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Context: Cortisol, a hormone regulated by the hypothalamic-pituitary-adrenal

(HPA) axis, has been linked to attention deficit hyperactivity disorder (ADHD). The

nature of the relationship between cortisol and ADHD, and whether it is causal or

explained by reverse causality, remains a matter of debate.

Objective: This study aims to evaluate the bidirectional causal relationship

between morning plasma cortisol levels and ADHD.

Methods: This study used a bidirectional 2-sample Mendelian randomization (MR)

design to analyze the association between morning plasma cortisol levels and

ADHD using genetic information from the authoritative Psychiatric Genomics

Collaboration (PGC) database (n = 55,347) and the ADHD Working Group of

the CORtisol NETwork (CORNET) Consortium (n = 12,597). MR analyses were

employed: inverse variance weighting (IVW), MR-Egger regression, and weighted

medians. OR values and 95% CI were used to evaluate whether there was a

causal association between morning plasma cortisol levels on ADHD and ADHD

on morning plasma cortisol levels. The Egger-intercept method was employed to

test for level pleiotropy. Sensitivity analysis was performed using the "leave-one-

out" method, MR pleiotropy residual sum, and MR pleiotropy residual sum and

outlier (MR-PRESSO).

Results: Findings from bidirectional MR demonstrated that lower morning plasma

cortisol levels were associated with ADHD (ADHD-cortisol OR = 0.857; 95%

CI, 0.755–0.974; P = 0.018), suggesting there is a reverse causal relationship

between cortisol and ADHD. However, morning plasma cortisol levels were not

found to have a causal effect on the risk of ADHD (OR = 1.006; 95% CI, 0.909–

1.113; P = 0.907), despite the lack of genetic evidence. The MR-Egger method

revealed intercepts close to zero, indicating that the selected instrumental

variables had no horizontal multiplicity. The "leave-one-out" sensitivity analysis

revealed stable results, with no instrumental variables significantly affecting the

results. Heterogeneity tests were insignificant, and MR-PRESSO did not detect any

significant outliers. The selected single-nucleotide polymorphisms (SNPs) F were

all >10, indicating no weak instrumental variables. Thus, the overall MR analysis

results were reliable.
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Conclusion: The study findings suggest a reverse causal relationship between

morning plasma cortisol levels and ADHD, with low cortisol levels associated with

ADHD. No genetic evidence was found to support a causal relationship between

morning plasma cortisol levels and the risk of ADHD. These results suggest that

ADHD may lead to a significant reduction in morning plasma cortisol secretion.

KEYWORDS

cortisol, Mendelian randomization, attention deficit hyperactivity disorder,
hypothalamic-pituitary-adrenal, single-nucleotide polymorphism

Introduction

Stress induces a broad range of autonomic, endocrine, and
behavioral responses. The hypothalamic-pituitary-adrenal (HPA)
axis is a crucial pathway that modulates the stress response
by temporarily increasing circulating cortisol levels through the
actions of two ligand-activated transcription factors with similar
functions: the mineralocorticoid and glucocorticoid receptors.
Genetic differences in these receptors may affect the HPA
axis’s reactivity, and persistent HPA axis dysfunction has been
linked to the emergence of ADHD (1, 2). Early life stress
is strongly associated with ADHD-like symptoms, which are
thought to involve the growth, development, and differentiation of
hippocampal nerves, a key regulatory center of the HPA axis (3).
Evidence from a systematic review with meta-analysis indicates a
correlation between ADHD associated with lower cortisol levels (4).
Compared with normal children of the same age, those with ADHD
have lower HPA axis reactivity following stress, which negatively
correlates with their symptoms and is also evident in intelligence
tests (5, 6). Furthermore, hair dehydroepiandrosterone (DHEA)
levels and DHEA/cortisol ratio were independently associated with
a composite score of distraction and impulsivity on the Visual-
Auditory Continuous Performance of Attention Test (IVA-CPT)
(7). Kaneko et al. found that over half of the 30 children with ADHD
in their study displayed circadian cortisol secretion disorder, with
higher secretion in the early morning and lower secretion at 8 am
(8). However, another study showed that ADHD symptoms were
strongly correlated with higher levels of cumulative diurnal cortisol,
morning cortisol, and afternoon cortisol, even after adjusting
for Crohn’s disease (CD), anxiety, and depression symptoms (9).
Corominas et al. conducted a comprehensive review of studies on
cortisol’s role in ADHD. They found two opposing trends: reduced
cortisol responses to stress were linked to comorbid disruptive
behavior disorder (DBD), whereas high cortisol responses were
associated with comorbid anxiety disorders (AxD) (10). Subjective
stress is commonly observed in the clinical environment of
individuals with ADHD (11) due to the high prevalence of anxiety
and depression symptoms in children and adults (12, 13). Patients’

