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Background: Increasing evidence indicates that metabolites are closely related 
to human diseases. Identifying disease-related metabolites is especially important 
for the diagnosis and treatment of disease. Previous works have mainly focused on 
the global topological information of metabolite and disease similarity networks. 
However, the local tiny structure of metabolites and diseases may have been 
ignored, leading to insufficiency and inaccuracy in the latent metabolite-disease 
interaction mining.

Methods: To solve the aforementioned problem, we propose a novel metabolite-
disease interaction prediction method with logical matrix factorization and local 
nearest neighbor constraints (LMFLNC). First, the algorithm constructs metabolite-
metabolite and disease-disease similarity networks by integrating multi-source 
heterogeneous microbiome data. Then, the local spectral matrices based on 
these two networks are established and used as the input of the model, together 
with the known metabolite-disease interaction network. Finally, the probability 
of metabolite-disease interaction is calculated according to the learned latent 
representations of metabolites and diseases.

Results: Extensive experiments on the metabolite-disease interaction data were 
conducted. The results show that the proposed LMFLNC method outperformed 
the second-best algorithm by 5.28 and 5.61% in the AUPR and F1, respectively. 
The LMFLNC method also exhibited several potential metabolite-disease 
interactions, such as “Cortisol” (HMDB0000063), relating to “21-Hydroxylase 
deficiency,” and “3-Hydroxybutyric acid” (HMDB0000011) and “Acetoacetic 
acid” (HMDB0000060), both relating to “3-Hydroxy-3-methylglutaryl-CoA lyase 
deficiency.”

Conclusion: The proposed LMFLNC method can well preserve the geometrical 
structure of original data and can thus effectively predict the underlying 
associations between metabolites and diseases. The experimental results show 
its effectiveness in metabolite-disease interaction prediction.
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1. Introduction

Metabolites, the final product of the cell regulation process, are also 
regarded as the final response of a biological system to genetic or 
environmental changes (1, 2). Changes in metabolite levels are 
important markers of disease development, directly reflecting the 
physiological state of the human body and metabolic abnormalities. 
Nicholson et al. (3) pointed out that the level of metabolites reflects the 
effect of the human body on drug treatment and can be used as an 
important indicator of susceptibility and disease rehabilitation. Disease-
related metabolite identification can improve clinical diagnosis and 
deepen the understanding of pathological mechanisms. Therefore, it is 
a critical task and challenge in precision medicine and biology (4).

Researchers have developed numerous methods, mostly 
experimental or computational, to mine the relationship between 
metabolites and diseases. For example, Ouyang et al. (5) discovered 
that metabolites (e.g., isoleucine, triglyceride, leucine, and creatinine) 
revealed significantly higher in the serum of pancreatic cancer patients 
than those in the serum of healthy controls by using 1H NMR 
spectroscopy and principal component analysis. Reinke et al. (6) did 
a metabolomics analysis to identify different metabotypes of asthma 
severity and found that 15 out of 66 identified serum metabolites were 
significantly changed with asthma. Ibanez et  al. (7) developed a 
non-targeted metabolomics method to detect differences in 
metabolites in cerebrospinal fluid samples from subjects with different 
cognitive states associated with the progression of Alzheimer’s disease. 
Further, Wang et al. (8) proposed a metabolomics method based on 
ultra-high performance liquid chromatography–mass spectrometry 
to identify 13 potential biomarkers, such as succinic acid 
(Canavaninosuccinate) and glycochenodeoxycholic acid, which 
effectively distinguished patients with hepatocellular carcinoma or 
cirrhosis from the control group and provided important indicators 
for the early diagnosis and screening of patients with liver cancer. 
Compared with traditional experimental methods, computational 
approaches are relatively convenient and economical and are now 
more important in the field of disease-metabolite interaction 
relationship prediction.

Recently, some researchers have used machine learning methods 
to predict the interactions between metabolites and diseases (1, 2, 
9–12). The majority of these methods work as follows: First, a 
metabolite-related heterogeneous network is built by integrating 
multi-omics information; second, the candidate metabolites are 
scored via a random walk-based method (4, 9, 13); finally, the ranking 
of disease-related metabolites is obtained according to the score. These 
methods comprehensively consider the information from multiple 
sources, including the genome, phenotype, and metabolic pathway, 
but they ignore the noise and outliers in the metabolite interaction 
network, undermining the reliability of the final prediction. An 
effective solution is to utilize the neighbor information of disease 
(metabolite) nodes. It benefits in two aspects: (i) effectively reducing 
the computational complexity, especially the construction of large-
scale node similarity networks, and (ii) largely eliminating noise and 
interference information.

