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Introduction: Agomelatine is an atypical antidepressant drug enhancing
norepinephrine and dopamine liberation; nevertheless, additional mechanisms
are considered for the drug’s pharmacological action. Since protein glycoxidation
plays a crucial role in depression pathogenesis, agomelatine’s impact on
carbonyl/oxidative stress was the research purpose.

Methods: Reactive oxygen species scavenging (hydroxyl radical, hydrogen
peroxide, and nitrogen oxide) and antioxidant capacity (2,2-diphenyl-1-
picrylhydrazyl radical and ferrous ion chelating assays) of agomelatine were
marked. Agomelatine’s antiglycoxidation properties were assayed in sugars
(glucose, fructose, and galactose) and aldehydes- (glyoxal and methylglyoxal)
glycated bovine serum albumin (BSA). Aminoguanidine and α-lipoic acid were
used as standard glycation/oxidation inhibitors.

Results: Agomelatine did not show meaningful scavenging/antioxidant
capacity vs. standards. Sugars/aldehydes increased glycation (↑kynurenine,
↑N-formylkynurenine, ↑dityrosine, ↑advanced glycation end products, and
↑β-amyloid) and oxidation (↑protein carbonyls and ↑advanced oxidation protein
products) parameters in addition to BSA. Standards restored BSA baselines of
glycation and oxidation markers, unlike agomelatine which sometimes even
intensifies glycation above BSA + glycators levels. Molecular docking analysis of
agomelatine in BSA demonstrated its very weak binding a�nity.

Discussion: Agomelatine’s very low a�nity to the BSA could proclaim non-
specific bonding and simplify attachment of glycation factors. Thereby, the drug
may stimulate brain adaptation to carbonyl/oxidative stress as the systematic
review indicates. Moreover, the drug’s active metabolites could exert an
antiglycoxidative e�ect.

KEYWORDS
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1. Introduction

Depression is the leading cause of disability/incapacity and the most common mental
disorder. Currently, 350 million people worldwide suffer from depression (1). Such a high
number of cases is due tomodern lifestyles—e.g., its fast pace, the overload of responsibilities,
and an imbalance between work and leisure. Depression is, therefore, a disease of civilization
(2). It is diagnosed most often in people aged between 20 and 40 (1). Depression is a
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significant risk factor for suicide and, therefore, contributes to
1 million deaths per year worldwide. It is estimated that at least
half of the disease cases remain undiagnosed, and only half of the
patients diagnosed with depression receive adequate treatment
(1, 3). However, pharmacotherapy for depression is characterized
by increasing effectiveness and limiting side effects. The most
common division of antidepressants, precisely by mechanism,
includes selective serotonin reuptake inhibitors (SSRIs), serotonin
and norepinephrine reuptake inhibitors (SNRIs), tricyclic
antidepressants (TCAs), and monoamine oxidase inhibitors
(MAOIs) (4). SSRIs (e.g., sertraline, paroxetine, fluvoxamine,
fluoxetine, escitalopram, and citalopram) block the transport of
serotonin across the presynaptic membrane back into the nerve
cell, increasing its concentration in the brain. SNRIs are another
group that includes venlafaxine, milnacipran, and duloxetine.
They increase brain levels of serotonin and norepinephrine and
exhibit analgesic effects. TCAs, like SNRIs, inhibit the reuptake of
norepinephrine and serotonin and have analgesic action. These
include amitriptyline, desipramine, imipramine, clomipramine,
nortriptyline, and doxepin. The only MAOI currently used to treat
depression is moclobemide. It reversibly blocks type A monoamine
oxidase (MAO-A), the enzyme responsible for breaking down
serotonin, norepinephrine, and dopamine. However, these drugs
are not without many side effects, such as pain and dizziness,
migraine, nausea, gastrointestinal problems, increased sweating,
back pain, fatigue, increased liver enzymes, and anxiety (4, 5).

A drug that stands out in this regard is agomelatine (N-[2-(7-
methoxynaphthalen-1-yl)ethyl]acetamide; C15H17NO2; Figure 1)
(6). Agomelatine increases the release of norepinephrine and
dopamine and stimulates MT1 and MT2 melatonergic receptors.
In this way, agomelatine helps regulate sleep–wake rhythms, which
are often disrupted in depressed patients (insomnia and excessive
sleepiness). Agomelatine is classified as an atypical antidepressant,
and its mechanism of action has not been fully understood (6, 7).
The drug is absorbed rapidly and well (≥80%). Bioavailability
amounts to <5%. Consumption of a standard or high-fat meal
does not alter bioavailability or absorption rate. Bioavailability
increases when taking oral contraceptives and decreases in
smokers. Agomelatine is 95% bound to plasma proteins. The
drug is metabolized in the liver and excreted mainly by the
kidneys (80%). Severe renal insufficiency does not significantly
affect pharmacokinetic parameters, while impaired liver function
increases exposure to the drug (6–9). Agomelatine is used to treat
not only depression but also sleep disturbances (10).

The brain is an organ eminently susceptible to oxidative
damage. Cell membranes of neurons contain significant amounts
of polyunsaturated fatty acids, making them easily oxidized by
reactive oxygen species (ROS). The accumulation of transition
metals and low levels of antioxidant enzyme activities accelerate
oxidation as well (11). The brain is also susceptible to glycemic
fluctuations. High glucose concentrations in neurons induce
oxidative stress and increase the formation of advanced glycation
end products (AGEs). AGEs induce NADPH oxidase (NOX)
to produce ROS by activation of the receptor for advanced
glycation end products (RAGE), as well as to stimulate the
formation of cytotoxic β-amyloid (βA) and ceramide, inducing
neuronal death. βA, through AGEs signaling, can contribute to the

FIGURE 1

Chemical structure of agomelatine.

phosphorylation of mitogen-activated protein kinase (MAPK) and,
thus, to the atrophy of synapses (11–13). Therefore, it should be
no surprise that 11% of people with diabetes meet the criteria for
a diagnosis of depression, and 31% report a history of depressive
symptoms (14). Carbonyl stress also plays a vital role in sleep–
wake disorders. Systemic inflammation activates microglia cells
and astrocytes in brain regions that regulate circadian rhythms
(15). These cells can secrete proinflammatory cytokines [such
as tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β)],
nitric oxide (NO•), and gliotransmitters (16). These can affect the
expression of key genes regulating the circadian rhythms, such
as circadian locomotor output cycles kaput (CLOCK) (10, 15).
Moreover, sleep disturbances can aggravate oxidative/nitrosative
injury, peripheral immune activation, and neuroinflammation in a
vicious cycle mechanism (10, 15, 16). Thus, it is unsurprising that
new antidepressants are still being sought to inhibit oxidative stress
and protein glycation.

The literature seems to confirm the antioxidant effect
of agomelatine. Among other things, the drug scavenged
ROS, reduced levels of oxidation-promoting enzymes, increased
concentrations of enzymatic and non-enzymatic antioxidants, or
modulated the expression of genes related to redox homeostasis.
However, studies on the counteracting of protein glycation by
agomelatine are scarce (17–20). Carbonyl stress is an essential
pathogenetic component of depression (15), and agomelatine may
also act through an unknown mechanism to inhibit oxidative stress
and protein glycation. Therefore, our study was the first to evaluate
the antiglycoxidative effect of agomelatine comprehensively.