Abbreviations: MR, Mendelian randomization; ADHD, attention deficit
hyperactivity disorder; CORNET, CORtisol NETwork; GWAS, genome-wide
association study; PGC, psychiatric genomics collaboration; MR-PRESSO,
MR pleiotropy residual sum and outlier; IVW, inverse variance weighting;
OR, odds ratio; SNP, single-nucleotide polymorphism; HPA, hypothalamic-
pituitary-adrenal.

difficulties in managing routine day-to-day activities owing to the
characteristic executive function deficits of ADHD may exacerbate
feelings of worry and sadness.

The research mentioned above provides evidence suggesting
that ADHD may lead to dysregulation of the HPA axis, potentially
resulting in abnormal cortisol levels. However, a recent prospective
cohort study involving 126 children aged 4 to 8 has yielded
intriguing findings (14). After accounting for variables such as
gender, family education background, and personality, the study
reveals a correlation between lower levels of hair cortisol in
preschool-age children and an increased likelihood of developing
ADHD during their school years (14). This observation raises the
possibility that low cortisol levels could serve as an early marker
for the development and onset of ADHD. Additional insight is
provided by a retrospective study conducted by Susan Schloß et al.,
which suggests that low cortisol levels may indicate an escalation in
ADHD symptoms among 4–5-year-old children (15). Notably, this
correlation appears more prominent in boys, suggesting a potential
gender-related aspect to the association between low cortisol
levels and early ADHD. Nevertheless, it is important to note
that the study’s retrospective nature limits causal interpretations,
and the observed associations can only establish correlation. In
addition, cortisol levels are influenced by various biological and
environmental factors, necessitating further research to validate
these findings and gain a comprehensive understanding of their
potential diagnostic or intervention applications for ADHD. So it
remains to be clarified whether ADHD leads to the disruption of
cortisol levels or disrupted cortisol levels lead to ADHD.

However, a cross-sectional descriptive study from Asia found
no significant difference in serum cortisol levels between ADHD
patients and controls (16). They may be impacted by various
factors, including the impact of co-morbidities, characteristics of
the study participants, such as medication use, presence of other
conditions, and age, as well as the techniques used to measure
cortisol levels, such as using saliva or plasma samples. Despite these
challenges, research shows that HPA axis dysfunction in individuals
with ADHD strongly correlates with the primary symptoms
of hyperactivity, impulsivity, and inattention. These findings
prompted further investigation into the role of morning cortisol
secretion in the complex interplay between cortisol and ADHD.

Twin studies have shown that ADHD has a heritability rate
of 70–80% throughout an individual’s lifetime, based on the
consensus of over 30 studies (17, 18). A genome-wide meta-
analysis of ADHD has established that a clinical diagnosis of
ADHD is made based on the excessive manifestation of one or
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more heritable quantitative traits (19). To overcome the limitations
of observational studies, a technique called MR can establish
causality between an exposure and a consequence. MR utilizes
genetic variations randomly assigned at conception as a proxy
for an exposure that occurs before the onset of the disease (20),
which helps overcome the issue of reverse causation. This study
used a bidirectional, two-sample MR approach to investigate
the relationship between genetically determined morning plasma
cortisol levels and ADHD and genetically determined ADHD and
morning plasma cortisol levels.

