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Subject: Major depressive disorder (MDD) negatively affects patients’ behaviours 
and daily lives. Due to the high heterogeneity and complex pathological features 
of MDD, its diagnosis remains challenging. Evidence suggests that endoplasmic 
reticulum stress (ERS) is involved in the pathogenesis of MDD; however, relevant 
diagnostic markers have not been well studied. This study aimed to screen for ERS 
genes with potential diagnostic value in MDD.

Methods: Gene expression data on MDD samples were downloaded from the GEO 
database, and ERS-related genes were obtained from the GeneCards and MSigDB 
databases. Differentially expressed genes (DEGs) in MDD patients and healthy 
subjects were identified and then integrated with ERS genes. ERS diagnostic 
model and nomogram were developed based on biomarkers screened using the 
LASSO method. The diagnostic performance of this model was evaluated. ERS-
associated subtypes were identified. CIBERSORT and GSEA were used to explore 
the differences between the different subtypes. Finally, WGCNA was performed 
to identify hub genes related to the subtypes.

Results: A diagnostic model was developed based on seven ERS genes: KCNE1, 
PDIA4, STAU1, TMED4, MGST1, RCN1, and SHC1. The validation analysis showed 
that this model had a good diagnostic performance. KCNE1 expression was 
positively correlated with M0 macrophages and negatively correlated with resting 
CD4+ memory T cells. Two subtypes (SubA and SubB) were identified, and these 
two subtypes showed different ER score. The SubB group showed higher immune 
infiltration than the SubA group. Finally, NCF4, NCF2, CSF3R, and FPR2 were 
identified as hub genes associated with ERS molecular subtypes.

Conclusion: Our current study provides novel diagnostic biomarkers for MDD 
from an ERS perspective, and these findings further facilitate the use of precision 
medicine in MDD.
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Highlights

 - A diagnostic model based on ERS-related genes was developed.
 - This model had good diagnostic performance for MDD.
 - KCNE1 correlated with M0 macrophages and resting CD4 

memory T cells.
 - Two molecular subtypes with different ER scores and immune 

characteristics were identified.
 - NCF4, NCF2, CSF3R, and FPR2 were identified as the hub 

genes associated with subtypes.

Introduction

Major depressive disorder (MDD) is a common mental 
disorder with an estimated annual prevalence of 4.4% worldwide, 
affecting more than 300 million people (1). It is ranked as the 
leading cause of disability globally and the third leading cause of 
the global burden of disease (2). MDD is chronic or recurrent in 
nature, usually associated with prolonged periods of depressed 
mood and anhedonia, and is accompanied by considerable 
morbidity, suicide risk, and mortality (3). Despite receiving 
evidence-based treatment, approximately 30–50% of patients 
remain unresponsive to therapy, imposing a huge economic 
burden on society (4). Depression is associated with many mental 
and physical disorders and is influenced by an interplay of genetic 
and environmental factors, suggesting that its underlying 
mechanisms are complex (5). Previous studies have suggested 
that the ineffectiveness of antidepressant drugs may be partly 
attributed to their failure to address important biological 
processes involved in the pathogenesis of depression (6). 
Therefore, it is essential to explore the molecular mechanisms 
underlying MDD and identify diagnostic markers and therapeutic 
targets for this disease.