2. Materials and methods

2.1. Systematic review

The literature review was conducted between 1993 and October
2022 following the PRISMA guide with PubMed (National Library
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TABLE 1 Analyzed publications’ inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Publications solely in English Publications in other languages

Antiglycoxidative activity of
agomelatine articles

Articles not describing the
antiglycoxidative activity of
agomelatine

Manuscripts pertinent to human in vivo

and in vitro experiments
Review manuscripts, surveys, as
well as case descriptions

of Medicine, Washington, DC, USA), Scopus (Elsevier B.V.), and
Web of Science Core Collection (WOS) databases. The search
strategy was conducted with the usage of Medical Subject Headings
(MeSH) terms. The obtainable references were trawled through
using keywords: (agomelatine and oxidative stress), (agomelatine
and ROS), (agomelatine and antioxidant), (agomelatine and
protein glycation) as well as (agomelatine and antiglycation
properties). Inclusion and exclusion criteria are presented in
Table 1.

Two scientists (M.N. and K.K.L.) investigated the initial data
by independently analyzing the titles of articles and abstracts.
Afterward, all previously selected manuscripts were evaluated
by two other authors (M.M. and M.Z.P.). Next, the research
articles which met the set criteria were chosen for the final
analysis. The researchers’ reliability level was assessed with Cohen’s
kappa coefficient (κ), which equaled κ = 0.97. All articles
were evaluated methodologically, and the following variables
were assayed: authors, publication year, study design, experiment
population size, inclusion and exclusion criteria, experiment
length, and endpoints.

2.2. Reagents and equipment

All analytical grade reagents were purchased from Sigma-
Aldrich (Numbrecht, Germany/Saint Louis, MO, USA). First, all
solutions were sterilized by filtration through 0.2mm membrane
filters directly before use.

To differentiate the results obtained for agomelatine,
aminoguanidine was used, as a known protein oxidation
inhibitor, and α-lipoic acid (ALA), as an antioxidant. The
concentration of all additives was 1mM (based on in vitro, kinetic
studies), in proportion to the high concentrations of the glycating
agents (21–26).

The absorbance and fluorescence were assessed with an
M200 PRO multimode microplate reader (Tecan Group Ltd.,
Männedorf, Switzerland).

2.3. Scavenging of reactive oxygen species

Agomelatine’s ability to neutralize ROS was conducted in
duplicate samples in three independent experiments.

2.3.1. Hydroxyl radical scavenging
The scavenging activity of HO• was measured via the modified

assay described by Su et al. (27). First, 0.25mL of FeSO4

(8mM), 0.4mL of H2O2 (6mM), 0.25mL of distilled water,
0.5mL of the samples (terminal strength of 1mM), and 0.2mL
of sodium salicylate (20mM) were all mixed and next incubated
at 37◦C for 1 h. The absorbance of the reaction was assessed
spectrophotometrically at 562 nm wavelength. The scavenging of
HO• (%) was assessed by the formula: [1 – (A1 – A2)/A0] × 100%,
where A0–absorbance of the control (without additives), A1–after
the drugs were mixed with the drugs, and A2–with no sodium
salicylate (27).

2.3.2. Hydrogen peroxide scavenging
The evaluation of H2O2 scavenging activity was conducted

in compliance with the procedure by Kwon et al. (28). Initially,
to obtain a solution of ferrous ion oxidation-xylenol orange
(FOX), butylated hydroxytoluene (BHT) (87.3mg), H2SO4

(10 µL), xylenol orange (7.6mg), and ferrous ammonium
sulfate (10mg) were mixed in 100mL of 90% methanol–
water solution. After that, H2O2 (50mM) and the samples
(terminal strength of 1mM) were mixed (1:1, v/v) and
incubated for 30min at room temperature. Next, 10 µL
of high-performance liquid chromatography (HPLC)-grade
methanol was carefully mixed with 90 µL of the abovementioned
solution. Next, the FOX reagent (0.9mL) was introduced
to the above mixture, where it was vortexed and incubated
for 30min at room temperature. Spectrophotometrically,
at a wavelength of 560 nm, the absorbance of the reaction
product, ferric-xylenol orange complex, was assessed. The
scavenging of H2O2 (%) was evaluated by the formula: [1 –
f(A1 – A2)/A0g] × 100% (A0−−control absorbance (without
additives), A1–post-addition of the drugs, and A2–without the
FOX reagent) (28).

2.3.3. Nitric oxide scavenging
Phosphate-buffered saline (100 µL) was mixed including

sodium nitroprusside (5mM) to 50 µL of samples. Next, the
mixture was incubated for 150min at 25◦C. Then, Griess
reagent (150 µL) was added to the reaction mixture [Griess
reagent including sulfanilamide (1%), H3PO4 (2%), and N-
(1-naphthyl)ethylenediamine] (0.1%)]. Chromophore was
released as a result of nitrite diazotization by sulfanilamide
with its conjugation with N-(1-naphthyl) ethylenediamine.
The assessment of product absorbance was conducted
using a spectrophotometer at a wavelength of 546 nm.
The scavenging capacity was determined according to the
formula: [1 – (A1/A2)] × 100% [A1–sample absorbance after
the drugs are mixed, A2—absorbance (without the Griess
reagent)] (29).

2.4. Antioxidant capacity

The antioxidant capacity of agomelatine was tested in duplicate
samples in three independent experiments.
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2.4.1. Scavenging capacity of
2,2-diphenyl-1-picrylhydrazyl radical

The assessment of free radical scavenging activity was
performed based on the decolorization of DPPH radical (DPPH•)
according to Kwon et al. (28). A diluted sample (30 µL) was mixed
with DPPH solution (180 µL) (0.13 mg/mL). After that, methanol
was added to the volume of 210 µL. The DPPH solution was
utilized as a control. Next, the reaction mixture was incubated for
20min, and the absorbance was measured at 518 nm wavelength.
DPPH• elimination was calculated using the following formula:
[(Ablank – Asample)/Ablank] 100%, where Ablank–absorbance of
the blank DPPH solution, and Asample–DPPH absorbance of the
sample mixture (28).

2.4.2. Ferrous ion chelating
By calculating the decrease in the generation of the Fe2+-

ferrozine complex, FIC was measured. Approximately 18 µL of
FeCl2 (0.6mM) and 16 µL of CH3OH were mixed with 90
µL of samples (terminal strength of 1mM) or BHT (control).
Next, the mixture was incubated at room temperature for 10min.
Quickly, 18 µL of solution of ferrozine (5mM) was added. The
mixture was incubated at room temperature for an extra 5min.
A spectrophotometer was used to calculate the absorbance at a
wavelength of 562 nm. The percentage decrease in absorbance of
the control allowed us to express FIC (28).

2.5. Experimental model

The glycation of bovine serum albumin (BSA) was performed
according to a previously published method (21, 22, 24–26).
Promptly, BSA (>98% purity; protease- and fatty acid-free; 90
µmol/L) was dissolved in sodium phosphate buffer (0.1M, pH 7.4),
which included 0.02% sodium azide as a preservative. As glycating
agents, sugars [glucose (Glu), fructose (Fru), and galactose (Gal);
10mM) and aldehydes (glyoxal (GO) and methylglyoxal (MGO);
2.5mM] were used. Incubation was performed in closed vials in
the dark, with ongoing shaking (50 rpm, 37◦C; 6 days with sugars
and 12 h with aldehydes). Despite the fact that the concentrations
of glycators were much higher than their physiological levels,
they are useful for modeling in a comparatively short time
the physiological processes occurring in the body over several
months. Such conditions are applied routinely to determine the
antiglycooxidant properties of new substances (21, 22, 24–26, 30).
The concentration of all additives was 1mM (based on in vitro

kinetic studies), in proportion to the high level of the glycating
agents (21, 22, 24–26, 30). The study was performed in three
independent experiments, each time in duplicate.

2.6. Carbonyl stress products

2.6.1. Amino acid glycation products
Kynurenine (KN), N-formylkynurenine (NFK), and dityrosine

(DT) were evaluated spectrofluorimetrically at the following
fluorescence emission and excitation wavelengths: 365/480,

325/434, and 330/415 nm, respectively. Before the study, the
samples were diluted with 0.1M H2SO4 (1:5, v/v). Next, according
to the fluorescence of 0.1 mg/mL quinine sulfate solution in 0.1M
H2SO4, the results were standardized (31).

