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Introduction: Obsessive–compulsive disorder (OCD) is characterized by an

imbalance between goal-directed and habitual learning systems in behavioral

control, but it is unclear whether these impairments are due to a single system

abnormality of the goal-directed system or due to an impairment in a separate

arbitration mechanism that selects which system controls behavior at each point

in time.

Methods: A total of 30 OCD patients and 120 healthy controls performed a 2-

choice, 3-stage Markov decision-making paradigm. Reinforcement learning

models were used to estimate goal-directed learning (as model-based

reinforcement learning) and habitual learning (as model-free reinforcement

learning). In general, 29 high Obsessive–Compulsive Inventory-Revised (OCI-R)

score controls, 31 low OCI-R score controls, and all 30 OCD patients were

selected for the analysis.

Results: Obsessive–compulsive disorder (OCD) patients showed less appropriate

strategy choices than controls regardless of whether the OCI-R scores in the

control subjects were high (p = 0.012) or low (p < 0.001), specifically showing

a greater model-free strategy use in task conditions where the model-based

strategy was optimal. Furthermore, OCD patients (p = 0.001) and control subjects

with high OCI-R scores (H-OCI-R; p = 0.009) both showed greater system

switching rather than consistent strategy use in task conditions where model-free

use was optimal.

Conclusion: These findings indicated an impaired arbitration mechanism for

flexible adaptation to environmental demands in both OCD patients and healthy

individuals reporting high OCI-R scores.

KEYWORDS

obsessive-compulsive disorder, goal-directed system, habitual system, model-based

reinforcement learning, model-free reinforcement learning, arbitration system
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1. Introduction

Obsessive–compulsive disorder (OCD) is a chronic

psychiatric disorder characterized by persistent, intrusive thoughts

(obsessions) and repetitive, stereotyped behaviors (compulsions).

Compulsive behaviors in OCD have been postulated as resulting

from alterations in the instrumental behavioral control system,

which includes two distinct, parallel systems of behavioral control:

goal-directed and habitual (1, 2). Goal-directed control selects

behavior based on a mental model of the world, which it uses

to predict outcomes and adjust behaviors according to changes

in the environment. Goal-directed control is highly flexible and

forward-looking but is computationally expensive. In contrast,

habitual control is based on previously learned stimulus–response

relationships without consideration of the current environment.

Habitual control is inflexible and retrospective but computationally

highly efficient. In healthy individuals, the two systems work

together to maximize beneficial choices while minimizing

computational expense. Typically, in the early phases of learning

in a novel environment, goal-directed control is used to develop

a mental model of the environment and learn what behavioral

choices are effective. As the environment stabilizes and the task

becomes familiar, behavior gradually shifts to habitual control.

If the environment changes, goal-directed control re-engages to

adjust behavior. Researchers have argued that OCD is characterized

by excessive reliance on habitual control and that obsessions and

compulsions can be considered to be maladaptive habits (3). The

shift to excessive use of habits in OCD could be due to one or a

combination of several mechanisms: an increased strength of habit,

decreased strength of goal-directed behaviors, or an impairment

in a separate arbitration mechanism that selects which system

controls behavior at each point in time (3, 4). We used a three-stage

task with computational modeling to test the hypothesis that OCD

is characterized by impairments in the third possible mechanism:

arbitration between habitual and goal-directed control.

Computational neuroscientists have proposed that goal-

directed and habitual behavioral control processes can be

characterized by two reinforcement learning algorithms, namely

model-based and model-free reinforcement learning, respectively

(RL) (5–7). The model-based (MB) system builds an intrinsic

model about state transitions in the decision-making process,

taking into consideration state transition relationships (state

prediction error, SPE) to make behavioral choices. In contrast, the

model-free (MF) system learns the value of different behaviors via

reward prediction error (RPE), based solely on prior experience

with specific stimulus–response associations. More recently,

researchers proposed that independent model-based and model-

free reinforcement learning systems alone cannot fully account for

human behavior (1). They have proposed that the two systems

are subject to an arbitration system that weights the outputs of

Abbreviations: MB, Model-based; MF, Model-free; YBOCS, Yale–Brown

Obsessive–Compulsive Scale; OCI-R, Obsessive–Compulsive Inventory-

Revised; BDI, Beck Depression Inventory; STAI, State-Trait Anxiety Inventory;

BIS, Barratt Impulsiveness Scale; OCD, Obsessive–compulsive disorder; HC,

Healthy control; H-OCI-R, High OCI-R score control; L-OCI-R, Low OCI-R

score control.

the two systems and controls when each is in charge of selecting

behavior (8–11).