The endoplasmic reticulum (ER) is the largest organelle in 
eukaryotic cells and is involved in the regulation of protein synthesis, 
folding, and transport (7). ER dysregulation can lead to the 
accumulation of unfolded and misfolded proteins in the lumen, 
stimulating the unfolded protein response, a process known as ER 
stress (ERS) (8). Gold et al. in 1988 proposed that MDD represents 
dysregulation of the stress system in a readily inducible stressful 
environment (9). Moreover, multiple studies have shown that ERS is 
involved in the pathophysiology of central nervous system disorders, 
such as schizophrenia and MDD (10, 11). Elevated ERS responses in 
the brain have been observed in many human and animal models of 
depression. For example, ERS-related proteins (such as GRP78, 
CHOP, and XBP1) were found to be associated with hippocampal 
damage and cognitive impairment in a rat model of stress, and the 
expression levels of ERS-related proteins (such as GRP78 and CHOP) 
in the hippocampus of patients with MDD were upregulated 
compared to those in control subjects (12, 13). Meanwhile, ERS has 
been proven to be associated with cardiovascular diseases as well as 
several chronic diseases, such as diabetes and inflammatory bowel 
disease (14). Notably, depression is connected with reduced heart rate 
variability, increased sympathetic nervous system, and platelet 
aggregation, all of which are risk factors for cardiovascular diseases 
(15). Hence, ERS is closely correlated with common comorbidities of 

depression. Besides, ERS plays a key role in mediating immune and 
metabolic responses, and these mechanisms also contribute to the 
development of psychiatric disorders such as depression (16). Taken 
together, ERS may be directly or indirectly involved in several key 
biological processes that alter the course of MDD. Currently, there is 
evidence that targeting ERS may be a new strategy for the treatment 
of this disorder (17). However, the specific biomarkers of the 
diagnosis of MDD have not been fully explored, especially from the 
perspective of ERS-related genes.

In this study, we collected the transcriptome data of patients 
with MDD and ERS-related genes from public databases and 
identified ERS-related differentially expressed genes (DEGs) 
between MDD and control samples. Next, genes with a diagnostic 
value for MDD were screened using LASSO analysis to establish 
a diagnostic model. The diagnostic performance of this model 
was assessed, and the correlation between diagnostic genes and 
immune infiltrates was analysed. Molecular subtypes were 
screened based on ERS-related diagnostic genes. Our findings 
may help further explore potential biomarkers of MDD and 
provide reference targets for drug development.

Materials and methods

Dataset acquisition and pre-processing

The design of the analysis is illustrated in Figure 1. Raw gene 
expression profiles for four datasets (GSE98793 (18), GSE19738 (19), 
GSE32280 (20), and GSE38206 (21)) downloaded from GEO were 
included in this analysis. The sample information and detection 
platform for each dataset are presented in Table 1. A total of 114 
patients with MDD and 115 healthy controls were analysed. 
GSE98793, GSE19738, and GSE32280 were selected as training 
cohorts. After merging the data from the three datasets, we used the 
sva package in R3.6.11 to remove batch effects, and ultimately 
obtained the expression profile data of 211 samples, including 105 
MDD and 106 control samples. The GSE38206 dataset was selected 
as the validation cohort. ERS-related genes were extracted from 
Genecards and the Molecular Signature Database v7.4 (MSigDB). 
The downloaded genes were duplicated and merged to obtain 
904 genes.

Screening of ERS-related (DEGs in MDD 
patients vs. controls)

The Limma package (v 3.34.7) (22) was employed to perform 
differential expression analysis, and genes with value of p <0.01 were 
considered as DEGs between MDD and control samples. These DEGs 
were intersected with ERS-related genes to identify differentially 
expressed ERS-related genes. Correlations between ERS-related DEGs 
were calculated using the cor function2 in R.

1 http://www.bioconductor.org/packages/release/bioc/html/sva.html

2 http://77.66.12.57/R-help/cor.test.html
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Establishment of protein–protein 
interaction (PPI) network

These ERS-related DEGs were imported into the STRING 
database (v 11.0) (23) to retrieve the interaction relationship between 
gene-encoded proteins, and PPI pairs with interaction scores ≥0.4 
were retained to construct the PPI network.

Univariate logistic regression analysis of 
ERS-related DEGs

Rms (v 6.3–0, https://cran.r-project.org/web/packages/rms/index.
html) (24) in R was used to conduct univariate logistic regression 
analysis of ERS-related DEGs, and genes with value of p <0.05 were 
retained for further analyses.