2.6.2. β-Amyloid
Thioflavin T was examined to mark fluorescence emitted

during the binding of amyloid fibrils/oligomers to thioflavin T.
Thioflavin T (10 µL) and samples (90 µL) were mixed and
placed on a microplate. Fluorescence intensity was quantified at a
385/485 nm wavelength (32).

2.6.3. Advanced glycation end products
A spectrofluorometer was used to examine the content of

AGEs. AGE-specific fluorescence was analyzed at 440/370 nm
wavelength. Before the study, the assayed samples were diluted with
PBS (1:5, v/v).

2.7. Oxidative stress products

2.7.1. Protein carbonyls
To determine the concentration of PCs, a reaction with 2,4-

dinitrophenylhydrazine (2,4-DNPH) and carbonyls in oxidation-
damaged proteins was performed. The spectrophotometer, at a
355 nm wavelength, allowed us to determine the reaction product
absorbance. The absorption coefficient for 2,4-DNPH (22 000
M−1cm−1) was used (33).

2.7.2. Advanced oxidation protein products
A spectrophotometric assay was performed to evaluate the

level of AOPPs. Studied samples (200 µL) were diluted with
PBS at a ratio of 1:5 (v/v). Next, the prepared samples and
standard solutions (0–100 µmol/L) as well as a blank PBS
solution (200 µL) were allocated to a 96-well microplate.
Subsequently, 10 µL of KI (strength of 1.16M) and 20 µL
of CH3COOH were inserted into the wells. The microplate
reader, at a 340 nm wavelength, allowed us to rapidly assay the
absorbance, in contrast with the blank solution (200 µL PBS,
10 µL KI, and 20 µL CH3COOH). A linear absorbance was
manifested in the range of 0–100 µmol/L by the chloramine T
solutions (34).

2.8. Molecular docking analysis

Molecular docking is a study that is used in the in silico

technique of foreseeing the preferred position of a ligand after
binding to a macromolecule (commonly a protein). In our study,
BSA was used as a receptor in an interaction study with the
agomelatine molecule. A 3D structure of BSA (PDB ID: 4F5S)
was transferred from the Protein Data Bank (PDB) (https://
www.rcsb.org/) in the.pdb format. The crystal structure was
established with the X-ray diffraction method at a resolution
value of 2.47 Å. The 3D structure of agomelatine (PubChem
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CID: 82148) was downloaded from the National Library of
Medicine website (https://pubchem.ncbi.nlm.nih.gov/compound/
Agomelatine) as an.sdf file. All the water molecules and the
addition of polar hydrogens as well as Kollman charges were
deleted using the AutoDock MGL Tools. The processed protein
particle was prepared and saved in.pdbqt format. We set the
exhaustiveness parameter value at the level of 8. Molecular
docking simulation was exercised by AutoDock Vina (grid size:
40 × 40 × 40; spacing located at 34.885, 23.976, and 98.792).
To visualize the molecular docking, PyMOL 2.5 program was
used (26).

2.9. Statistical analysis

The statistical analysis was conducted using GraphPad Prism
8.3.0 (GraphPad Software, La Jolla, CA, USA). The results were
expressed as a percentage of the respective control values [BSA +

glycation agent (Glc, Fru, Gal, GO, and MGO)]. The evaluation
of the result distribution was conducted using the D’Agostino-
Pearson and Shapiro–Wilk tests. The homogeneity of variance was
checked by Levine’s test. The differences between groups were
evaluated by one-way analysis of variance ANOVA followed by
Tukey’s post-hoc test for multiple comparisons. A value of p <

FIGURE 2

PRISMA flow diagram: systematic review methodology. WOS, Web of Science Core Collection.
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0.05 was considered statistically significant. Multiplicity adjusted
p-value was also assessed.

3. Results

3.1. Systematic review

The review of the bibliography led to the selection of 523
articles from the PubMed, Scopus, and WOS online databases;
however, 235 of them were rejected due to the titles. A total of
228 abstracts were read; however, only 18 of them fit the inclusion
and exclusion criteria. Other articles included 14 that were not
related to the topic of our study. Eventually, four manuscripts
were incorporated into the research (Figure 2). The results of our
systemic review are presented in Table 2.

3.2. Scavenging of reactive oxygen species

ROS are chemically active molecules that are formed in
enzymatic or non-enzymatic oxidative reactions. Despite low
concentrations, they are involved in many physiological processes.
Increased ROS levels may lead to oxidative modifications of cellular
biomolecules. Assessing the scavenging capacity of HO•, H2O2

and NO•–provides crucial information regarding the antioxidant
properties of the test sample (35, 36).

3.2.1. Scavenging of hydrogen peroxide
A one-way ANOVA pointed out that the H2O2 scavenging

inhibition rate differed between groups (p < 0.0001). Agomelatine
scavenged H2O2 at 4%. The inhibition rate of H2O2 scavenging
of aminoguanidine (+1,468%, p < 0.0001) and ALA (+1,600%,
p < 0.0001) was significantly higher than the inhibition rate of
agomelatine (Figure 3A).

3.2.2. Scavenging of hydroxyl radical
The one-way ANOVA showed HO• scavenging capacity

differed between the groups (p < 0.0001). The HO• scavenging
inhibition rate of aminoguanidine (+130%, p < 0.0001) and ALA
(+172%, p < 0.0001) was significantly higher than the inhibition
rate of agomelatine (33%) (Figure 3B).

3.2.3. Scavenging of nitric oxide
The one-way ANOVA presented that scavenging of NO•

differed between groups (p < 0.0001). The NO• inhibition rate of
agomelatine was 6%. Both aminoguanidine (+140%, p = 0.0014)
and ALA (+835%, p < 0.0001) show significantly higher inhibition
rates than agomelatine (Figure 3C).

TABLE 2 Agomelatine’s antiglycoxidative action in experimental and

clinical research.

Study design Endpoints References

Streptozocin
(STZ)-treated
intraperitoneally male
Sprague Dawley albino
rats exposed to
agomelatine (20
mg/kg/day)

Agomelatine inhibited
STZ-induced oxidative
damage of rat testicles by
alleviating histological
findings, decreasing
malondialdehyde levels, as
well as enhancing catalase and
superoxide dismutase
activities

(17)

Male Sprague Dawley rats
injected
intracerebroventricularly
by STZ and after 3
months administrated
agomelatine (40 mg/kg)
for 30 days

Agomelatine restored
STZ-enhanced β-amyloid
level both in the frontal
cortex, as well as in the
hippocampus

(18)

Male Wistar rats
intraperitoneally
D-galactose-exposed
treated with agomelatine
(40 mg/kg/day)

Agomelatine downregulated
the expression of the receptor
for advanced glycation end
products and also NADPH
oxidase 2 and 4, inhibited
ROS production, as well as
stabilized mitochondrial
membrane

(19)

A total of 40 depressed
patients with cooccurring
non-optimally controlled
type 2 diabetes mellitus
treated with sertraline
(50–100 mg/day) or
agomelatine (25–50
mg/day) for 4 months

Patients treated with
agomelatine showed a
reduction in anxiety and
depression, as well as better
self-care; there were no
differences in fasting plasma
glucose between the drugs,
but agomelatine was more
effective in reducing
hemoglobin A1c levels; both
study drugs were well
tolerated by patients—none
withdrew from the study

(20)

STZ, streptozocin.

3.3. Antioxidant activity

The antioxidant properties of a substance depend on the
scavenging capacity of standard synthetic radicals (e.g., DPPH•)
and their ability to chelate metals (e.g., FIC) (35, 37).