Previous research has consistently found increased use of MF

and lower use of MB strategies in OCD (12–15), consistent with

other findings of goal-directed and habitual system imbalances in

patients with OCD (3, 16–20). When goal-directed and habitual

learning systems were studied independently, studies typically

found impairments in the goal-directed system in isolation or

simultaneous with changes in the habitual system but typically not

impairments in the habitual system in isolation. One functional

magnetic resonance imaging (fMRI) study reported that the

caudate nucleus and medial orbitofrontal cortex of OCD patients

were more active during behavior acquisition, which may indicate

that the bias toward habits in OCD is caused by changes in

the goal-directed system (16). Another fMRI study found that

during symptom provocation, activity in the goal-directed system

(caudate nucleus, dorsolateral prefrontal cortex, and ventromedial

prefrontal cortex) in OCD patients was weakened, while activity

in the habitual system (putamen and auxiliary motor areas)

was enhanced (18). Studies of intrinsic functional connectivity

and anatomical connectivity within the neural systems known to

underlie goal-directed and habitual behavior have shown decreased

connectivity within the goal-directed system, and between the

goal-directed and habitual systems, but not within the habitual

system itself (21). In summary, previous research has found clear

evidence for impairment in goal-directed behavior in OCD and

activation changes in neural systems associated with goal-directed

behavior, but it is unclear whether these impairments are due to a

single system abnormality of the goal-directed system or due to an

impairment in arbitration.

Research in this area has been limited due to the use of

experimental paradigms that are incapable of isolating the goal-

directed, habitual, and arbitration processes. Using traditional

paradigms, habitual behavior is mainly inferred from the observed

impairment of goal-directed behavior and lacks a clear independent

operational definition. Therefore, using these tasks, it is difficult

to precisely assess the independent contributions of each of the

two systems (17, 22). We used a three-stage reinforcement learning

task that was developed to study the behavioral and neural

processes of arbitration (9). Computational modeling of trial-by-

trial behavioral data gives estimates of each individual’s use of

the model-based reinforcement learning system, the model-free

reinforcement learning system, and the frequency of switching

between the two. We examined performance in subjects diagnosed

with OCD, and two groups of non-affected control subjects:

one with relatively high Obsessive–Compulsive Inventory-Revised

(OCI-R) scores (H-OCI-R) and one with relatively low OCI-R

scores (L-OCI-R) (23). We predicted that OCD and high OCI-R

controls would be associated with impaired arbitration betweenMB

and MF learning.

2. Materials and methods

2.1. Subjects

A total of 150 subjects, including 30 OCD patients and 120

healthy controls, took part in the study. The recruitment of
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OCD patients was via clinicians at the Affiliated Brain Hospital

of Guangzhou Medical University. Psychiatrists used structured

clinical interviews (the MINI-International Neuropsychiatric

Interview, MINI) (24) to screen patients to confirm the diagnosis

of obsessive–compulsive disorder [DSM-V criteria; Association AP

(2013)]. In our sample, nine of the patients with OCD had a

comorbid diagnosis: three with depression, six with anxiety, and

three with anxiety and depression. All OCD patients had a total

score of 16 or higher on the Yale–Brown Obsessive–Compulsive

Scale (Y-BOCS) (25), and all patients were receiving pharmaceutical

treatment (for more details, see Supplementary Table 1). Healthy

controls were recruited via advertising at local universities.

General exclusion criteria for both groups were head injury,

serious medical or neurological illnesses, or substance dependence.

Healthy controls were free from psychotropic medication or

medical, neurological, or psychiatric conditions. Subjects received

a minimum payment of 30 RMB as well as a bonus based on task

performance after the experiment.