Several studies have verified that compared with the global 
similarity network, the local structure information (neighbors) of 
nodes can significantly improve the algorithm’s performance. Ma et al. 
(12) adopted the nearest neighbor regularization to eliminate the 
noise information in the metabolite-disease interaction network, and 

obtained good prediction results, which proved the effectiveness of the 
local structure information in the prediction of metabolite-disease 
interaction. Zhou et al. (14) achieved the accurate classification of 
unlabeled nodes by introducing local neighbor information. The 
construction strategy of the nearest neighbor graph determines the 
algorithm’s performance. The nearest neighbor constraint usually 
adopts Laplacian graph regularization. However, Wang et  al. (15) 
designed the local spectral matrix, called Vicus, which can outperform 
the Laplacian matrix in some scenarios.

In addition, LMF (logical matrix factorization) has been 
successfully applied in the biological interaction prediction. Johnson 
(16) demonstrated the advantages of logical matrix factorization in 
modeling unobserved connections, which was realized by setting 
different weights for positive and negative samples. Liu et al. (17) 
predicted the drug-target interaction by combining the neighbor 
structure of nodes and the logical matrix factorization algorithm.

In this paper, we  propose a novel algorithm based on logical 
matrix factorization and considering the local structure information 
(using the aforementioned spectral matrix) to predict metabolite-
disease interactions. The paper’s main contributions are as follows.

 (i) Integrating multisource information, such as disease description 
information from medical subject headings (MeSH) and disease-
gene interaction information to build a disease similarity 
network. Multi-source information fusion can avoid the 
unreliability and inaccuracy in results caused by measurement 
errors and noises from a single data source, and it can describe 
the correlation between nodes more comprehensively;

 (ii) The impact of noise and outliers is largely eliminated by 
employing the logical matrix factorization and local neighbor 
structure information. The neighbor’s matrix constructed by 
the label diffusion algorithm has obvious advantages over the 
traditional Laplacian matrix. The experimental results show 
that the proposed method was superior to the baseline and 
state-of-the-art algorithms on the metabolite-disease dataset. 
The performance was improved by 5.28 and 5.61% in AUPR 
and F1, respectively;

 (iii) The proposed method is easily extended to other biological 
problems, such as phage-host interaction prediction and 
metabolite-drug interaction prediction.

2. Materials and methods

2.1. Dataset

The collected data fall into three categories:

 (i) Disease-related data, which were downloaded from the 
Comparative Toxicogenomic Database (CTD) (18). Data 
sources include: ① the human disease medical dictionary, 
which consists of 12,988 disease names, MeSH ID, Online 
Mendelian Inheritance in Man (OMIM) ID, disease synonyms, 
and the tree-structured disease representation; ② 25,114,553 
interactions between 46,045 genes and 7,163 diseases; ③ 
1,727,119 interactions between 13,126 Gene Ontology 
Biological Processes (GO BPs) and 7,116 diseases;
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 (ii) Metabolite-related data, which were collected from the Human 
Metabolome Database (HMDB) (19). The data include 814,427 
interactions between 5,643 genes and 24,444 metabolites. 
Furthermore, the functional similarity network of metabolites 
was derived from the human gene interaction network (1);

 (iii) Metabolite-disease interaction data, which were also obtained 
from the HMDB (19). Originally, the data contained 24,722 
interactions between 649 diseases and 22,265 metabolites. By 
removing diseases without OMIM ID and semantic similarity and 
metabolites lacking functional similarity, we shrank that figure to 
3,360 interactions between 337 diseases and 1,444 metabolites.

2.2. Problem formalization

In this article, the set of metabolites is denoted by M = { } =mi i
n
1
, 

and the set of diseases is denoted by D = { } =
d j j

m
1
, where n and m are 

the number of metabolites and diseases, respectively. The known 
metabolite-disease interactions are represented as an n m×  binary 
matrix (Y n m∈ ×R ), where yij =1 if a metabolite (mi) has been 
observed to interact with a disease (d j); otherwise, yij = 0.This study 
aimed to solve the problem of predicting the interaction probability 
of a disease-metabolite pair, and it subsequently ranked the candidate 
disease-metabolite pairs based on these probabilities in descending 
order. Thus, the top-ranked pairs can be viewed as latent interactions.