3.3.1. Scavenging of
2,2-diphenyl-1-picrylhydrazyl radical

The one-way ANOVA revealed the scavenging of DPPH•

differed between groups (p < 0.0001). The DPPH• scavenging
capacity of ALA only was significantly elevated (+1,635%, p <

0.0001) compared to agomelatine (2%) (Figure 4A).

3.3.2. Ferrous iron chelating
The one-way ANOVA demonstrated that FIC differed between

groups (p < 0.0001). Agomelatine presented an FIC inhibition rate
of 7%. This parameter was effectively elevated in aminoguanidine
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FIGURE 3

Scavenging of reactive oxygen species (ROS): hydrogen peroxide
(H2O2) (A), hydroxyl radical (HO•) (B) as well as nitric oxide (NO•) (C)
by agomelatine and other additives. AG, aminoguanidine; ALA,
α-lipoic acid; AM, agomelatine. **p < 0.01 vs. control (agomelatine);
***p < 0.001 vs. control (agomelatine).

and ALA (+708%, p< 0.0001 and+853%, p< 0.0001, respectively)
(Figure 4B).

3.4. Carbonyl and oxidative stress products
in glucose-induced BSA glycation

3.4.1. Carbonyl stress products
The one-way ANOVA showed that KN contents differed

between groups (p < 0.0001). The fluorescence of KN was elevated
in Glc+agomelatine (+72%, p < 0.0001) but markedly lower in
Glc+aminoguanidine (−36%, p < 0.0001), in comparison with

FIGURE 4

Antioxidant capacity: 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•)
reducing (A) as well as ferrous iron chelating (FIC) (B) by
agomelatine and other additives. AG, aminoguanidine; ALA, α-lipoic
acid; AM, agomelatine. ***p < 0.001 vs. control (agomelatine).

Glc. The content of KN was significantly potentiated in Glc, Glc
+ agomelatine, Glc+ aminoguanidine, and Glc+ ALA (+183%, p
< 0.0001;+387%, p < 0.0001;+80%, p < 0.0001; and+177%, p <

0.0001, respectively) compared to BSA (Figure 5A).
The one-way ANOVA found contents of NFK differed

between groups (p < 0.0001). The fluorescence of NFK was
higher in Glc+agomelatine (+143%, p < 0.0001) but lower in
Glc+aminoguanidine (−33%, p < 0.0001) than in Glc alone. The
content of NFKwas well-augmented in Glc, Glc+ agomelatine, Glc
+ aminoguanidine, and Glc+ALA (+183%, p< 0.0001;+586%, p
< 0.0001;+90%, p < 0.0001; and+178%, p < 0.0001, respectively)
vs. BSA (Figure 5B).

The one-way ANOVA revealed that the fluorescence of DT
differed between the groups (p < 0.0001). The fluorescence of
DT was relatively improved in Glc + agomelatine (+224%, p <

0.0001) compared to Glc alone. The biomarker was considerably
decreased in Glc + aminoguanidine (−32%, p < 0.0001) vs. Glc.
The content of DTwasmarkedly elevated in Glc, Glc+agomelatine,
Glc+aminoguanidine, and Glc+ALA (+165%, p< 0.0001;+757%,
p < 0.0001; +79%, p < 0.0001; and +176%, p < 0.0001,
respectively) when compared to BSA (Figure 5C).

The one-way ANOVA demonstrated βA contents differed
between groups (p< 0.0001). The fluorescence of βAwas decreased
in Glc+aminoguanidine (−30%, p = 0.0095), compared to Glc
alone. The content of βA was significantly augmented in Glc, Glc
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FIGURE 5

E�ects of agomelatine addition to glucose (Glc)-glycated bovine serum albumin (BSA) on carbonyl stress products (A–E) and oxidative stress
products (F, G). AG, aminoguanidine; AGEs, advanced glycation end products; ALA, α-lipoic acid; AM, agomelatine; AOPPs, advanced oxidation
protein products; βA, β-amyloid; BSA, bovine serum albumin; DT, dityrosine; Glc, glucose; KN, kynurenine; NFK, N-formylkynurenine; PCs, protein
carbonyls. *p < 0.05 vs. negative control (BSA); **p < 0.01 vs. negative control (BSA); ***p < 0.001 vs. negative control (BSA); ##p < 0.01 vs. positive
control (BSA + Glc); ###p < 0.001 vs. positive control (BSA + Glc).

+ agomelatine, Glc+ aminoguanidine, and Glc+ ALA (+150%, p
< 0.0001;+121%, p= 0.0008;+74%, p= 0.0117; as well as+156%,
p < 0.0001, respectively) vs. BSA (Figure 5D).

The one-way ANOVA indicated that the fluorescence of AGEs
differed between groups (p < 0.0001). The AGEs fluorescence was
elevated in Glc + agomelatine but markedly decreased in Glc
+ aminoguanidine (+126%, p < 0.0001 and −32%, p < 0.0001,
respectively) when compared to Glc. The content of AGEs was well-
augmented in Glc, Glc+agomelatine, Glc+aminoguanidine, and
Glc + ALA (+192%, p < 0.0001; +559%, p < 0.0001; +98%, p <

0.0001; and+196%, p < 0.0001, respectively) vs. BSA (Figure 5E).

3.4.2. Oxidative stress products
The one-way ANOVA reported that PC levels differed between

groups (p < 0.0001). The concentration of PCs was also markedly
decreased Glc+aminoguanidine and Glc+ALA (−29%, p= 0.0043
and −48%, p < 0.0001, respectively) vs. Glc. However, Glc (+18%,
p = 0.0207) was considerably augmented, unlike Glc+ALA (-39%,
p= 0.0038), compared to BSA (Figure 5F).

The one-way ANOVA pointed out that concentrations of
AOPPs differed between groups (p < 0.0001). The level of
AOPPs was elevated in Glc+agomelatine (+53%, p = 0.0015) but
substantially lowered in Glc+aminoguanidine (−29%, p < 0.0001)
vs. Glc. The concentration of AOPPs was markedly potentiated
in Glc, Glc+agomelatine, Glc+aminoguanidine, and Glc+ALA
(+346%, p < 0.0001; +580%, p < 0.0001; +215%, p < 0.0001; and
+349%, p= 0.0004, respectively) compared to BSA (Figure 5G).

3.5. Carbonyl and oxidative stress products
in fructose-induced BSA glycation

3.5.1. Carbonyl stress products
The one-way ANOVA showed that KN contents differed

between groups (p < 0.0001). The fluorescence of KN was only
elevated in Fru +agomelatine (+73%, p < 0.0001) in comparison
with Fru alone. The content of KN was significantly potentiated in
Fru, Fru + agomelatine, Fru + aminoguanidine, and Fru + ALA

Frontiers in Psychiatry 08 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1164459
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Nesterowicz et al. 10.3389/fpsyt.2023.1164459

FIGURE 6

E�ects of agomelatine addition to fructose (Fru)-glycated bovine serum albumin (BSA) on carbonyl stress products (A–E) and oxidative stress
products (F, G). AG, aminoguanidine; AGEs, advanced glycation end products; ALA, α-lipoic acid; AM, agomelatine; AOPPs, advanced oxidation
protein products; βA, β-amyloid; BSA, bovine serum albumin; DT, dityrosine; Fru, fructose; KN, kynurenine; NFK, N-formylkynurenine; PCs, protein
carbonyls. *p < 0.05 vs. negative control (BSA); **p < 0.01 vs. negative control (BSA); ***p < 0.001 vs. negative control (BSA); #p < 0.05 vs. positive
control (BSA + Fru); ##p < 0.01 vs. positive control (BSA + Fru); ###p < 0.001 vs. positive control (BSA + Fru).

