valuable

to translating precision health research into practice given that it

is unlikely antipsychotic treatment would be withheld to wait for

biomarker results in a patient presenting acutely with psychosis.

5. Conclusion

Collectively, we demonstrate differences in fatty acid

metabolites between controls and minimally exposed AP cases

with PSD. Additionally, the fatty acid, adrenic acid, may represent

an early predictor of AP-induced weight gain. Collectively, these

candidate biomarkers provide mechanistic insight into intrinsic

and AP-induced metabolic dysfunction in PSDs and represent

potential targets for precision health approaches to mitigate

metabolic dysfunction in PSDs. Future studies are needed with

larger sample sizes and with cases who fully lack AP exposure

to rigorously validate these findings before implementation in a

clinical setting.
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