2.3. Metabolite-disease interaction 
prediction process based on logical matrix 
factorization and local neighborhood 
constraints

The prediction process, as demonstrated in Figure  1, can 
be divided into three subprocesses:

 (i) The disease-disease similarity network is constructed by 
integrating the disease-related data (disease-gene interactions, 
disease-GO interactions, and the MeSH tree). Similarly, the 
metabolite-metabolite similarity network is built from the 
metabolite-related data (gene–gene associations, metabolite-gene 
interactions. Due to its highly sparse and noisy, the metabolite-
disease interaction data is smoothed via WKNNP (20).

 (ii) The local spectral matrices of diseases and metabolites are 
computed based on the disease-disease similarity network and 
metabolite-metabolite network, respectively.

 (iii) The metabolite-disease interaction probabilities are computed 
by feeding the modified metabolite-disease interaction matrix, 
metabolite local spectral matrix, and disease local spectral 
matrix into the proposed logical matrix factorization model 
based on the local nearest neighbor constraint (LMFLNC).

Two crucial steps in the prediction process need further explanations.
 (i) Disease-disease similarity network construction.

To obtain the comprehensive and accurate similarity between 
diseases, multiple data source of diseases including disease MeSH 
descriptors, disease–GO biological process interaction networks and 
disease–gene interaction networks are integrated. We employs the 
MultiSourcDSim model presented in (21) to calculate the semantic 

similarity of diseases. Specifically, for MeSH descriptors (22), we firstly 
construct a directed acyclic graph (DAG) to describe the relationships 
between any two diseases. Secondly, the probability of a disease term 
is calculated with its frequency occurring in the association dataset 
(Eqs. 1–2). Finally, the disease similarity (Eq. 3) is calculated with Lin’s 
method (23).
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( ) = ( ) + ( )

∈ ( )
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2
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(3)

where self t( ) is the number of disease term t, tc is a direct child 
of t. f t( ) is the frequency at which t occurs in the single association 
dataset. N is the frequency of the root node term. LCA t t1 2,( ) is the set 
of least common ancestors of term t1 and t2. score t t1 2,( ) denotes the 
semantic similarity score between disease terms t1 and t2. For the other 
two data source, the similarity score is used to compute the disease 
similarity network.

 (ii) Metabolite-metabolite similarity network construction.
With metabolite-gene interaction data, the similarity between any 

two genes, gi and g j, can be measured as

 Sim g g g GO GO GO GOi j i j i j_ / ,,( ) = ∩ ∪  (4)

where GOi and GOj denote the GO sets explaining gi and g j , 
respectively.

Similarly, the similarity between a gene (gi) and a gene set (G) can 
be defined as

 
SG g G Sim g g gi

g G
i j

j

, ,( ) = ( ) ∈
max _ .

 
(5)

According to (24), the similarity between two metabolites, m1 and 
m2, can be computed as

 
SM m m

SG g G SG g G

G G
g G g G

1 2

1 2 2 1

1 2

1 1 2 2,
, ,

( ) =
( ) + ( )

+
∈ ∈∑ ∑

,

 
(6)

where G1 and G2  stand for gene sets related to m1 and m2, 
respectively;   denotes the set size.

The metabolite-metabolite similarity network is built via 
Equation (6).

2.4. Logical matrix factorization based on 
local nearest neighbor constraint

Logical matrix factorization has been successfully applied to 
the prediction of drug-target and virus-host interactions. In this 

https://doi.org/10.3389/fpsyt.2023.1149947
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhao et al. 10.3389/fpsyt.2023.1149947

Frontiers in Psychiatry 04 frontiersin.org

paper, a new model based on logical matrix factorization is 
proposed to predict the interaction between metabolites and 
diseases. The main idea is to map metabolites and diseases into a 
shared low-dimensional latent semantic space, r n m<< ( )min , . 
Then, the probability of interaction between metabolite mi and 
disease d j  can be modeled by the following logical function:

 

p
u v

u v

i j

i j
ij =

( )
+ ( )
exp

exp
,

T

T
1

 

(7)

where ui ∈ ×
R
1 r  and vj∈ ×

R
1 r  are latent representations of 

metabolite mi and disease d j , respectively.
In logical matrix factorization, the known or experimentally 

verified interactions are usually more informative, so they are usually 

assigned higher weights than those unknown ones. Each metabolite-
disease interaction is regarded as c c ≥( )1  positive sample, and each 
unknown metabolite-disease pair is regarded as a single negative 
sample. c is used to control the importance level of the observed 
interactions, which was empirically set to 2  in the 
subsequent experiments.