(+14%, p = 0.0046; +96%, p < 0.0001; +22%, p = 0.0326; and
+23%, p= 0.0105, respectively) than in BSA (Figure 6A).

The one-way ANOVA found contents of NFK differed between
groups (p < 0.0001). The fluorescence of NFK was significantly
elevated in Fru+ agomelatine (+128%, p < 0.0001) in comparison
with Fru alone. The content of NFK was substantially elevated in
Fru (+29%, p < 0.0001), Fru + agomelatine (+193%, p < 0.0001),
Fru + aminoguanidine (+30%, p = 0.0045), and Fru + ALA
(+29%, p= 0.0015) compared to BSA (Figure 6B).

The one-way ANOVA revealed that the fluorescence of DT
differed between groups (p < 0.0001). DT fluorescence was
significantly elevated in Fru+agomelatine (+196%, p< 0.0001) but
markedly decreased in Fru+ aminoguanidine (−18%, p= 0.0002)
in comparison with Fru. The content of DT was considerably
elevated in Fru (+75%, p < 0.0001), Fru + agomelatine (+418%,
p < 0.0001), Fru + aminoguanidine (+43%, p = 0.0003), and Fru
+ ALA (+70%, p < 0.0001) than in BSA (Figure 6C).

The one-way ANOVA demonstrated βA contents differed
between groups (p < 0.0001). The fluorescence of βA was
substantially decreased in Fru + agomelatine (−37%, p = 0.0024),

Fru + aminoguanidine (−37%, p = 0.0015), and (−22%, p

= 0.0431) vs. Fru alone. The content of βA was significantly
augmented in Fru (+178%, p< 0.0001), Fru+ agomelatine (+75%,
p = 0.0444), Fru + aminoguanidine (+75%, p = 0.0369), and Fru
+ ALA (+117%, p= 0.0063) vs. BSA (Figure 6D).

The one-way ANOVA indicated that the fluorescence of AGEs
differed between groups (p < 0.0001). AGEs fluorescence was
significantly elevated in Fru + agomelatine (+107%, p < 0.0001)
but relevantly diminished in Fru + aminoguanidine (−12%, p =

0.0064) vs. Fru. The content of AGEs was higher in Fru (+63%,
p < 0.0001), Fru + agomelatine (+237%, p < 0.0001), Fru +

aminoguanidine (+44%, p = 0.0001), and Fru + ALA (+58%, p
< 0.0001) than in BSA (Figure 6E).

3.5.2. Oxidative stress products
The one-way ANOVA reported that the PC levels differed

between groups (p < 0.0001). The concentration of PCs was
considerably decreased in Fru + aminoguanidine (−53%, p <

0.0001) and Fru + ALA (−29%, p = 0.0151) in comparison with
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Fru alone. The level of PCs was significantly augmented in Fru
(+23%, p < 0.0001) and Fru+agomelatine (+75%, p = 0.0147) vs.
BSA. The parameter was lower in Fru+aminoguanidine (−42%, p
= 0.0005) than in BSA (Figure 6F).

The one-way ANOVA pointed out that concentrations of
AOPPs differed between groups (p < 0.0001). The concentration
of AOPPs was markedly elevated in Fru + agomelatine (+51%, p
< 0.0001) and Fru + aminoguanidine (+42%, p = 0.0196) vs. Fru.
The level of AOPPs was significantly augmented in Fru (+200%,
p < 0.0001), Fru + agomelatine (+353%, p < 0.0001), Fru +

aminoguanidine (+327%, p = 0.0002), and Fru+ALA (+216%, p
= 0.0002) in comparison with BSA (Figure 6G).

3.6. Carbonyl and oxidative stress products
in galactose-induced BSA glycation

3.6.1. Carbonyl stress products
The one-way ANOVA showed that the KN contents differed

between groups (p< 0.0001). The fluorescence of KNwas relatively
elevated in Gal+ agomelatine (+34%, p < 0.0001) and Gal+ ALA
(+3%, p = 0.0246) vs. Gal alone. This parameter was considerably
decreased in Gal + aminoguanidine (−87%, p < 0.0001) vs. Gal.
The content of KN was substantially attenuated in Gal (+109%,
p < 0.0001), Gal + agomelatine (+180%, p < 0.0001), Gal +
aminoguanidine (+74%, p < 0.0001), and Gal + ALA (+116%, p
< 0.0001) vs. BSA (Figure 7A).

The one-way ANOVA found the contents of NFK differed
between groups (p < 0.0001). The fluorescence of NFK was
relevantly improved in Gal+agomelatine (+83%, p < 0.0001)
compared to Gal alone. The biomarker was considerably decreased
in Gal+ aminoguanidine (−20%, p < 0.0001) vs. Gal. The content
of NFK was considerably high in Gal, Gal + agomelatine, Gal +
aminoguanidine, and Gal + ALA in comparison with Gal alone
(+116%, p < 0.0001; +296%, p < 0.0001; +72%, p < 0.0001;
and +122%, p < 0.0001, respectively) in comparison with BSA
(Figure 7B).

The one-way ANOVA revealed that the fluorescence of DT
differed between groups (p < 0.0001). The fluorescence of DT
was markedly increased both in Gal + agomelatine and Gal +
ALA (+157%, p < 0.0001 and +7%, p = 0.0002, respectively)
vs. Gal alone. This parameter was relevantly decreased in Gal +
aminoguanidine (−21%, p < 0.0001) vs. Gal. The content of DT
was significantly augmented in Gal (+128%, p < 0.0001), Gal +
agomelatine (+486%, p < 0.0001), Gal + aminoguanidine (+80%,
p < 0.0001), and Gal + ALA (+144%, p < 0.0001) vs. BSA
(Figure 7C).

The one-way ANOVA demonstrated βA contents differed
between groups (p< 0.0001). The fluorescence of βAwas markedly
decreased in Gal + agomelatine, Gal + aminoguanidine, and Gal
+ ALA vs. Gal (−27%, p = 0.0002; −27%, p = 0.0028; and −15%,
p = 0.0107, respectively). The content of βA was significantly
augmented in Gal (+224%, p < 0.0001), Gal + agomelatine
(+135%, p< 0.0001), Gal+ aminoguanidine (+136%, p= 0.0002),
and Gal+ ALA (+176%, p < 0.0001) vs. BSA (Figure 7D).

The one-way ANOVA indicated that the fluorescence of AGEs
differed between groups (p < 0.0001). The fluorescence of AGEs

was markedly elevated in Gal + agomelatine (+75%, p < 0.0001)
and Gal + ALA (+6%, p = 0.0009) compared to Gal. The marker
was relevantly decreased in Gal + aminoguanidine (−22%, p <

0.0001) vs. Gal alone. The content of AGEs was considerably
elevated in Gal, Gal+agomelatine, Gal+ aminoguanidine, and Gal
+ ALA vs. BSA (+124%, p < 0.0001, +293%, p < 0.0001, +76%, p
< 0.0001, and+139%, p < 0.0001, respectively) (Figure 7E).

3.6.2. Oxidative stress products
The one-way ANOVA reported that the PC levels did not differ

between the groups (p= 0.3964).
The one-way ANOVA pointed out that the concentrations

of AOPPs differed between the groups (p < 0.0001). The
concentration of AOPPs was elevated in Gal+ agomelatine and Gal
+ ALA (+25%, p= 0.0024 and+17%, p= 0.0011, respectively) vs.
Gal alone. The level of AOPPs was significantly potentiated in Gal
(+343%, p< 0.0001), Gal+ agomelatine (+455%, p< 0.0001), Gal
+ aminoguanidine (+347%, p < 0.0001), and Gal+ ALA (+418%,
p < 0.0001) compared to BSA (Figure 7G).