FIGURE 1

Workflow of this analysis.

TABLE 1 Specific information for four major depressive disorder-related datasets.

GO accession Platform
Sample number

Sample source Purpose
Control MDD

GSE98793 GPL570 64 64 Whole blood Training cohort

GSE19738 GPL6848 34 33 Whole blood Training cohort

GSE32280 GPL570 8 8 Peripheral blood Training cohort

GSE38206 GPL13607 9 9 Peripheral blood Validation cohort
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Development of a diagnostic model based 
on ERS-related genes

The LASSO algorithm in the R lars package (v 1.2) (25) was used 
to further screen the selected ERS-related DEGs. Next, RMS in R was 
used to perform multivariate logistic regression analysis, and the 
optimal ERS-related gene signature was selected as the diagnostic 
gene. The risk score (RS) was calculated based on the expression and 
coefficient of each diagnostic gene, followed by construction of a 
diagnostic model.

Performance evaluation of diagnostic 
model

The receiver operating characteristic (ROC) curve method in 
the pROC package (v. 1.12.1) (26) was used to evaluate the efficacy 
of the diagnostic model constructed in the training and 
validation cohorts.

Correlation analysis of diagnostic genes 
and immune states

In the training cohort, CIBERSORT was used to assess the 
proportion of immune cells in the samples, and the Kruskal–Wallis 
test in R was applied to compare the differences in the distribution of 
immune cells between the MDD and control groups. Meanwhile, the 
correlations between ERS-related diagnostic genes and immune cells 
with significant differences in MDD vs. control samples were 
calculated using the cor function in the R software.

Construction and evaluation of the 
nomogram model

To predict the incidence of MDD, a diagnostic nomogram 
model was established using the rms package. Meanwhile, 
calibration curve and decision curve analysis (DCA) were 
employed to evaluate the prediction ability and practical utility 
of the model, respectively.

Prediction of molecular subtype based on 
ERS-related genes

After extracting the expression levels of ERS-related 
diagnostic genes in the training cohort, ConsensusClusterPlus (v 
1.54.0) (27) was used to determine the molecular subtype of the 
MDD samples. Furthermore, the ER score of each case was 
calculated using the GSVA (v 1.36.3) package, and the Kruskal–
Wallis test was used to compare the differences in ER scores of 
different subtype groups.

Comprehensive analysis of immune cells 
and molecules in different subgroups

CIBERSORT (28) was used to evaluate the distribution of immune 
cells in MDD samples in the training set, and the estimate package was 
then employed to calculate the ESTIMATE, immune, and stromal 
scores of patients with MDD. In addition, differences in immune cells 
and scores between different subgroups were analysed using the 
Kruskal–Wallis test.

We also compared the expression levels of immune checkpoint 
genes (CD27, CD274, and CD40) in different molecular subtypes 
using the Kruskal–Wallis test.

Gene set enrichment analysis of different 
ERS subtypes

Based on the genome-wide expression levels in the training 
cohort, the GSEA database (29) was used to identify the KEGG 
signalling pathways that were significantly associated with the 
subtypes. We selected value of p <0.05 as the threshold for significant 
enrichment of the KEGG pathway.

Screening of DEGs related to ERS-related 
molecular subtypes

Differential gene analysis was conducted on samples between 
subtypes, and genes with value of p <0.05 and |log2 Fold change 
(FC)| > 0.263 (also means FC > 1.2) were regarded as DEGs between 
different subtypes. To understand the biological functions of these 
genes, clusterProfiler was used to perform Gene Ontology (GO) (30) 
and KEGG pathway (31) enrichment analyses. A value of p <0.05 was 
defined as a significant enrichment result.