2.2. Clinical assessments

OCD patients completed the Y-BOCS to assess the severity of

OCD symptoms (25). All subjects completed the OCI-R to assess

the categories of OCD symptoms (23). Furthermore, we used the

State-Trait Anxiety Inventory (STAI) to assess anxiety symptoms

(27), the Beck Depression Inventory (BDI) to assess depressive

symptoms (28), and the Barratt Impulsiveness Scale-11 (BIS-11) to

assess impulsiveness behaviors (29).

2.3. Task and stimuli

We used the 2-choice, 3-stage Markov decision-making task

developed by Lee et al. (9, 26). The task is illustrated in Figure 1.

Subjects are required to make a series of decisions to reach end

states associated with different reward values (illustrated as coins).

Each subject was randomly assigned an individual decision tree (as

exemplified in Figure 1A). Each trial started with the same state.

After making a decision (left or right), through a probabilistic state

transition (low uncertainty or high uncertainty), subjects arrived at

a specific state in the next stage and then made a second decision

(left or right). The trial ended with the subject winning a number

of coins ranging from 0 to 40. The decision tree for each subject

remained the same across the trials of the experiment so that they

could learn about the transitions. Across trials, subjects had to

explore and learn about the possible transformations of the tree.

Subjects had 2 s to make a decision at each choice, and once they

made a decision, the next state was presented 150ms later. When

the subject reached the third and final stage on each trial, the

collection box disappeared and was replaced by the reward cue

for the reward obtained in that state for 2 s. The reward cues were

colored in yellow, red, or blue, and indicated a total number of coins

of 10, 20, or 40. In addition, there were gray coins with a 0 for trials

on which no reward was received.

There were two types of task conditions: the “specific” task

condition and the “flexible” task condition (Figure 1B). In the

specific condition, subjects were instructed that they should try to

collect coins of a specific color (yellow, red, or blue) because only

that color would be rewarded on the current trial. The specific

condition promotes model-based control: Subjects must build an

internal model of the task structure to successfully obtain rewards.

In the flexible condition, subjects were instructed that all colors of

coins would be rewarded. The flexible condition promotes model-

free control because responding based on past reinforcement is

sufficient to obtain good performance. At the beginning of each

trial, the subject was cued as to whether the trial was a specific or

flexible trial through the color of the collection box at the lower

part of the screen (all three colors for flexible; yellow, red, or blue

alone for specific trials). Subjects were instructed to collect as many

coins as possible across the experiment, and the average number of

coins they won was used to determine the final monetary reward,

in which one coin corresponded to an additional 1 RMB.

Both conditions included two types of state transition

probabilities. Blocks of low-state transition uncertainty trials

extended for three to five trials in a row, whereas blocks of high-

state transition uncertainty trials extended for five to seven trials

in a row. This resulted in four different types of blocks (flexible or

specific conditions paired with low or high uncertainty). A total

of 14 of each type of block appeared in the experiment and were

randomly ordered. This resulted in a total of 56 blocks which

averaged a total of 280 trials. Before the actual task began, subjects

completed a training phase consisting of 80 flexible trials (white

collection box) followed by 20 specific trials (collection box in

one of the three colors, randomly determined on each trial) to

familiarize subjects with both conditions. The order of events in

these training trials was the same as those in the main phase, but

subjects were told that they would not receive a monetary reward

for these trials. Monetary compensation was given based solely on

the subjects’ task performance in the main phase.

2.4. Computational modeling

We implemented the modeling approach presented in

Weissengruber et al. (26). Model-based and model-free RL models

were independently fit to each subject’s data. This allowed us to

quantify the preference for MB vs. MF learning by estimating the

likelihood of each learning system separately for each trial. In

addition, we calculated an overall arbitration score for each subject

based on the ratio of MB:MF strategy use. Finally, the models

allowed us to quantify how often subjects switched between the two

learning systems by calculating the frequency of changes between

the system with a higher likelihood on one trial and the system

with a higher likelihood in the following trial.