3.7. Carbonyl and oxidative stress products
in glyoxal-induced BSA glycation

3.7.1. Carbonyl stress products
The one-way ANOVA showed that the KN contents differed

between groups (p< 0.0001). KN fluorescence in GO+agomelatine
(−8%, p = 0.0298) and GO+aminoguanidine (−49%, p <

0.0001) was relevantly diminished vs. GO. The content of KN
was considerably elevated in GO (+518%, p < 0.0001), GO +

agomelatine (+469%, p< 0.0001), GO+ aminoguanidine (+213%,
p< 0.0001), and GO+ALA (+553%, p< 0.0001) over against BSA
(Figure 8A).

The one-way ANOVA found the contents of NFK differed
between groups (p < 0.0001). NFK fluorescence in GO +

aminoguanidine was substantially diminished vs. GO alone (−60%,
p < 0.0001). The content of NFK was substantially potentiated in
GO (+454%, p< 0.0001), GO+ agomelatine (+495%, p< 0.0001),
GO + aminoguanidine (+121%, p < 0.0001), and GO + ALA
(+513%, p < 0.0001) compared to BSA (Figure 8B).

The one-way ANOVA revealed that the fluorescence of DT
differed between groups (p < 0.0001). The fluorescence of DT was
relevantly improved in GO + agomelatine (+50%, p < 0.0001)
compared to GO alone. The biomarker was considerably decreased
in GO+ aminoguanidine (−65%, p < 0.0001) vs. GO. The content
of DT was markedly potentiated in GO, GO + agomelatine, and
GO + ALA (+100%, p < 0.0001; +200%, p < 0.0001; and +125%,
p < 0.0001, respectively) vs. BSA. The biomarker was considerably
decreased in GO + aminoguanidine (−31%, p < 0.0001) vs. BSA
(Figure 8C).

The one-way ANOVA demonstrated βA contents differed
between groups (p< 0.0001). The fluorescence of βAwas markedly
higher in GO+ agomelatine (+38%, p= 0.0118) than in GO. This
parameter was significantly decreased in GO+aminoguanidine
(−53%, p < 0.0001) vs. GO alone. The content of βA was
significantly potentiated in GO (+578%, p < 0.0001), GO +
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FIGURE 7

E�ects of agomelatine addition to galactose (Gal)-glycated bovine serum albumin (BSA) on carbonyl stress products (A–E) and oxidative stress
products (F, G). AG, aminoguanidine; AGEs, advanced glycation end products; ALA, α-lipoic acid; AM, agomelatine; AOPPs, advanced oxidation
protein products; βA, β-amyloid; BSA, bovine serum albumin; DT, dityrosine; Gal, galactose; KN, kynurenine; NFK, N-formylkynurenine; PCs, protein
carbonyls. *p < 0.05 vs. negative control (BSA); **p < 0.01 vs. negative control (BSA); ***p < 0.001 vs. negative control (BSA); #p < 0.05 vs. positive
control (BSA + Gal); ##p < 0.01 vs. positive control (BSA + Gal); ###p < 0.001 vs. positive control (BSA + Gal).

agomelatine (+834%, p< 0.0001), GO+ aminoguanidine (+216%,
p = 0.0004), and GO + ALA (+573%, p < 0.0001) vs. BSA
(Figure 8D).

The one-way ANOVA indicated that the fluorescence of AGEs
differed between groups (p < 0.0001). The fluorescence of AGEs
was relevantly improved in GO + agomelatine (+13%, p =

0.0082) vs. GO. The biomarker was substantially lower in GO +

aminoguanidine (−62%, p < 0.0001) vs. GO alone. The biomarker
was effectively augmented in GO, GO + agomelatine, GO +

aminoguanidine, and GO + ALA vs. BSA (+223%, p < 0.0001;
+265%, p < 0.0001; +23%, p = 0.005; and +263%, p < 0.0001,
respectively) (Figure 8E).

3.7.2. Oxidative stress products
The one-way ANOVA reported that PC levels differed between

groups (p < 0.0001). The concentration of PCs was markedly
lower in GO + agomelatine, GO + aminoguanidine, and GO +

ALA compared to GO (−68%, p < 0.0001; −73%, p < 0.0001;
and −68%, p < 0.0001, respectively). The level of PCs was

markedly boosted in GO (+186%, p < 0.0001) when compared to
BSA (Figure 8F).

The one-way ANOVA pointed out that the concentrations of
AOPPs differed between groups (p< 0.0001). The concentration of
AOPPswas considerably elevated inGO+ agomelatine (+26%, p=
0.0002) and GO+ALA (+18%, p= 0.0009) vs. GO alone. The level
of AOPPs was significantly potentiated in GO, GO + agomelatine,
GO + aminoguanidine, and GO + ALA vs. BSA (+225%, p <

0.0001; +307%, p < 0.0001; +221%, p < 0.0001; and +284%, p <

0.0001, respectively) (Figure 8G).

3.8. Carbonyl and oxidative stress products
in methylglyoxal-induced BSA glycation

3.8.1. Carbonyl stress products
The one-way ANOVA showed that KN contents differed

between groups (p < 0.0001). KN fluorescence in MGO +

agomelatine and MGO + ALA was substantially diminished vs.
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FIGURE 8

E�ects of agomelatine addition to glyoxal (GO)-glycated bovine serum albumin (BSA) on carbonyl stress products (A–E) and oxidative stress products
(F, G). AG, aminoguanidine; AGEs, advanced glycation end products; ALA, α-lipoic acid; AM, agomelatine; AOPPs, advanced oxidation protein
products; βA, β-amyloid; BSA, bovine serum albumin; DT, dityrosine; GO, glyoxal; KN, kynurenine; NFK, N-formylkynurenine; PCs, protein carbonyls.
**p < 0.01 vs. negative control (BSA); ***p < 0.001 vs. negative control (BSA); #p < 0.05 vs. positive control (BSA + GO); ##p < 0.01 vs. positive
control (BSA + GO); ###p < 0.001 vs. positive control (BSA + GO).

MGO (−8%, p = 0.0018 and −25%, p < 0.0001, respectively). The
content of KN was significantly potentiated in MGO (+631%, p
< 0.0001), MGO + agomelatine (+573%, p < 0.0001), MGO +

aminoguanidine (+519%, p < 0.0001), and MGO+ ALA (+451%,
p < 0.0001) compared to BSA (Figure 9A).

The one-way ANOVA found contents of NFK differed between
groups (p < 0.0001). The fluorescence of NFK was markedly
lower in MGO + agomelatine (−13%, p < 0.0001), MGO +

aminoguanidine (−31%, p < 0.0001), and MGO + ALA (−27%,
p < 0.0001), in comparison with MGO alone. The content of NFK
was significantly potentiated in MGO (+726%, p < 0.0001), MGO
+ agomelatine (+617%, p < 0.0001), MGO + aminoguanidine
(+474%, p < 0.0001), and MGO + ALA (+504%, p < 0.0001)
compared to BSA (Figure 9B).

The one-way ANOVA revealed that the fluorescence of DT
differed between groups (p < 0.0001). The fluorescence of DT
was relevantly diminished in MGO + agomelatine, MGO +

aminoguanidine, and MGO + ALA vs. MGO (−13%, p < 0.0001;
−43%, p < 0.0001; and −32%, p < 0.0001, respectively). The

content of DT was considerably attenuated in MGO (+250%, p
< 0.0001), MGO + agomelatine (+204%, p < 0.0001), MGO +

aminoguanidine (+101%, p < 0.0001), and MGO+ ALA (+139%,
p < 0.0001) when compared to BSA (Figure 9C).