Weighted gene co-expression network 
analysis

The MDD-related expression matrix was analysed using the R 
package WGCNA (v 1.6.1) (32) to identify highly covariant gene set 
modules. The specific analysis methods were as follows: first, the 
optimal power and connectivity k were selected to convert the gene 
expression matrix into a topological overlap matrix (TOM); second, 
the highly corrected genes were clustered into modules using 
clustering and dynamic pruning with these parameters 
(minModuleSize = 30 and mergeCutHeight = 0.25), and finally, the 
correlations between modules and molecular subtypes were 
calculated. The module with value of p <0.05 and with the highest 
connection with the subtype was selected for subsequent analysis. The 
hub genes in this module were screened using the gene significance 
(GS) and module membership (MM) indices; MM > 0.8 and GS > 0.2 
were regarded as screening thresholds.
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Construction of PPI network based on hub 
genes

The STRING database was used to search for interactions between 
hub genes to build networks, and this network was visualised using 
Cytoscape (v 3.9.0) (33).

Results

Screening of 33 ERS-related DEGs between 
MDD and control samples

Differential expression analysis revealed 382 DEGs (200 
upregulated and 182 downregulated genes) between the MDD 
and control samples. The DEGs were visualised using a volcano 
plot (Figure 2A). After integration with the ERS-related genes, 33 
ERS-related DEGs were identified (Figure 2B). We also observed 

a significant correlation between gene expression (Figure 2C). 
For example, MAPK3 was positively correlated with CTSD and 
negatively correlated with HMGB1. STRING was used to search 
for interactions between gene-encoded proteins and a PPI 
containing 23 ERS-related DEGs was established (Figure  3). 
We  found that MAPK3 and MAPK1 were linked to a large 
number of genes.

Construction of a diagnostic model based 
on seven ERS-related DEGs

Using univariate logistic regression analysis and LASSO 
regression algorithm, candidate ERS-related genes were screened 
from 33 ERS-related genes to predict the occurrence of MDD 
disease. These results indicate that the 18 genes could be used as 
potential diagnostic markers (Figures  4A–C). Multivariate 
regression analysis identified seven diagnostic biomarkers to 

FIGURE 2

Differentially expressed gene (DEGs) analysis in major depressive disorder (MDD) patients. (A) Volcano plot of DEGs between MDD and control 
samples. Red and blue nodes represent upregulated and downregulated DEGs, respectively. (B) Venn plot showing the endoplasmic reticulum stress 
(ERS)-related DEGs (overlapping part). (C) Heat map revealing correlations between ERS-related DEGs. The numbers represent the correlation 
coefficients.
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construct the model (Figure  4D): KCNE1, PDIA4, STAU1, 
TMED4, MGST1, RCN1, and SHC1. RS values were calculated to 
establish diagnostic models based on the LASSO regression 
coefficients and the expression level of each gene.

Diagnostic model had reliable predictive 
power for MDD in the training and 
validation cohorts

Furthermore, we used training and validation cohorts to assess 
the predictive ability of the established model. The AUC values of 
ROC for models in the training and validation (GSE38206) cohorts 
were 0.79 (95% CI:0.73–0.85) and 0.94 (95% CI,0.83–1.00), 
indicating that this model had reliable predictive performance for 
MDD diagnosis (Figures  5A,B). The RS of MDD samples was 
significantly higher than that of control samples in both cohorts 
(Figures 5C,D). We also observed differences in the expression of 
these genes between the MDD and control groups in the training 
cohort (Figures 5E,F).

Diagnostic nomogram model construction

A nomogram model based on seven biomarkers was generated to 
predict the risk of MDD. As shown in Figure 6A, each predictive 
marker was projected upward to the “point” of the value at the top of 
the nomogram to obtain a score of 0 to 100 points, and the total score 
of seven points was calculated to predict the probability of MDD risk. 
The calibration cure displayed that the predicted risk of MDD was in 

good agreement with the actual risk (Figure 6B). Moreover, the DCA 
revealed that the hub gene curves were above the grey line, indicating 
that the use of a nomogram to predict MDD risk had a significant net 
benefit (Figure 6C).