We implemented anMF SARSA learner (30) and anMB learner

(9, 26, 31). The MF learner and the MB learner calculated the

state-action value using two different prediction errors, namely

reward prediction errors (RPEs) and state prediction errors (SPEs),

respectively. In MF learning, the experienced reward drove the

learning process, whereas, in MB learning, the environment

model representing the state-action-state transition probability was

modified by the learning process.

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1162800
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ruan et al. 10.3389/fpsyt.2023.1162800

FIGURE 1

Task structure (A) schematic of an individual decision tree with three stages. Thick arrows indicate possible decision actions (left or right), and thin

arrows indicate probabilistic transitions. The transition probability (0.9, 0.1) and (0.5, 0.5) corresponds to a low uncertainty and a high uncertainty

environment, respectively. (B) Sample trial procedures. On each trial, the subject views a series of fractal images along with collection boxes on the

computer screen. The collection boxes appear in di�erent colors that indicate the colors of coins that will be rewarded in the specific goal condition

(left) or a white collection box which will result in a reward for all colors in the flexible goal condition (right). After the second decision, the reward is

displayed as the color and number of coins. Figure adapted from Weissengruber et al. (26).

The MF learner updates action values based on RPE (30). δRPE
is the number of updates to the state-action valueQMF (s, a) for the

action a in the state s. It is defined as follows:

δRPE = r
(

s′
)

+ γQMF

(

s′, a′
)

−QMF (s, a ) ,

1QMF (s, a) = αδRPE.

Within this model, α is the learning rate (the free parameter of

the model). The variables s and a are the current state and action,

respectively, and s′ and a′ are the subsequent state and action. r(s′)

is the reward obtained in the state s′, and γ denotes a time discount

factor (31) fixed at 1.

The MB learner is based on the model developed by Lee et al.

(9). It combines FORWARD learning and BACKWARD planning

functions to perform state-action value updates. In the FORWARD

learning function, we first define a state transition probability

matrix, T
(

s, a, s′
)

, which represents the probability that the agent

arrives in state s′ if the agent chooses choice a in state s. The

state transition probability matrix is updated based on the state

prediction error (SPE) after the state transition occurs. The update

functions were defined as follows:

δSPE = 1− T
(

s, a, s′
)

,

1T
(

s, a, s′
)

= ηδSPE,

QMB (s, a) = 6s′T
(

s, a, s′
)

{r
(

s′
)

+maxa′QMB

(

s′, a′
)

}

In this model, the free parameter η represents the learning rate. The

first term of the SPE is set to 1. This choice reflects the assumption

that the state space is deterministic.

In the BACKWARD planning process, the FORWARD update

process is repeated backward for all possible states and actions to

update the value of each state (9):

r(s) =

{

R for a goal state,

0 otherwise.

for i= 3, 2,

for s ∈ Si− 1

QMB (s, a) =
∑

s′

T
(

s, a, s′
) {

r (Si) +maxa′QMB

(

s′, a′
)}

, for all a.

end

end

where r denotes the reward value in the goal state, Si is the state

set of the i-th stage.

Finally, each model selects an action stochastically. We used the

following softmax function (31, 32):

P (s, a) =
exp (τQ (s, a))

∑

b exp
(

rQ
(

s, b
) ) ,

where τ is the inverse temperature parameter, which controls the

extent to which the agent chooses with a higher value action.
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TABLE 1 Demographic and clinical variables.

OCD HC Statistics H-OCI-R L-OCI-R Statistics (including OCD)

(n = 30) (n = 120) χ2/t p (n = 29) (n = 31) χ2/F p

Gender (M/F) 16/14 43/77 3.080 0.079 11/18 11/20 2.314 0.314

Age (years) 24.77 (6.87) 20.89 (2.12) 3.053∗∗∗ <0.001 20.14 (1.73) 21.39 (2.03) 9.403∗∗∗ <0.001