Materials and methods

Mendelian randomization analysis relies on three key
assumptions (21): (i) a connection between genetic variations
and the exposure of interest (relevance assumption), (ii) genetic
differences are independent of confounding factors in the
relationship between the risk factor and outcome (the assumption
of independence), and (iii) the influence of genetic variations
on the exposure primarily determines the outcomes (exclusivity
assumption). In Mendelian MR analysis, genetic markers such
as SNPs are employed as substitutes for the exposure of interest
to control for confounding factors that may distort the results of
observational studies. SNP is a substitution of a single nucleotide
that occurs at a specific position in the genome, where each
variation is present at a level of more than 1% in the population.
SNPs underline differences in our susceptibility to a wide range
of diseases. This study utilized data sets from the CORtisol
NETwork (CORNET) and ADHD in the PGC ADHD database
for the MR analysis. In this MR analysis, all three hypotheses were
met by the selected instrumental variables. Firstly, we included
SNPs significantly associated with morning plasma cortisol
levels through the CORNET Consortium. Secondly, we selected
strong instrumental variables with F > 10. Thirdly, we excluded
SNPs with linkage disequilibrium effects, fulfilling hypothesis i.
Additionally, to include SNPs that were only associated with the
outcome through exposure, with genetic variation unrelated to
any confounders affecting ADHD and unrelated to confounders
along the exposure-outcome pathway, we screened phenotypes
significantly associated with SNPs through the PhenoScanner
database and determined whether these phenotypes were
confounders of ADHD by previously published MR studies.
If yes, the involved SNPs were removed to satisfy hypotheses ii and
iii. The same approach was used in turn (Figure 1).

Two-sample MR design

To address these questions, we employed a two-sample MR
design in our study, in which two types of data are obtained
from two non-overlapping datasets for MR analysis (22). This
approach was chosen due to the inherent difficulty in obtaining
comprehensive data encompassing genetic variation, exposure, and
the relationship between genetic variation and outcomes within the
same sample. Adopting a two-sample MR design gives us several
advantages over a single-sample design. Firstly, weak instrument
bias in a two-sample design tends to favor the null hypothesis,

making it more conservative and reducing the likelihood of false
positive results compared to bias in the direction of correlation.
Secondly, in scenarios where it is challenging to simultaneously
measure exposure and outcome data within the same group of
individuals, the two-sample MR approach significantly expands
the scope of MR studies (23). According to previous research, the
heritability of morning plasma cortisol ranges from 30 to 60%
(24, 25). Identifying genetic variations that contribute to changes
in morning cortisol values could provide critical insight into the
mechanisms of HPA axis activation (26). The CORNET consortium
aims to identify genetic determinants of inter-individual variation
in HPA axis function. For example, the consortium has discovered
two genes, SERPINA6 and SERPINA1, highly expressed in tissues
involved in cortisol physiology. SERPINA6 encodes corticosteroid-
binding globulin, a protein that binds cortisol in the bloodstream,
while SERPINA1 encodes α1-antitrypsin, a protein that regulates
the release of cortisol from corticosteroid-binding globulin by
inhibiting the cleavage of the reactive center loop (27). In the
forward direction, the CORNET consortium provided the GWAS
associated with the levels of serum morning plasma cortisol as the
sample exposure, which was obtained from a sample of 12,597
individuals of European ancestry (on average 53.5 years old,
59.2% female) and replicated in an independent sample of 2,795
participants. Morning plasma cortisol levels were standardized
using the plasma cortisol log-scale SD score corrected for genetic
control genomic control and adjusted for age and sex (27). SNPs
were identified in or in proximity to specific genes. The GWAS
summary statistics from the Psychiatric Genomics Consortium
(PGC) ADHD database, including 35,191 controls from 12 cohorts
(19) and 20,183 patients with ADHD, were used as sample
outcomes. Throughout our study, we considered effect sizes based
on the European participants (19,099 cases and 34,194 controls) to
establish the relationship between morning plasma cortisol levels
and ADHD. In the reverse direction, we used the GWAS summary
statistics from the ADHD Working Group of the PGC database
(n = 55,347) as the discovery sample exposure and cortisol obtained
from the CORNET consortium (n = 12,597) as the sample outcome
to investigate the causal relationship of ADHD on morning plasma
cortisol levels.