Selected ERS-related DEGs were 
significantly associated with immune cell 
infiltration

To observe the immune statuses of the control and MDD 
groups, we  compared the infiltration levels of immune cells 
between the two groups using CIBERSORT. The results indicated 
that the levels of infiltration of the three types of immune cells were 
significantly different between the two groups (Figure 7A). In brief, 
compared with the control samples, MDD samples had lower levels 
of resting CD4 memory T cells and resting dendritic cells, but had 
higher level of M0 macrophages. Next, the correlations between 
the seven diagnostic genes and the three immune cell types were 
analysed. KCNE1 expression showed the highest positive 
correlation with M0 macrophages (r = 0.29) and the highest 
negative correlation with resting CD4 memory T cells (r = −0.24) 
(Figure 7B).

Two molecular subtypes of MDD patients 
identified using seven diagnostic markers

Based on the expression levels of seven selected diagnostic 
markers, the molecular subtypes of MDD patients were screened. 

FIGURE 3

Protein–protein interaction (PPI) network of ERS-related DEGs.
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ConsensusClusterPlus software was used to calculate the optimal 
number of clusters. Based on the consistency matrix heatmap and 
CDF curve, k = 2 was defined as the optimal number (Figures 8A,B). 
Thus, two subtypes of patients with MDD were identified: SubA 
(n = 51) and SubB (n = 54) (Figure 8C). Next, the GSVA algorithm 
was used to assess the ER scores of each sample. The patients with 
MDD in the SubA group had significantly higher ER scores than 
those in the SubB group (Figure 8D).

Differences in immune characteristics and 
immune checkpoint genes of the two ERS 
subtypes

Furthermore, the immune characteristics of the two subtypes 
were estimated using the CIBERSORT software. The infiltration 
levels of the five immune cell types differed between the two 
subtypes. Compared to the SubB type, the SubA type had 

FIGURE 4

Establishment of the seven-gene signature diagnostic model. (A) Univariate logistic regression analysis confirmed that ERS-related genes were related 
to MDD occurrence. (B,C) LASSO regression analyses. (D) Multivariate regression analysis of seven diagnostic biomarkers for model construction.
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significantly higher levels of CD8+ T cells, M2 macrophages, and 
resting dendritic cells, and significantly lower levels of M0 
macrophages and neutrophils (Figure  9A). Meanwhile, SubB 
exhibited significantly higher stromal and ESTIMATE scores 
(Figure 9B), suggesting a higher degree of infiltration than that 
of SubA. We also observed that samples in the SubA group had 
higher expression of CTLA4 and HAVCR2 but lower expression 
of SIRPA than those in the SubB group (Figure 9C).

GSEA revealing the significantly enriched 
biological pathways between two subtypes

GSEA was performed based on the two subtypes, and the top five 
significant biological pathways are shown in Figure 10. The results 

indicated that fructose and mannose metabolism, leukocyte 
transendothelial migration, lysosomes, and Vibrio cholerae infection 
were upregulated in the SubB group, and steroid hormone biosynthesis 
was upregulated in the SubA group.

Differential expression analysis of two 
distinct subtypes

A total of 1,054 DEGs, including 468 upregulated and 586 
downregulated genes, were identified between SubA and SubB 
subtypes. To explore the biological function of these DEGs, 
functional enrichment analysis was conducted. DEGs were 
mainly enriched in 977 GO terms (Figure 11A), such as regulation 
of signalling receptor activity (BP), specific granules (CC), and 

FIGURE 5

Evaluation of the predictive performance of diagnostic model in the training and validation cohorts. (A) Receiver-operating characteristic (ROC) curve 
of the model in the training cohort. (B) ROC curve of the model in the validation cohort (GSE38206). (C) Expression value of the risk score (RS) in the 
control and MDD groups within the training cohort. (D) RS expression values in the control and MDD groups within the validation cohort. (E) Heat map 
of the mRNA expression of seven ERS-related genes in control and MDD samples within the training cohort. (F) Heat map of the mRNA expression of 
seven ERS-related genes in the validation cohort.
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cytokine activity (MF); they were significantly involved in 27 
KEGG pathways, such as the TNF signalling pathway and 
inflammatory bowel disease (Figure 11B).