The one-way ANOVA demonstrated βA contents differed
between groups (p < 0.0001). The fluorescence of βA was relatively
elevated inMGO+ agomelatine (+29%, p= 0.0051) in comparison
with MGO alone. The content of βA was markedly enhanced
in MGO, MGO + agomelatine, MGO + aminoguanidine, and
MGO+ALA (+506%, p< 0.0001;+680%, p< 0.0001;+544%, p<

0.0001; and +476%, p < 0.0001, respectively) in comparison with
BSA (Figure 9D).

The one-way ANOVA indicated that the fluorescence of
AGEs differed between groups (p < 0.0001). The fluorescence
of AGEs in MGO + agomelatine (−18%, p < 0.0001), MGO
+ aminoguanidine (−41%, p < 0.0001), and MGO + ALA
(−34%, p < 0.0001) was relevantly diminished vs. MGO. However,
the content of AGEs was markedly elevated in MGO, MGO +

agomelatine, MGO + aminoguanidine, and MGO + ALA vs. BSA
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FIGURE 9

E�ects of agomelatine addition to methylglyoxal (MGO)-glycated bovine serum albumin (BSA) on carbonyl stress products (A–E) and oxidative stress
products (F, G). AG, aminoguanidine; AGEs, advanced glycation end products; ALA, α-lipoic acid; AM, agomelatine; AOPPs, advanced oxidation
protein products; βA, β-amyloid; BSA, bovine serum albumin; DT, dityrosine; KN, kynurenine; MGO, methylglyoxal; NFK, N-formylkynurenine; PCs,
protein carbonyls. **p < 0.01 vs. negative control (BSA); ***p < 0.001 vs. negative control (BSA); ##p < 0.01 vs. positive control (BSA + MGO);
###p < 0.001 vs. positive control (BSA + MGO).

(+393%, p < 0.0001; +302%, p < 0.0001; +189%, p < 0.0001; and
+226%, p < 0.0001, respectively) (Figure 9E).

3.8.2. Oxidative stress products
The one-way ANOVA reported that PC levels differed between

groups (p < 0.0001). The concentration of PCs was markedly
lowered in MGO + aminoguanidine (−24%, p = 0.002) vs.
MGO alone. The level of PCs was relevantly higher in MGO
(+485%, p < 0.0001), MGO + agomelatine (+445%, p <

0.0001), MGO + aminoguanidine (+343%, p < 0.0001), and
MGO + ALA (+471%, p < 0.0001) when compared to BSA
(Figure 9F).

The one-way ANOVA pointed out that the concentrations of
AOPPs differed between groups (p < 0.0001). The concentration
of AOPPs was relevantly diminished in MGO + aminoguanidine
and MGO + ALA vs. MGO (−44%, p < 0.0001 and −23%, p =

0.0041, respectively). The biomarker was effectively augmented in
MGO, MGO + agomelatine, MGO + aminoguanidine, and MGO
+ ALA in comparison with BSA (+210%, p < 0.0001;+208%, p <

0.0001; +73%, p = 0.0014; and +139%, p < 0.0001, respectively)
(Figure 9G).

3.9. Binding a�nity analysis

The molecular docking simulation of agomelatine indicated
its low affinity to a BSA particle with a score of −8 kcal/mol.
The sole docking site had root-mean-square deviations of atomic
positions (RMSD) below 3, which revealed polar contact with
tyrosines at positions 137 and 160 of the BSA particle chain
(Table 3; Figure 10) (38, 39).

4. Discussion

The antidepressant mechanism of agomelatine action is not
yet completely understood (6, 7, 40–42). Since molecular studies
of the antiglycation/antioxidant properties of agomelatine have
yet to be conducted, our study was the first to evaluate them
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TABLE 3 Molecular docking simulation of agomelatine to BSA results.

Mode A�nity (kcal/mol) RMSD (lower bond) RMSD (upper bond) Amino acid residues

1 −8.0 0.000 0.000 Tyr-137, Tyr-160

2 −8.0 2.366 4.355 Arg-185

3 −7.5 24.450 26.418 Arg-185

4 −7.4 4.821 6.194 Arg-185

5 −7.4 2.672 4.920 Tyr-160

6 −7.1 2.849 4.113 Lys-116

7 −7.1 23.682 25.774 Tyr-160

8 −7.0 2.951 7.416 Lys-136

9 −6.9 23.207 25.530 Asp-118

Arg, arginine; Asp, aspartic acid; Lys, lysine; RMSD, root-mean-square deviations of atomic positions; Tyr, tyrosine.

FIGURE 10

Visualization of an agomelatine docking site (mode 1) in a BSA particle.

comprehensively. We showed that agomelatine does not protect
against protein glycation and oxidation in in vitromodels. The drug
also showed no antioxidant capacity.

Protein glycation is the process of non-enzymatic reaction
of reducing substances (sugars, aldehydes, and/or ketones) with
free amino groups of proteins (43). Protein glycation proceeds
in multiple steps (collectively called a Maillard reaction) and
begins with the reaction of carbonyl groups of glycation agents

with proteins rich in free amino groups. The most susceptible
to glycation are proteins with high amounts of lysine (Lys),
cysteine (Cys), and arginine (Arg) (44). As a result of Amadori
rearrangement, early products of protein glycation (APs, KN, NFK,
and DT) are formed (45). Degradation of APs and the subsequent
oxidation, dehydration, polymerization, and condensation leads to
the formation of late protein glycation products (including βA and
AGEs) (46, 47). During these reactions, ROS are also produced
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that modify amino acids, transform prosthetic groups of proteins,
and induce their fragmentation or aggregation (48). Modifications
of Lys increase its affinity for Cu2+ and Fe2+ ions as well as
other oxidants in Fenton and Haber–Weiss reactions. In addition,
sugars in their high concentrations undergo auto-oxidation,
which also causes ROS formation (49, 50). Interestingly, both
intermediate (PCs) and final oxidation protein products (AOPPs)
intensify the process of protein glycation (51). Since glycation
and oxidation potentiate each other, they are sometimes referred
to as “glycoxidation” (52). Albumin is especially susceptible to
glycoxidation due to its high plasma concentration, relatively long
(∼20 days) half-life, as well as high content of Lys, Cys, and Arg
residues (49, 53). In addition to the structural similarity compared
with its human counterpart (human serum albumin) and associated
analogous binding properties, BSA has good stability, low cost, and
wide availability. For this reason, the BSA model is often used in
laboratory experiments (49, 53–55).

Sugars and aldehydes differ in the mechanism and kinetics
of BSA glycation. While MGO glycates, predominantly Arg and
His, are contained in the BSA structure, Glc shows affinity
mainly for Lys at positions 534 and 232 (30% of the total BSA
glycation) (56–59). Thus, to objectively evaluate the antiglycation
properties of agomelatine, we decided to use various glycation
factors such as Glc, Fru, Gal, GO, and MGO (21, 22, 26). In
our experiment, all the agents used induced glycation (↑KN,
↑NFK, ↑DT, ↑βA, and ↑AGEs) and oxidation (↑PCs and ↑AOPPs)
during their coincubation with BSA. Carbonyl/oxidative stress-
caused modifications disrupt the biological function of albumin.
They contribute to the reduced affinity for transported drugs
and biological compounds (proximity of binding sites), reduced
antioxidant properties (modification of Cys-34 and N-terminus),
increased prooxidant activity (cross-reactions of oxidized albumin
with other proteins, increased affinity of altered Lys for transition
metal ions), and shortened protein half-life to 14 days, increasing
its susceptibility to proteolysis (49, 53, 60–63).