Instrumental variable selection

The CORNET consortium identified SNPs that were highly
(P < 5 × 10−6) and independently (r2 < 0.01, window
size = 10000 kb) associated with morning plasma cortisol levels.
Typically, SNPs with P < 5 × 10−8 are considered significant
across the entire genome. However, only one SNP was screened at
this threshold value, so the threshold was appropriately adjusted
downward. Therefore, the selected instrumental variables meet
the correlation assumption, i.e., there is a strong association
between the exposure factors and instrumental variables. The Two-
Sample MR R software package was used to exclude SNPs with
disequilibrium in the links through the clump step. The parameters
used were r2 = 0.01 and kb = 10000, indicating that SNPs with
r2 greater than 0.01 within a 10 MB range, including the most
important SNPs, were removed to eliminate the effect of linkage
disequilibrium (LD). To verify whether the selected instrumental
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FIGURE 1

Mendelian randomization (MR) analysis’s three key assumptions: relevance assumption, independence assumption, and exclusivity assumption.

variables met the independence assumption, Pheno Scanner1 was
used to examine the association of the remaining SNPs with other
phenotypes. The results showed that the remaining five SNPs were
not associated with prenatal exposure to alcohol, tobacco, cocaine,
prematurity, or other factors that may affect ADHD, confirming
the independence hypothesis. Finally, the five extracted SNPs were
matched with SNPs from the PGC ADHD database, and the
corresponding data were collated and merged. We extracted the
cortisol-associated SNPs for ADHD from a GWAS analysis in the
PGC ADHD database, and we considered impact estimates from
European participants, including 19,099 cases and 34,194 controls.
SNPs that demonstrated a robust association with the statistical
threshold for the GWAS (P < 5 × 10−8, linkage disequilibrium
r2 = 0.01, window size = 10000 kb) were selected as instrumental
genetic variables. The CORNET consortium (27) then collected
genetic correlations among those with cortisol with European
ancestry. In the end, Pheno Scanner was used to verify that the
selected instrumental variables met the independence assumption
(28), and seven SNPs were retrieved and matched with SNPs from
the CORNET consortium.

Statistical analysis

In this study, we assessed the influence of a specific genetic
variation of SNPs on exposure by determining its effect on
an outcome. We then performed MR analyses to combine the
estimates obtained using IVW, MR-Egger regression, Weighted
median, Simple mode, and Weighted mode. The IVW method
was predominantly used for analysis. The analysis outcome was
presented as odds ratios (ORs) and a 95% confidence interval (CI).

Sensitivity analyses

We utilized various reliable methods to verify and correct
the estimates obtained, including weighted median, MR-Egger

1 http://www.phenoscanner.medschl.cam.ac.uk

regression, and MR-PRESSO (29–31). It has been demonstrated
that combining the weighted median method with the MR-Egger
regression method can help identify horizontal pleiotropy and
provide an unbiased estimate of the causal influence. We used the
weighted median approach to compare the two methods, allowing
up to 50% of incorrect or pleiotropic instrumental factors in the
analysis. MR studies (32, 33) require that instrumental variables
can only influence outcomes through the studied exposure factor
and are not directly related to outcomes. Testing the exclusivity
hypothesis is challenging as genetic variants are all pleiotropic.
The intercept term of MR–Egger regression is now commonly
used to test for the presence of pleiotropy. When the linear
regression intercept Egger–intercept of the MR–Egger model is
close to 0 (P > 0.05), it indicates no pleiotropy in the instrumental
variables, and the exclusion hypothesis can be considered valid;
conversely, it indicates the presence of genetic pleiotropy and
the exclusion hypothesis is invalid. In addition, the MR-PRESSO
method was used to identify and correct outliers in the IVW linear
regression. It consists of three components: (a) pleiotropy detection
(MR-PRESSO global test), (b) pleiotropy correction by removing
outliers (MR-PRESSO outlier test), and (c) study of statistically
significant variations between the causal estimates before and after
outlier removal (MR-PRESSO distortion test). We presented (31)
the causative estimates for associations that have been corrected
for outliers if the P-values of the global and distortion tests
indicated a probability smaller than 0.05, suggesting the presence
of horizontal pleiotropy. The Cochran Q statistic and P-value (34)
were utilized to examine heterogeneity in the IVW estimations
to corroborate the findings further. In addition, the results were
analyzed separately using the leave-one-out method for sensitivity
analysis. The leave-one-out method is a widely used technique for
sensitivity analysis, whereby each SNP is removed one by one,
and the results are observed to be statistically different before
and after the removal. If P > 0.05 is obtained after excluding
an SNP, the SNP does not have a non-specific effect on the
effect estimation results (35). All analyses were conducted using R
version 4.1.1 (Statistical Computing with R Foundation), and the R
packages "Two Sample MR" (35) and "MR-PRESSO" (31) were used
for MR analysis.
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Assessment of assumptions