Identification of hub genes for ERS 
subtypes using WGCNA

The identified DEGs were selected for WGCNA to screen hub 
genes. Based on the scale free value and mean connectivity index, 
the optimal soft threshold was β = 9 when correlation 
coefficient > 0.85 (Figure 11C). In total, 85 modules were merged 
(Figure 11D). Next, the correlation between module genes and 
ERS subtypes was analysed, and the green module exhibited the 
most significant positive correlation with the SubB subtype 
(r = 0.45, value of p <0.05) (Figure 11E). A total of 320 genes in 
the green module served as potential key genes related to these 
subtypes. Further, genes with MM > 0.8 and GS > 0.2 were 
considered as hub genes, and 48 genes were obtained (Figure 11F).

To explore the interactions between these 48 hub genes, a PPI 
network was constructed. A total of 25 genes were included in this 
network (Figure 11G). Several nodes with high connectivity were 
identified, including NFC4, CSF3R, NCF2, and MAPK.

Discussion

MDD is a highly debilitating disorder that affects millions of 
people worldwide and places a burden on families and communities 
(34). Given the high heterogeneity and complex pathological features 
of MDD, its diagnosis remains challenging. Current diagnosis mainly 
relies on the clinical assessment of patients’ self-reported symptoms 
and lacks objective tests; therefore, MDD still requires the use of 
specific markers for a definitive diagnosis (35). In addition, evidence 
suggests that high rates of misdiagnosis may contribute to poor 
recovery in patients with MDD due to limited knowledge of the 
diagnostic markers of the disease (36). Therefore, there is an urgent 
need to develop reliable detection methods for clinical practise. 
Previous evidence points to the involvement of ERS in the 
pathogenesis of MDD; however, few relevant diagnostic markers have 
been identified. This study aimed to screen for ERS genes associated 
with MDD and explore their potential diagnostic value. In this study, 
we developed a diagnostic model based on seven ERS-related genes. 
The validation results indicated that it had good diagnostic 
performance and closely correlated with the level of immune cell 
infiltration. Furthermore, two molecular subtypes associated with 
ERS were identified that differed significantly in terms of ER scores 
and immune characteristics.

FIGURE 6

Construction of nomogram model for MDD diagnosis. (A) Nomogram based on seven genes to predict MDD risk. (B) Calibration curve to evaluate the 
diagnostic potential of the model. (C) DCA curve to assess the practical efficacy of the model.
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Seven genes were included in the diagnostic model: KCNE1, 
PDIA4, STAU1, TMED4, MGST1, RCN1 and SHC1. The product 
of Potassium Voltage-Gated Channel Subfamily E Regulatory 
Subunit 1 (KCNE1) belongs to the KCNE family and modulates 
the function of voltage-gated K(+) channels (37). Previous 
research has shown that KCNE1 regulates neuronal K(+) channels 
and resting membrane potential (38). The role of KCNE1  in 
MDD has not been extensively studied, with only McCaffery et al. 
proposing that KCNE1 is associated with changes in depressive 
symptoms over the course of a year (39). Notably, the contribution 
of K(+) channels is mainly due to the expression of the KCNE, 
KCNQ, and ERG isoforms (40). Amongst these, the modulators 

(retigabine) of KCNQ channels have been shown to improve 
depressive symptoms and have the potential to treat MDD (41). 
Based on these findings, we  speculate that KCNE1 may also 
be  involved in the neurophysiological mechanisms of stress 
recovery by modulating neuronal activity, thus presenting a 
therapeutic effect on depression. However, this hypothesis should 
be confirmed in future studies. In this study, we observed a close 
correlation between KCNE1 and resting CD4+ memory T cells 
and M0 macrophages. However, these results have not yet been 
investigated and should be explored in future studies. As an ERS 
gene, protein disulphide isomerase family member 4 (PDIA4) is 
significantly correlated with the expression levels of inflammatory 