The formed AGEs and AOPPs aggregate and accumulate
in the central nervous system (64, 65). The energy metabolism
of nerve cells is based on glucose, by which neurons easily
undergo glycation- and ROS-mediated damage (11). Chronic
emotional stress contributes to the increased production of
ROS and decreased levels of antioxidants (66). Neuronal redox
imbalance results in decreased ATP concentration, the inhibition
of glycolysis, and the promotion of AGEs formation (67).
AGEs/AOPPs combined with RAGE cause the activation of NOX
and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB). The consequence is the increased transcription
of proinflammatory factors (including cytokines, chemokines,
adhesion molecules, growth factors, cyclooxygenase 2, and NO•
synthases) and the overproduction of ROS (68–70). Many
metabolites of the tryptophan-kynurenine pathway also modulate
neuroplasticity and exert neurotoxic activity (71). In part, this
effect is exerted through the impact on NMDA signaling or
glutamatergic neurotransmission (71, 72). The tyrosine metabolite,
DT, is involved in the cross-linking of βA (73). It was shown
that cerebral accumulation of βA damages neurons and promotes
synaptic membrane depolarization, mitochondrial impairment,
and high calcium influx (74). Finally, chronic inflammation,

mitochondrial dysfunction, and oxidative stress lead to apoptotic
and necrotic neuronal death, resulting in clinical symptoms of
depression (74–76). A similar mechanism of neuronal damage is
postulated in the course of neurodegenerative diseases (77, 78).
Some of them (e.g., Alzheimer’s disease, Huntington’s chorea, or
Parkinson’s disease) contribute to the development of dementia.
Therefore, glycoxidation plays a key role in the etiopathogenesis of
both depression and dementia (66, 77–81).

Agomelatine did not prevent carbonyl stress, and in some cases,
the drug even intensified protein glycation. Agomelatine caused an
increase in KN, NFK, DT, and AGEs fluorescence of BSA glycated
by Glc, Fru, and Gal. The drug also increased DT and AGEs in
GO-induced BSA glycation. Moreover, the content of βA in BSA
incubated with both GO andMGO increased under the influence of
agomelatine. Thus, the studied drug showed a proglycation effect.
In contrast, the model substances, aminoguanidine (a glycation
inhibitor) and ALA (an antioxidant), prevented these processes
significantly. Aminoguanidine counteracts carbonyl stress by
neutralizing α,β-dicarbonyl compounds. In addition, the drug has
an antioxidant effect due to the guanidinium group—it reacts with
HO• and superoxide radicals (82). ALA and dihydro-lipoic acid
(DHLA; the reduced form of ALA) are ROS scavengers. They also
cause restoration of low molecular weight antioxidants such as
reduced glutathione and vitamin E (44).

In molecular docking analysis, agomelatine showed a very weak
(−8 kcal/mol) affinity to the BSA molecule. Peyrin et al. (83)
postulate a two-step interaction between a ligand and albumin. In
the first step, the ligand approaches the hydrophobic cavity of the
albumin. Drugs can bind to non-specific sites on the hydrophobic
albumin surface with an affinity depending on their hydrophobicity
(regardless of their chemical structure). Specific attachment is
characterized by very high affinity and low binding capacity (83).
On the other hand, non-specific interaction shows low affinity
with unlimited ligand binding capacity (83–85). Pharmacokinetic
studies of agomelatine have shown that this drug binds more
than 95% to plasma proteins (8, 40). A low affinity and high
attachment capacity are features of non-specific binding (84, 85).
Ligand attachment can change the tertiary structure of the albumin
(83). In this way, the drug can enhance the attachment of glycation
molecules to albumin, exacerbating carbonyl stress.

Antiglycation properties of agomelatine can be dependent
on the antioxidant capacity. Hence we also evaluated its
ability to iron chelation, reduction of synthetic DPPH• and
scavenging of ROS which are physiologically generated in
biological systems. Agomelatine failed to show antioxidant
activity in the FIC and DPPH• tests. Agomelatine did not
scavenge H2O2 or NO•. It only weakly scavenged HO• (more
than two times as weak as aminoguanidine and almost three
times as weak as ALA). Therefore, the drug did not show
antioxidant activity.

However, all articles retrieved from the systematic review
(three experimental and one clinical in vivo studies) reported the
prevention of carbonyl/oxidative stress. Agomelatine counteracted
lipid peroxidation, ROS generation, βA, and hemoglobin
A1c formation, decreased the expression of RAGE as well as
NOX-2 and −4. On the contrary, it increased the activity of
enzymatic antioxidants (catalase and superoxide dismutase) and
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also stabilized the mitochondrial potential (via restoration of
Bax/Bcl2 balance) (17–20). Despite the lack of antiglycoxidative
properties per se, agomelatine may alleviate carbonyl/oxidative
stress by improving brain metabolism. The drug can stimulate
neuronal protective mechanisms (such as increasing the activity
of enzymatic antioxidants). Additionally, Ilieva et al. (86) reported
the agomelatine-mediated reduction of frontal cortical and
hippocampal levels of proinflammatory cytokines (TNF-α and
IL-1β) in the Alzheimer’s disease rat model. The authors also report
a protective effect of chronic agomelatine treatment on neurons
in the temporal CA3b field of the hippocampus and the temporal
piriform cortex (86). Demir Özkay et al. (87) showed that the drug
increased the number and volume of pyramidal neurons as well
as granular neurons in the dentate gyrus and CA1-3 hippocampal
subregions in old rats. Agomelatine also caused an increase in the
number of more stable types of dendritic spines (mushroom and
stubby), which may indicate an improvement in adaptive capacity
(87). Molteni et al. (88) found that agomelatine attenuated the
LPS-induced increase in levels of the proinflammatory cytokines
IL-1β and interleukin-6 (IL-6) in the rat brain by inhibiting
NF-κB translocation and modulating microglia activation. In
addition, the drug modulated the expression of tryptophan-
kynurenine pathway enzymes thought to be important in the
pathogenesis of depression associated with inflammation. In this
way, agomelatine may nullify the negative effects on the brain
of the glycoxidation process involved in the onset of depression
(88). Such an effect at the tissue/organ level can be found in
animal models or clinical trials (as confirmed by the conducted
systematic review). Agomelatine’s metabolites could also potentially
account for the actions of its antioxidant and antiglycation action
in vivo. Agomelatine is metabolized in the liver, 90% by the
isoenzyme CYP1A2, and 10% by CYP2C9 and CYP2C19
(89, 90). None of the four main metabolites of agomelatine
(7-desmethyl agomelatine, 3-hydroxyagomelatine, dihydrodiol-
agomelatine, and desacetamide-agomelatine-carboxylic acid)
exerts antidepressant effects; however, at least one may prevent
protein glycation/oxidation. This is most likely to be the case with
7-desmethyl agomelatine, which passes through the blood–brain
barrier to a high degree, as does the parent compound (91, 92).
Therefore, further studies on evaluating the antiglycoxidative
properties of agomelatine metabolites are needed.

The number of previous studies related to agomelatine’s
antiglycoxidative properties is limited, and they assessed
only single parameters of carbonyl or oxidative stress. In
this study, we are the first to evaluate exhaustively the
antiglycation and antioxidant potential of agomelatine.
The drug did not show antioxidant properties, while it
had a proglycation effect in in vitro assays. A literature
review suggests that agomelatine may improve brain
metabolism (e.g., by stimulating defense mechanisms,

thereby enhancing antiglycoxidative potential) or prevent
carbonyl/oxidative stress through its metabolites. Therefore,
it becomes necessary to conduct further studies to
determine the as-yet-unknown mechanisms of agomelatine’s
therapeutic effects.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://pubchem.ncbi.nlm.nih.gov/compound/
Agomelatine.

Author contributions

MN performed laboratory determinations, performed the
statistical analysis, interpreted the data, prepared the graphic part
of the manuscript, and wrote the manuscript. KL performed
laboratory determinations and wrote the manuscript. MŻ-P and JŁ
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