Y-BOCS total 23.13 (4.96) NA NA NA NA NA NA NA

Obsession 12.30 (3.28) NA NA NA NA NA NA NA

Compulsion 10.83 (3.56) NA NA NA NA NA NA NA

OCI-R 27.33 (12.31) 18.35 (9.52) 4.347∗∗∗ <0.001 31.41 (5.34) 7.38 (2.73) 80.736∗∗∗ <0.001

BDI 20.37 (10.65) 8.31 (6.17) 5.959∗∗∗ <0.001 10.97 (5.80) 5.06 (4.36) 32.838∗∗∗ <0.001

STAI-S 55.47 (11.03) 38.08 (9.28) 8.827∗∗∗ <0.001 39.72 (9.29) 34.71 (7.56) 40.337∗∗∗ <0.001

STAI-T 59.00 (8.95) 43.42 (8.61) 8.798∗∗∗ <0.001 46.31 (7.82) 40.55 (7.65) 40.604∗∗∗ <0.001

BIS 49.81 (12.21) 37.18 (10.91) 5.532∗∗∗ <0.001 38.39 (10.21) 34.22 (9.94) 16.799∗∗∗ <0.001

OCD, obsessive–compulsive disorder; HC, healthy control; H-OCI-R, high OCI-R score control; L-OCI-R, low OCI-R score control; Including OCD, comparison of three groups including

OCD; Y-BOCS, Yale–Brown Obsessive–Compulsive Scale; NA, not applicable; OCI-R, Obsessive–Compulsive Inventory-Revised; BDI, Beck Depression Inventory; STAI-S, State component of

State-Trait Anxiety Inventory; STAI-T, Trait component of State-Trait Anxiety Inventory; BIS, Barratt Impulsiveness Scale. ∗∗∗p < 0.001.

Following the procedure established by Lee et al. (9, 26), the

Nelder–Mead simplex algorithm (33) was used to estimate the free

parameters for MF and MB learners (the inverse temperature of

the softmax function and the learning rate) by minimizing the

negative log-likelihood −
∑

log (P (s, a)) of the obtained choices

given the observed choices and rewards. To minimize the risk of

finding a local but not a global optimum (that minimizes negative

log-likelihood), we used randomly generated seed parameters and

performed the optimization 200 times.

3. Results

3.1. Demographic and clinical analysis

As shown in Table 1, the OCI-R, BDI, STAI, and BIS scores

of OCD patients were significantly higher than that of healthy

controls. In this study, 29 healthy controls (high OCI-R score

control group, H-OCI-R) with relatively high OCI-R scores (top

25%) and another 31 healthy controls (low OCI-R score control

group, L-OCI-R) with relatively low OCI-R scores (bottom 25%)

were selected for the analysis along with all 30 patients in the

OCD group (additional analyses including the entire sample

of control subjects in a single control group are shown in

Supplementary Figures 1–3). The 25% prior cutoff was consistent

with that used in past research (34). There were significant

differences in age between the OCD group and the H-OCI-R and

L-OCI-R groups, with the OCD group having a higher mean age.

Because of these differences, we controlled for age as a covariate in

all the analyses.

3.2. Task performance analysis

We used one-way ANOVA to examine the performance of

the three subject groups in the specific and flexible conditions

separately. The first dependent variable was the mean number

of coins earned per trial, which was used as a measure of

overall task performance. There were significant differences in task

performance between groups in the specific condition (F2,86 =

7.87, p = 0.001). Post hoc analysis demonstrated that the OCD

group (M = 9.23, SD = 2.48) performed worse than the L-OCI-

R group (M = 11.91, SD = 2.13, p < 0.001) and the H-OCI-

R group (M = 11.17, SD = 2.69, p = 0.010). We found no

significant difference between the H-OCI-R and L-OCI-R groups

(p = 0.236; Figure 2A). In the flexible condition, we also found

group differences in the number of points the subjects earned

(F2,86 = 7.32, p = 0.001). Post hoc analysis of the differences

between groups further revealed that the OCD group (M = 21.43,

SD = 2.74) was inferior to the L-OCI-R group (M = 24.00, SD

= 2.42, p < 0.001) and the H-OCI-R group (M = 22.94, SD =

2.11, p = 0.041) in task performance. There was no significant

difference between the H-OCI-R and L-OCI-R groups (p = 0.095;

Figure 2B).

We also examined the dependent variable of choice optimality.