The statistical validity of SNPs and MR studies is crucial for
the unbiased causal estimation of MR. The statistical validity of
SNPs depends on the explanatory power of SNPs for the phenotype
(R2), which can be assessed by the strength of the correlation
between SNPs and the phenotype (F-statistic). The magnitude
of R2 ranges from 0 to 1, with a larger R2 indicating a greater
explanation of the phenotype by SNPs. The calculation of R2 in
this study was mainly based on the work of Papadimitriou et al.
(36), published in Nature Communications. When the number of
SNPs was less than or equal to 10, R2 was calculated using the
following formula: R2 = 2 × EAF × (1-EAF) × beta2. When the
number of SNPs exceeds 10, the following equation was used to
calculate it: R2 = 2 × EAF × (1-EAF) × beta2[2 × EAF × (1-
EAF) × beta2 + 2 × EAF × (1-EAF) × N × se (beta) 2]. The
F-statistic reflects the strength of the correlation between SNPs
and phenotypes and is commonly used to determine whether
SNPs are weak instrumental variables (37). A smaller F-statistic
generally indicates a greater likelihood of bias in MR findings. In
this study, the F-statistic was assessed using the following equation:
F = (N-K-1)/K × [R2/(1-R2)], where N is the sample size, K is the
number of SNPs, and R2 is the degree of explanation of exposure
by SNPs. The size of the F-statistic decreases as the number of
SNPs increases and increases as the sample size and the degree of
explanation of exposure by SNPs increase. An F > 10 is considered
a strong instrumental variable, while an F < 10 is weak. The F
statistic corresponding to each SNP was calculated in this study
(Tables 1, 3). Its distributions ranged from 22.57 to 52.72, with F-
values > 10 indicating that the results are not weakly biased by IVs
and are reliable.

Ethics approval

No ethics approval was needed because all analyses in the
present investigation used only publicly accessible data.

Results

MR analysis of the causal relationship
between morning plasma cortisol levels
on ADHD

This study used MR analysis to evaluate the potential
causal relationship between morning plasma cortisol levels on
ADHD. Information on the five SNPs that achieved genome-wide
significance (P < 5 × 10−6) for morning plasma cortisol levels
is presented in Table 1. The R2 was 2.6%, and the distribution of
the F-statistic corresponding to each SNP ranged from 22.57 to
48.81, while the F-statistic corresponding to all five SNPs was 67.28.
These findings suggest that weak instrumental variable bias was less
likely to impact the causal association. We observed no evidence of
pleiotropy (MR-Egger Intercept: −0.008, SE = 0.0151; P = 0.653)
or heterogeneity [Cochran’s Q (df = 3) = 0.879, P = 0.928], and
MR-PRESSO did not detect any outliers. The aggregate estimations T
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obtained by IVW or MR-Egger did not indicate any cortisol-
related risk of ADHD (Table 2, Figures 2, 3 and Supplementary
Figures 1, 2). Sensitivity analyses utilizing the weighted median,
simple mode, and weighted mode did not reveal any significant
associations (Table 2 and Figure 3), and MR-PRESSO failed to
detect any significant link between cortisol and ADHD (β = 0.006,
SD = 0.024, P = 0.815). Moreover, the leave-one-out sensitivity
analysis of the IVW method demonstrated that even after gradually
removing all five SNPs, the remaining four SNPs showed similar
results to the combined effect OR of the IVW method, with
P-values greater than 0.05. No SNPs with strong effects on the
results were found in IV, indicating that the effect OR of the
previous IVW method was robust (Supplementary Figure 2).