Assuming that each training sample is independent, according to 
the maximum likelihood estimation, the following probability 
representation can be obtained:
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(8)

FIGURE 1

Flowchart of metabolite-disease interaction prediction with the LMFLNC. In step1, the disease-disease similarity matrix A is constructed by integrating 
the disease-related data disease-gene interactions, disease-GO interactions, and the MeSH tree with clusDCA. Similarly, the metabolite-metabolite 
similarity matrix B is built from gene–gene associations, metabolite-gene interactions; Running WKNNP on the metabolite-disease interaction matrix C 
generates the completed metabolite-disease interaction matrix D; In step 2, the local spectral matrices of diseases and metabolites E and F are 
obtained based on the disease-disease similarity matrix and metabolite-metabolite matrix, respectively. Finally, in step 3, the proposed LMFLNC was 
used to predict the metabolite-disease interaction scores.
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where A represents the known metabolite-disease interaction 
matrix; U and V represent the decomposed the metabolite and disease 
latent semantic matrices, respectively; m is the number of metabolites; 
n is the number of diseases. The logarithm of p A U V|, |,( ) can 
be inferred by combining Equation (7) with Equation (8):

 

( ) ( )

( )

T

1 1
T

log | , 1

                            ln 1 exp .

m n
ij i j ij ij

i j

i j

p c c
= =

  = − + − 

 +  

∑∑A U V A u v A A

u v
 

(9)

Equation (9) is also called the basic LMF objective function. The 
latent representation matrices U and V can be  estimated by 
maximizing this function.

To improve the performance of the logical matrix factorization 
algorithm, researchers (12, 17) introduced the local neighbor 
constraint. They sorted the nodes by their similarities to find neighbor 
nodes, but they ignored the diffusion and propagation of label 
information carried by neighbor nodes, which limited the 
performance enhancement. In this study, inspired by the idea of a 
local spectral matrix, the Vicus matrix (15), we obtained the following 
objective function by using the Vicus matrix to constrain Equation (9):

 

( ) ( ) ( )

( ) ( )

T T

1 1

T T

log | , 1 ln 1 exp
,

                          / 2

m n
ij i j ij ij i j

i j

u v

p c c

tr trλ

= =

 = − + − +     

 + +  

∑∑A U V A u v A A u v

U vir U V vir V

 
 

(10)

where λ is the regularization parameter to balance between the 
factorization error and the local spatial structure preservation; viru 
and virv represent the local spectral matrices of metabolites and 
diseases, respectively, whose calculation process is as follows:

Let X x x xn= { }1 2, , ,  be the set of data points, W be the weighted 
network constructed from X  with X  as the vertex set and the 
similarities among X  as the weight set; xi be the ith data point in X ; 
the ith vertex in W, N i( ) be the neighbors of xi, whose size is K ; and 
C be the number of clusters.

First, for node xi, subnet Wi i iver ,ε( ) is extracted from W, where 
the vertex set ver N i xi i= ( )∪ , and εi is the edge set. Through the label 
diffusion algorithm (14), the label indicator vector is reconstructed as

 F I S qver
k

i ver
k

i i
k C= −( ) −( ) ≤ ≤−

1 1
1α α , , (11)

where α  is a constant between 0 and 1, which is set to 0.9, as 
suggested in (24); qver

k
i
 is the clustering indicator vector reflecting the 

scaling of subnet Wi ; Si represents the standardized transition matrix 

of Wi , defined as S W Wi i
l

K
iu t u t u l, , ,( ) = ( ) ( )

=

+

∑/
1

1

.