Choice optimality was defined as the percentage of trials on

which subjects made the optimal sequence of decisions for the

trial (that is, the decisions that resulted in the highest possible

reward). There were group differences in the specific condition

(F2,86 = 8.67, p < 0.001) and the flexible condition (F2,86 =

4.41, p = 0.015). Post-hoc tests showed that compared with the

L-OCI-R group (M = 50.79, SD = 8.29, p < 0.001) and the H-

OCI-R group (M = 47.08, SD = 9.71, p = 0.014), the OCD

group (M = 39.26, SD = 10.85) had a lower choice optimality

in the specific condition. We found no significant difference

between the H-OCI-R and L-OCI-R groups (p= 0.120; Figure 2C).

Furthermore, compared with the L-OCI-R group (M = 48.93, SD

= 13.79), the OCD group (M = 37.70, SD = 13.69) also had

a lower choice optimality in the flexible condition (p = 0.004;

Figure 2D).
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3.3. Learning strategy analysis

Individual learning strategies were characterized using system

preference and system switching parameters. We first examined

system preference using separate paired-sample t-tests for each

group of subjects as a manipulation check to confirm that different

task conditions promoted different learning strategies. According

to the logic of the experimental paradigm, in the specific goal

condition, the trial-by-trial goal changes necessitate goal-directed

learning (must use the MB strategy to do well), while in the

flexible goal condition, subjects would prefer cost-effective learning

strategies (just using the MF strategy is sufficient). Consistent

with past research (26), MB systems were preferred more often

on specific trials than on flexible trials for all groups of subjects,

indicating that overall our task manipulation and computational

modeling approach was successful. Figure 3A shows that preference

in the OCD group for MB control was greater on specific trails

than on flexible trails (t29 = 5.48, p < 0.001). The OCD group’s

task performance on specific trails was positively correlated with

a stronger preference for MB learning (r28 = 0.60, p < 0.001;

Figure 3B), but performance on flexible trials was negatively

correlated with a stronger preference for MB learning (r28 =

−0.56, p = 0.001; Figure 3C). The same patterns were also found

in the H-OCI-R group (Figures 3D–F) and the L-OCI-R group

(Figures 3G–I).

Then, we compared system strategy preferences and

appropriate matches with task conditions across groups, as

illustrated in Figure 4. The specific condition is best learned via

MB strategies, whereas the flexible condition is best learned viaMF

strategies. One-way ANOVA showed that there were significant

differences in system preference across groups of subjects in specific

conditions (F2,86 = 6.93, p = 0.002), which is best supported by

MB learning. Post-hoc analysis suggested that the OCD group (M

= 52.84, SD = 12.32) showed a greater inappropriate preference

for MF learning than the L-OCI-R group (M = 63.72, SD = 9.04,

p < 0.001) and the H-OCI-R group (M = 61.51, SD = 8.23, p

= 0.012) in the specific condition. We did not find a significant

difference between the H-OCI-R group and the L-OCI-R group

(p = 0.327; Figure 4A). In the flexible condition, best supported

by MF learning, we did not find differences in system preference

across groups (F2,86 = 2.61, p = 0.079; Figure 4B). Overall, the

OCD group showed worse appropriate matching of learning

strategy with task conditions.

We then examined system switching rates. There were no

significant differences in the rate of system switching between

groups in the specific condition (F2,86 = 0.21, p= 0.808; Figure 4C).

However, we found significant differences between groups in the

flexible condition (F2,86 = 7.23, p = 0.001). Compared with the L-

OCI-R group (M = 44.25, SD= 8.22), the OCD group (M = 51.46,

SD = 6.96) showed an increased rate of switching across trials (p

= 0.001). Furthermore, compared with the L-OCI-R group, the H-

OCI-R group (M= 49.16, SD= 6.15) had a higher system switching

rate (p = 0.009; Figure 4D). This indicates that these two groups

found it difficult to maintain a consistent strategy, whether it was

MB or MF control, under flexible conditions.