FIGURE 7

Comparison of immune cell infiltration amongst different disease groups. (A) Comparison of immune cell infiltration between control (blue box) and 
MDD (red box) groups. (B) Correlation of seven diagnostic markers with three types of immune cell infiltration in MDD.
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cytokines, a feature of MDD pathology (42, 43). Although the 
relationship between PDIA4 and MDD has not been reported, 
we  speculate that this gene may be  involved in pathological 
changes in MDD by influencing inflammatory factors. Staufen 1 
(STAU1) is generally expressed in mammals, and its 
downregulation reduces the amplitude and frequency of small 
postsynaptic excitatory currents, suggesting that STAU1 is 
important for the processing or transport of dendritic mRNA 
(44). Interestingly, dendritic mRNA are critical for maintaining 
changes in functional connectivity, such as hippocampus-
dependent learning and memory (45). Microsomal glutathione 
S-transferase 1 (MGST1) has been proven to be involved in the 
regulation of oxidative stress (46). Disruption of the insulin 
pathway in the brain is involved in the pathogenesis of depression 
(47). It has been reported that Src homology 2 domain containing 
(Shc1) is activated by the insulin receptor, which in turn activates 
Grb2 (48). The active Shc1/Grb2 complex stimulates intracellular 

signalling pathways, and its disturbance may contribute to spatial 
memory deficits in rats after water maze training (49). 
Meanwhile, antidepressant drugs may exert beneficial effects on 
the insulin receptor phosphorylation pathway through the Shc1/
Grb2 complex (50), which further supports the potential use of 
Sch1 for depression drug development. However, direct evidence 
of the relationship between these genes and MDD pathogenesis 
has not been reported, and their functions in MDD require 
further exploration.

In the validation analysis, we confirmed that the model had 
good predictive power and that these seven genes could be used 
as diagnostic markers for MDD. Inflammatory processes are 
specifically involved in MDD, and the immune profiles of MDD 
and control groups were analysed. The results revealed that the 
infiltration level of M0 macrophages was higher in MDD samples 
than in control samples, which was also observed by Zhang et al. 
(51). A previous study indicated that a higher production of 

FIGURE 8

Identifying the ERS-based molecular subtypes in MDD patients. (A) Cumulative distribution function (CDF) curve of the consistency score. (B) Delta 
area plot of the relative change in the area under the CDF curve of the MDD samples. (C) The consensus score matrix for MDD samples indicates that 
the two clusters can be divided (k  =  2). (D) Differences in ER scores between the two molecular subtypes.
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pro-inflammatory cytokines was detected in M0 macrophages in 
autologous sera from patients with MDD than in control samples 
(52). Resting CD4 memory T cells and resting dendritic cells also 
exhibited different levels of infiltration in the MDD and control 
groups. However, the mechanisms underlying these complex 
interactions between the diagnostic genes and immune cells 
require further investigation.

Furthermore, two ERS-related molecular subtypes for MDD 
patients were identified. SubA had higher expression value of ER 
scores than SubB, suggesting that patients in this subtype may 
be  accompanied by a more pronounced activation of 
ERS. Moreover, the SubB subtype appeared to be  immune-
infiltrative because of its higher stromal and estimated scores 
than those of the SubA subtype. Evidence indicates that 

depression may damage the immune system and lead to 
immunosuppression (53). Thus, we speculated that patients in 
the SubA subtype may have higher severity of MDD. However, 
due to the lack of clinical information about patients, the 
correlation between subtypes and clinical characteristics is not 
evaluated, which is necessary to understand the clinical 
significance of subtypes. Importantly, we can confirm that ERS 
can regulate the immune microenvironment of MDD, thus 
affecting the course of the disease (54). In the future, the role of 
immune cell dynamics in different subtypes needs to 
be further explored.