Second, qver
k

i
 is estimated by i

k
verF . Let q Fver

k
ver
k

i i
K= +[ ]1  

indicate the likelihood that data point i belongs to cluster k. The next 
task is to maximize the concordance between qver

k
i
 and qver

k
i
. Let 

q qver
k

i ver
k

i i
= β , where βi K∈ +R 1 is the row of matrix 1 1−( ) −( )−α αI Si ,  

which represents the convergence state of label diffusion. Thus, qver
k

i
 

can be estimated as

 
q

q
ver
k i N i

k

ii

K

K
≈

[ ]
− +[ ]

( )β

β

1

1 1

:
,

 
(12)

where βi K1:[ ] and βi K +[ ]1  denotes the first K elements and the 
(K + 1)th element in βi , respectively.

Afterward, matrix B is constructed to represent the linear 
relationship between qk  and qk :q Bqk

k= . It is computed as

 

Bij
ij

i
jK
x N i

= − +[ ]
∈ ( )







β
β1 1

0

,

,

.

otherwise  

(13)

To minimize the difference between qkand qk , we can define an 
objective function as

 

( )
( ) ( )

2 2 2

1 1 1 1
TT

.

n C C C
k k k k k k
i i

i k k k

Trace

= = = =
− = − ≈ −

 = − −  

∑∑ ∑ ∑q q q q q Bq

Q I B I B Q  

(14)

Finally, let vir I B I B= −( ) −( )T , which is the needed local 
spectral matrix. Wang et al. (15) proved that vir  and the Laplacian 
matrix share many of the same properties. For example, they are both 
symmetric and positive semidefinite, with the minimum eigenvalue 
being 0 and the eigenvector being 1.

In logical matrix factorization, to prevent overfitting, we usually 
constrain the latent space matrices U and V to construct the final 
objective function as

 

( ) ( ) ( )

( ) ( ) ( )

T Tlog | , 1 l 1 exp
1 1

2 2 T T/ 2 || || || || / 2

n

 

m n
p c cij i ij ij ij j

i j

tr tru vF Fα λ

+ − +
= =

+

   = −    

 + + +  

∑ ∑A U V A u v A A u v

U V U vir U V vir V

 

(15)

where α  denotes the regularization parameter. Here, the gradient 
descent algorithm is used to optimize Equation (15). Specifically, let L 
represent the objective function whose partial derivatives with respect 
to U and V are given as follows:

 
∂
∂

= + −( )( ) − + +( )L c c I
U

PV A P V AV vir Uu1  α λ ,
 
(16)

 
∂
∂

= + −( )( ) − + +( )L c c I
V

P U A P U A U vir Vv
T T T T

1  α λ ,
 

(17)

where P is the probability matrix defined by Equation (7), 
and   represents the Hadamard product of a matrix. After the 
latent representations of U and V have been acquired, any 
unknown metabolite-disease interaction probability can 
be predicted by Equation (7). However, in the training process, 
the latent vectors of some unobserved metabolites and diseases 
are obtained based on negative samples, which may not 
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be accurate enough. Ma et al. (12) presented an effective solution. 

Let N mm i
j

ij
+ = >












∑| A 0  represent the set of metabolites 

interacting with any disease, and let N mm i
+ ( ) represent the set of 

K nearest neighbors of metabolites in Nm+ . We set K = 10 in this 
manuscript. Metabolite mi can be  represented by a linear 
combination of the latent vectors of N mm i

+ ( ) , and is defined 
as follows:

 

u
u

u
i

i i m

m k

K

k
m
k i m

m N

Q w m N
i

=

∈

∉










+

=

+∑

,

,
,

1

1  

(18)

where Q m Nm
k

K
k

i i
k

i
= ( )

=

−∑
1

1α ConsM ,  is a normalized term, 

N N mi
k

m i∈ ( )+  denotes the kth neighbor of mi, and ConsM  is the 
binary neighbor similarity matrix. ConsM ConsMij ij=  if 
metabolitem N mi j∈ ( )  or metabolite m N mj i∈ ( ) ; otherwise, 
ConsMij = 0 . α ∈[ ]01,  is a decay factor, which is 0.9 in this paper. 
w a m Nk
m k

i i
k= ( )−1ConsM , . Similarly, the representation of disease 

d j  can be obtained:

 

v
v

v
j

j j d

d k

K

k
d
k j d

d N

Q w d N
j

=

∈

∉










+

=

+∑

,

,
,

1

1  

(19)

where Q d Nd
k

K
k

j j
k

j
= ( )

=

−∑
1

1α ConsD ,  is a normalized term, N jk 

denotes the kth neighbor of disease d j , and w a d Nk
d k

j j
k= ( )−1ConsD , .