To compare the overall likelihood of appropriate system choice

across groups, we calculated a measure of system arbitration. This

was defined as the ratio of the subjects’ system preference for MB in

FIGURE 2

Task performance. Task performance measured as the average

reward (mean number of coins) earned on each trial across the

three groups in (A) the specific condition and (B) the flexible

condition. Choice optimality across the three groups in (C) the

specific condition and (D) the flexible condition. OCD,

obsessive–compulsive disorder; H-OCI-R, high OCI-R score

control; L-OCI-R, low OCI-R score control.

the two different conditions (specific condition/flexible condition).

We then compared the system arbitration parameter across groups

using a one-way ANOVA (F2,86 = 7.02, p = 0.001). The results

showed reduced system arbitration in the OCD group (M = 1.56,

SD = 0.64) than in the L-OCI-R group (M = 2.31, SD = 0.85, p <

0.001), with OCD and H-OCI-R groups not differing significantly

from each other (p = 0.188). In addition, compared with the L-

OCI-R group, the H-OCI-R group (M = 1.89, SD = 0.63) had a

lower system arbitration (p= 0.022; Figure 4E).
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FIGURE 3

Preference for MB control (% of choices where the MB learning has a higher likelihood than the MF learning) between di�erent task conditions in (A)

the OCD group, (D) the H-OCI-R group, and (G) the L-OCI-R group. Task performance and preference for MB control were positively correlated in

specific blocks in (B) the OCD group, (E) the H-OCI-R group, and (H) the L-OCI-R group but negatively correlated in flexible blocks in (C) the OCD

group, (F) the H-OCI-R group, and (I) the L-OCI-R group. OCD, obsessive–compulsive disorder; H-OCI-R, high OCI-R score control; L-OCI-R, low

OCI-R score control.

3.4. Specificity to OC symptoms

Past research has found that depressive symptoms affect the

arbitration process (35). To control for whether the relationship

between arbitration and OCD symptoms was due to anxiety,

depression, or impulsiveness, we also performed analyses in

which we included the three as covariates. The covariance

analyses controlling for state anxiety, trait anxiety, depression, and

impulsiveness showed that in the specific condition, the OCD

patients still showed less model-based strategy choice than the
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FIGURE 4

Group di�erences in learning strategies. System preference

parameters across the three groups in (A) the specific condition and

(B) the flexible condition. System switching (% of trials where the

dominant system switches from that used in the previous trial)

across the three groups in (C) the specific condition and (D) the

flexible condition. (E) System arbitration parameter (ratio of system

preference across conditions) across subject groups. OCD,

obsessive–compulsive disorder; H-OCI-R, high OCI-R score

control; L-OCI-R, low OCI-R score control.

H-OCI-R group (p = 0.033) and the L-OCI-R group (p = 0.012);

in the flexible condition, the OCD patients (p = 0.001) and the

H-OCI-R group (p = 0.004) still switched more often between

systems than the L-OCI-R group, and the OCD patients (p =

0.005) and the H-OCI-R group (p = 0.017) still had a lower

system arbitration parameter than the L-OCI-R group. In light of

these findings, we conclude that arbitration process impairment is

specific to compulsion rather than being due to depression, anxiety,

or impulsiveness.

4. Discussion

Our findings provided evidence for the impairment of the

arbitration system in both OCD patients and non-clinical subjects

with high OCI-R scores (H-OCI-R). We found two aspects of

arbitration were impaired. First, we measured preference for MB

and MF systems during tasks differing in whether MB or MF

strategies were optimal and found suboptimal preferences. In the

specific condition, best learned via the MB system, the OCD group

showed a lower preference for MB than the H-OCI-R and the L-

OCI-R groups. Second, we examined system switching and found

that both OCD and H-OCI-R groups switched more frequently

in the flexible condition best learned by the MF system, which

indicates less stable strategy use potentially resulting from impaired

arbitration. In summary, OCD patients showed an impaired ability

to change preferences for behavioral control systems based on

environmental demands.

OCD patients showed different impairments in the specific

task and the flexible task, consistent with previous studies finding

that the arbitrator functions differently in different conditions (26).

According to Kim and collaborators, healthy individuals increase

MB control when the environment becomes complex (36). We

showed that under the more complex specific task condition, OCD

patients were less biased toward MB learning and lacked proper

arbitration. Consistent with this, past research found that OCD

groups use fewer model-based strategies in a 2-step RL task similar

to the specific condition in our study (12–15).