MR analysis of the causal relationship
between ADHD on morning plasma
cortisol levels

In this MR Analysis, we aimed to investigate the causal
relationship between ADHD on morning plasma cortisol levels.
Table 3 displays data on the associations of the seven selected
SNPs with ADHD and morning plasma cortisol, with P-values
and effect estimates calculated for Europeans. We calculated an
R2 of 2.2%, and the distribution of the F-statistic corresponding
to a single SNP ranged from 31.76 to 52.72, while the F-statistic
corresponding to seven SNPs was 173.137. Given that F > 10,
the likelihood of weak instrumental variables was relatively small,
indicating that the results of the MR analysis were unlikely
to be affected by weak instrumental variable bias. The MR-
Egger regression intercept term was 0.048, indicating no genetic
pleiotropy between SNPs and morning plasma cortisol levels
(P = 0.192). The MR-PRESSO test showed no genetic pleiotropy
bias or outliers (β = −0.001, SD = 0.019, P = 0.892). Contrary
to the previous MR analysis results, our findings revealed a
negative causal association between ADHD and morning plasma
cortisol levels (IVW method: b = −0.154, P = 0.018) (Table 4
and Figures 4, 5). Sensitivity analyses using IVW, MR-Egger
regression, Weighted median, Simple mode, and Weighted mode
were conducted, with results in Table 4 and Figure 5. Leave-one-
out and funnel plot analyses indicated no effect (Supplementary
Figures 3, 4). The IVW method showed that each 1 SD increase
in clinical ADHD risk resulted in a 14.3% decrease in morning
plasma cortisol levels (OR = 0.857, 95% CI: 0.755–0.974). Weighted
median regression yielded similar results (OR = 0.842, 95% CI:
0.714–0.992). MR Egger’s results revealed no statistically significant
association between clinical ADHD risk and morning plasma
cortisol levels (OR = 0.509, 95% CI: 0.255–1.015). Simple mode and
Weighted mode provided results similar to MR Egger’s results. The
direction of the causal effect obtained by combining these five was
consistent (Figure 5). Heterogeneity tests and sensitivity analyses
of IVW (P = 0.594) and MR-Egger regression (P = 0.192) with
Cochran’s Q-test [Cochran’s Q (df = 6) = 4.618, P = 0.594] indicated
no heterogeneity in SNPs (Table 4). When using only one SNP
as the independent variable (IV), the funnel plot (Supplementary
Figure 3) reveals that the dots reflecting the effect of the causal
relationship are symmetrically distributed, indicating that the
causal association is less likely to be impacted by potential bias.

The "Leave-one-out" sensitivity analysis results (Supplementary
Figure 4) showed that the P-value range and IVW analysis results of
the remaining six SNPs were similar to those of the included SNPs,
and no SNPs were found to have a significant effect on the causal
association estimates after excluding each SNP in turn.

Discussion

This two-way 2-sample MR study provides evidence against
a causal relationship between morning plasma cortisol levels
and ADHD. However, our findings suggest a causal relationship
of ADHD on morning plasma cortisol levels. To establish the
direction of this association, we conducted bidirectional MR
analysis and implemented several sensitivity analyses using various
MR techniques to assess the robustness of our findings. The
primary objective of our study was to investigate the bidirectional
association between morning plasma cortisol levels and ADHD
using a two-sample MR approach. Our results shed light on how
ADHD impacts morning plasma cortisol levels. Normally, cortisol
levels in the blood follow a diurnal rhythm, rising in the morning,
peaking at around 8 am, a sharp decline over the following few
hours, and progressively decreasing throughout the day, reaching
a nadir around bedtime (38, 39). Cortisol, the end product of the
HPA axis, plays a crucial role in individual emotion regulation
and behavior control and can increase hormone levels via various
pathways, resulting in a stress response, which is an indicator of
acute and chronic stress (40). Evidence suggests that chronic stress,
particularly in childhood, may contribute to the development of
ADHD, which is highly comorbid with anxiety (41). Exposure to
adversity and chronic stress in childhood may lead to HPA axis
hyporeactivity later in life (42). Morning cortisol levels can partially
reflect HPA axis activity. In the first part of our MR analysis, we
failed to establish a potential causal relationship between morning
cortisol levels and ADHD, using morning cortisol levels as an
indicator of exposure and ADHD as an outcome indicator. It
may be due to the complex etiology of ADHD, which involves
genetic factors, neuroanatomy and neurochemistry, and central
nervous injury, with maternal pregnancy stress and family social
adversity among the influential factors (43). In the GWAS of
morning plasma cortisol levels, the SNP in the SERPINA gene
had the highest F-value (F = 48.81). It has been shown that
(27) inter-individual differences in morning plasma cortisol levels
in individuals of European ancestry are largely attributable to
genetic variation in the region of chromosome 14 containing the
SERPINA6 and SERPINA1 genes, suggesting that the SERPINA
gene exerts an important influence on plasma cortisol levels and
may provide clinical insights for future HPA axis adjustments to
reduce ADHD symptoms.