Eventually, the probability of an interaction between metabolite 
mi and disease d j  can be rewritten as

 

p m di j
i j

i j
,

T

T
( ) = ( )

+ ( )
exp

exp
.

u v

u v1
 

(20)

In order to clearly demonstrate the steps of LMFLNC algorithm, 
we also presented its pseudocode in Table 1.

3. Results and discussion

3.1. Experimental settings and evaluation 
metrics

Following the previous studies, we  used the fivefold cross-
validation technique for model validation in this paper. In each round, 
one-fifth of the known metabolite-disease interactions and all 
unobserved interactions (metabolite-disease pairs corresponding to 
elements of value 0 in the metabolite-disease interaction matrix A) 
were used for testing; the rest were used for training. AUPR, AUC, and 
F1 were adopted as performance evaluation. To achieve a relatively 
objective evaluation, we randomly ran the cross validation 20 times, 
over which the average values of the aforementioned metrics were 
taken as their final values. The model implementation and validation 
were realized in MATLAB R2017b (see Table 1).

3.2. Experimental results

To verify the superiority of the proposed LMFLNC model, 
we compared it with such baselines as MN-LMF (12), PROFANCY 
(2), WMAN (25), and MCF (13). The parameters of PROFANCY, 
WMAN, and MN-LMF were set to default values. For MCF, the 
reboot probability is set as the optimal element from 0 1 0 2 0 9. . ., , ,{ }.  
For LMFLNC, we set the number of nearest neighbors in local spectral 
matrices of metabolites and diseases as K = 15, the importance level of 
observed interactions c = 2, the neighbor regularization parameter 
λ = 8 , and the latent space regularization parameter α = 4 . The 
performance of the abovementioned algorithms on the metabolite-
disease benchmark dataset is shown in Table 2.

Table 2 shows that the LMFLNC algorithm outperformed the 
second MN-LMF algorithm in AUPR and F1 5.28 and 5.61%, 
respectively. Additionally, the prediction performances of WMAN 
and MCF methods were unsatisfactory. One possible reason is that 
these two methods simply focus on the known metabolite-disease 
interaction network and only leverage limited prior knowledge, that 
is, the disease similarity network. However, the LMFLNC method 
fully considers the similarities of metabolites and diseases at multiple 
levels and then adjusts the importance level of positive and negative 
samples (the observed metabolite-disease interaction is regarded as a 
positive sample. The unobserved metabolite-disease interaction is 
regarded as a negative sample) by parameter c, which improved its 
performance. Moreover, compared with MN-LMF, LMFLNC uses the 
local spectral matrices of metabolites and diseases to construct 
neighbor constraints, so the latent representations of metabolites and 
diseases generated by the logical matrix factorization were more 
robust. The experimental results show the potential of LMFLNC in 
predicting unknown metabolite-disease interactions.

3.3. Parameter analysis

Two parameters need to be tuned in LMFLNC: the latent space 
regularization parameter α  and the local spectral parameter (or 
neighbor regularization parameter) λ; the other ones are set by default. 
The grid search was employed to find the optimal parameter values. 
Let α ∈{ }− − −

2 2 2 2 2 2 2
3 2 1 0 1 2 3
, , , , , , , λ ∈{ }− − −

2 2 2 2 2 2 2
3 2 1 0 1 2 3
, , , , , , , 

and the model performance over different parameter combinations 

TABLE 1 The pseudocode of the LMFLNC algorithm.

Input: The metabolite-disease interaction matrix A; parameters c, α, λ

Output: The latent representation matrices, U and V

1. Calculate the disease–disease similarity matrix using Eq. (3); Calculate the 

metabolite–metabolite similarity matrix according to Eq. (6);

2. Calculate the spectral matrices of metabolites and diseases;

3. Calculate the modified metabolite-disease interaction matrix via WKNNP (20);

4. Initialize U and V randomly;

5. For t = 1, ……, max_iter do

6. Update U and V according to Adara algorithm

7. Until convergence conditions are satisfied

8. End for

9. Return U, V
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was evaluated by a fivefold cross-validation. As shown in Figure 2, 
LMFLNC obtained the optimal prediction performance (AUPR) 
when α  = 4 and λ = 8.