Overall, we found a greater ability of the L-OCI-R group than

the H-OCI-R and OCD groups to choose to use the strategy best

suited for each task. This agrees with previous studies finding

greater flexibility for L-OCI-R and inflexibility in OCD (37). In

our task, as shown in Figure 3, specific task conditions favor

MB learning, whereas flexible task conditions favor MF learning.

Therefore, the optimal strategy may be to maximize the use of MB

learning in specific trials, while relying on the MF strategy with

less cognitive resource consumption in flexible trials. In the flexible

condition when the environment becomes simple, both the OCD

and the H-OCI-R groups’ ability to flexibly adapt to environmental

demands was impaired (mainly manifested in the inability to

maintain the use of MF learning). Similarly, past research found

that OCD patients have diminished stimulus stickiness (increased

switching) when learning optimal behavior in a stable environment

(38). All these indicate that individuals with compulsive behaviors

are impaired in their ability to choose the most appropriate system.

The impairment in arbitration we observed in OCD raises

the question of the neural systems underlying this impairment.

Functional MRI research in healthy subjects using this task
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found that assessment of the reliability of the dual systems by

the arbitration system mainly involves the anterior cingulate

cortex (ACC) and the ventrolateral prefrontal cortex (vlPFC)

(9, 11). Furthermore, a neurostimulation study targeting the

vlPFC indicated that individual arbitration of dual systems is

mainly achieved by inhibiting or releasing model-free system

activation, similar to a “valve” (26). Both the ACC and vlPFC are

components within the cortical–striatal–thalamic–cortical circuits

implicated in OCD (39). The ACC participates in conflict

monitoring and behavioral outcome assessment in the process

of information processing (40), weighing cognitive loss and

gain to allocate cognitive control over behavior, and monitoring

conflict between goal-directed and habitual behavior learning (41).

Previous studies found that patients with OCD have abnormal

monitoring of conflicts and abnormal activation of ACC (42).

The research found that increased activation of the putamen

during OCD symptom provocation was correlated with increased

activation of the ACC (18). In addition, resting state functional

connectivity studies of patients with OCD found that the ACC-

related intrinsic connectivity was abnormal (43). These studies

indicate that ACC abnormalities may cause OCD patients to fail

to successfully arbitrate between conflicting systems and fail to

achieve the purpose of selecting the most appropriate behavioral

learning system.

Arbitration has also been linked to the vlPFC. A functional

MRI study found recruitment of the vlPFC for arbitration (9).

A neuromodulation study found that enhancing vlPFC activity

in the specific condition increased preference for the model-

based system, and inhibiting vlPFC activity in flexible conditions

reduced system switching, the results which are both consistent

with vlPFC contributing to the arbitration process (26). A further

study found that vlPFC is important for prediction error baseline

adjustment, a critical aspect of arbitration (44). The vlPFC is located

in the ventral cognitive subcircuit of the cortical–striatal–thalamic–

cortical circuit and is related to Abnormal inhibitory control in

OCD patients (39). This anomaly is considered a stable trait of

OCD (45).

This study has some limitations that should be taken into

consideration. First, age, depression, anxiety, and impulsiveness

were not matched between the OCD and control groups. However,

age, depression, state anxiety, trait anxiety, and impulsiveness were

controlled for as covariates in all analyses, and none affected

the overall pattern of results. Second, the study did not control

for cognitive indicators that may lead to differences in task

performance, such as IQ and working memory. Third, a recent

study showed that participants’ proneness to misunderstanding of

instructions leads to inaccurate MB/MF estimates (46), indicating

that there are limitations in the use of sequential decision tasks.

Our study is the first to experimentally explore the role of

the arbitration process in OCD. We found that arbitration was

impaired in patients with OCD and also in controls with high

OCI-R scores, both in terms of impaired ability to select the most

appropriate strategy and to maintain an appropriate strategy over

trials. These results may contribute to a greater understanding

of how impairments in instrumental learning may underlie the

symptoms of OCD.
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