Growing evidence suggests that drugs with major immune 
targets can ameliorate depressive symptoms (55). In addition, hub 
genes associated with SubB subtypes were screened by using 

FIGURE 9

The distributions of immune cells and immune checkpoint genes between SubA and SubB subtypes. (A) Levels of immune cell infiltration between the 
two subtypes. (B) Differential distribution of immune features between the two subtypes. (C) Differential expression patterns of several immune 
checkpoint genes in the two subtypes.
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WGCNA, such as NCF4, NCF2, CSF3R and FPR2. It has been 
showed that CSF3R is a cytokine that controls neutrophil expansion 
and differentiation, and can serve as a biomarker for 
neuromodulation; FPR2 knockdown may maintain hippocampal 
homeostasis by preventing depression-related neuronal damage (56, 
57). The proteins encoded by NCF4 are cytoplasmic regulatory 
components of superoxide-producing phagocytic NADPH oxidase, 
which is a multicomponent enzyme system important for host 
defence (58). It primarily interacts with NCF2 and binds to NCF1 to 
form complexes that are transferred to membranes in response to cell 
stimulation (59). However, the functions of NCF4 and NCF2 have 
not yet been investigated in patients with MDD.

To the best of our knowledge, this is the first bioinformatic 
report describing ERS-related diagnostic genes and molecular 
subtypes of MDD. The present analysis has some unique 
advantages. Compared with previous diagnostic model 
construction (51), our analysis employs a larger number of 
datasets and identifies two molecular subtypes associated with 
ERS, which may provide a more comprehensive understanding of 
MDD. Notably, our findings clarify several diagnostic signatures 
and molecular subtypes from the perspective of ERS,  
which can provide a deeper understanding of the molecular 
heterogeneity of depression; meanwhile, it is helpful to assist 
psychiatrists to formulate accurate and individualised  
treatment schemes, thus reducing the burden of depression. 

Furthermore, previous study has indicated that antidepressant 
drugs or natural compounds can exert therapeutic effects via 
reducing ERS (17), and the selected biomarkers in this work 
could provide information for the development of more 
effective treatments.

Our study had some limitations. First, MDD is clinically 
heterogeneous; however, the disease type of the enrolled patients 
was not recorded in detail in the database. Therefore, this point 
was not considered in this analysis. In addition, the results were 
obtained through bioinformatics analysis and are still at the 
predictive stage, so there is insufficient experimental evidence to 
confirm our findings. Thus, further experiments are needed to 
confirm the specific mechanism of action of diagnostic 
genes in MDD.

Conclusion

Taken together, our results established a diagnostic model 
based on seven ERS-related genes that exhibited robust and good 
estimation performance. Simultaneously, two ERS-associated 
molecular subtypes with different ER scores and immune 
characteristics were screened. Our findings provide a reliable 
model for MDD diagnosis and development of individualised 
treatment plans from an ERS perspective.

FIGURE 10

GSEA revealing the significantly enriched biological pathways between SubA and SubB subtypes.
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FIGURE 11

Identification of DEGs and hub genes associated with ERS subtypes. (A) Gene Ontology (GO) term analysis of DEGs between SubA and SubB subtypes. 
(B) KEGG pathway analysis of DEGs within the SubA vs. SubB groups. (C) Analysis of scale-free indices and mean connectivity for various soft-threshold 
powers. (D) Cluster dendrogram developed using weighted correlation coefficients. Each colour represents a module. (E) Correlation between 
modules and ERS subtypes. The upper numbers indicate the correlation coefficients and lower numbers indicate the value of p. (F) Scatter plot of 
correlations between gene significance (GS) and module membership (MM). (G) PPI network of the hub genes in the green module. Red indicates the 
nodes with high connectivity.
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