3.4. Case studies

We further verify the performance of LMFLNC method in 
this section. First, the entire dataset was used to train LMFLNC 
with the optimal parameters obtained above. Then, the trained 
LMFLNC was used to predict the interaction probabilities 
between all the metabolites and two example diseases, 

“21-Hydroxylase deficiency” and “3-Hydroxy-3-
methylglutaryl-CoA lyase deficiency,” in the dataset. Table  3 
displays 10 metabolites relating to the first example disease, with 
the probabilities listed in descending order. Similarly, Table  4 
displays 15 metabolites relating to the second example disease, 
with the probabilities again listed in descending order.

It can be seen that all of the nine metabolites related to the disease 
“21-Hydroxylase deficiency” in the dataset appear in Table 3 and, 
more importantly, are located in the top nine. Similarly, all of the 13 
metabolites related to disease “3-Hydroxy-3-methylglutaryl-CoA 
lyase deficiency” in the dataset are included in Table 4 and occupy the 
top  13. These findings demonstrate the good accuracy of 
LMFLNC. Note that LMFLNC also predicted that the metabolite 
‘Cortisol “(HMDB0000063) were likely to interact with disease” 
“21-Hydroxylase deficiency” (the likelihood is 0.5896) and that 
metabolites “3-Hydroxybutyric acid (HMDB0000011)” and 
“Acetoacetic acid (HMDB0000060)” were likely to interact with 
disease “3-Hydroxy-3-methylglutaryl-CoA lyase deficiency” 
(likelihood of 0.4991 and 0.3614, respectively). Two of these three 
predictions have been verified, showing the potential of the LMFLNC 
model to discover latent metabolite-disease interactions.

In the same way, LMFLNC can compute the probabilities of 
diseases relating to a specific metabolite and predict new disease-
metabolite interactions.

4. Conclusion

Existing metabolite-disease interaction prediction methods 
mainly leverage the global similarity network, which may be limited 
by noise and outliers. To solve this problem, we introduced a novel 
method, LMFLNC, to predict the metabolite-disease interaction. 
Extensive experiments were conducted on the collected dataset. The 
results show that the proposed LMFLNC method outperformed the 
baselines. LMFLNC also revealed several potential metabolite-disease 
interactions, such as “Cortisol (HMDB0000063),” relating to 
“21-Hydroxylase deficiency,” and “3-Hydroxybutyric acid 
(HMDB0000011)” and “Acetoacetic acid (HMDB0000060),” both 
relating to “3-Hydroxy-3-methylglutaryl-CoA lyase deficiency.”

Despite its promising performance, LMFLNC has the 
following weaknesses. (1) The predicted new metabolite-disease 
interactions need further verification. (2) The dataset scale, 

TABLE 2 Performance comparison of metabolite-disease benchmark 
dataset.

Algorithm AUPR AUC F1

WMAN 0.0151 0.6181 0.0800

PROFANCY 0.2325 0.9027 0.3066

MCF 0.0151 0.6156 0.0770

MN-LMF 0.3731 0.9659 0.4135

LMFLNC 0.3931 0.9661 0.4367
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FIGURE 2

Parameter sensitivity analysis. AUPR achieves the maximum value 
when α=4 and λ=8.

TABLE 3 21-Hydroxylase deficiency’ related metabolites (top 10, descend).

NO. Metabolite ID Metabolite name Interaction probability Category

1 HMDB0000374 17-Hydroxyprogesterone 0.9568 Known

2 HMDB0000053 Androstenedione 0.9308 Known

3 HMDB0000122 D-Glucose 0.9279 Known

4 HMDB0000234 Testosterone 0.9266 Known

5 HMDB0000586 Potassium 0.9241 Known

6 HMDB0000595 Hydrogen carbonate 0.9224 Known

7 HMDB0000588 Sodium 0.9056 Known

8 HMDB0000077 Dehydroepiandrosterone 0.8155 Known

9 HMDB0004030 21-Deoxycortisol 0.7693 Known

10 HMDB0000063 Cortisol 0.5896 PubMed:16439592
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including the data quantity and type, is relatively small, and the 
information of metabolite structure and pathway can 
be  incorporated to improve the performance and robustness 
of LMFLNC.

Our future research work will include the following: (1) 
exploring combining multi-kernel learning and logical matrix 
factorization in a study on the metabolite-disease interaction 
relationship and (2) exploring the application of our model in 
similar fields, such as microorganism-drug interactions and 
microorganism-metabolite interactions.
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