The second part of this study examined the inverse causality of
ADHD on morning plasma cortisol levels using MR analysis, which
is consistent with the majority of studies, indicating that ADHD
has a susceptibility to low morning plasma cortisol levels. Our
research found that for every increase in one standard deviation
of ADHD, the risk of decreased morning cortisol levels will
increase by 14.3% (OR = 0.857, 95% CI: 0.755–0.974, P = 0.018).
ADHD is a disease of neurodevelopmental disorder that does not
correspond to the developmental level (or to age). It manifests itself
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TABLE 2 The OR values of IVW, MR-Egger, weighted median, simple mode, and weighted mode and their 95% CIs.

Exposure Outcome Method SE Beta OR (95% CI) P IVW MR-Egger

Q P Intercept P

Plasma cortisol ADHD MR-Egger 0.093 0.044 1.045 (0.872–1.252) 0.665 −0.008 0.653

Weighted median 0.060 0.008 1.008 (0.895–1.136) 0.897

IVW 0.052 0.006 1.006 (0.909–1.113) 0.907 0.879 0.928

Simple mode 0.098 −0.063 0.939 (0.781–1.129) 0.540

Weighted mode 0.065 0.025 1.026 (0.905–1.163) 0.712

FIGURE 2

The outcomes of single- and multi-SNP analyses investigating the impact of SNPs on natural-log transformed morning plasma cortisol levels in
relation to ADHD. (A) The black lines show the findings of single-SNP analyses, while the red shows the results of multi-SNP analyses. (B) Applying
the IVW, MR-Egger, weighted median, simple mode, and weighted mode for MR analysis.

FIGURE 3

Using several MR techniques, scatterplots demonstrate genetic linkages between natural logarithm-transformed morning plasma cortisol levels and
the risk for ADHD. The inclinations of the lines in the plots demonstrate the causal relationship for each methodology employed.

in various situations in school, family, and social environments,
characterized by attention deficit, hyperactivity, and impulsivity
(44), and has been associated with low morning plasma cortisol
levels in numerous studies. For example, Chinese children with
all subtypes of ADHD, as well as individuals with clinical ADHD
in England and Germany, have been found to have lower basal
cortisol levels than healthy children (14, 45, 46). According to

meta-analyses (4), Adolescents with ADHD exhibit lower baseline
and morning cortisol levels than TD children. Since their cortisol
levels take longer to peak, children and adolescents with ADHD
may experience weariness and have a delayed rising time in the
morning (47). Children with ADHD may also have an irregular
diurnal cycle of cortisol levels, resulting in low morning cortisol
levels. Researchers showed that persons with ADHD had a delay
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of 2 h in the phase of their cortisol cycles (48). Shin and Lee
(6) found that lower cortisol levels were correlated with poor
test performance in children. As a result, it is probable that
some ADHD kids’ inability to achieve optimal neurocognitive
function is caused by compromised HPA axis function. ADHD is
a complex neurodevelopmental disorder characterized by cognitive
impairments and atypical brain circuitry, which exhibit substantial
variability across individuals. Some children diagnosed with ADHD
manifest reduced activation in the alerting network, comprising
frontoparietal and thalamic circuits (49). These deviations in
brain function have been associated with low cortical arousal and
attention deficits, including difficulties sustaining attention over
time. Additionally, prior research has highlighted the potential
utility of assessing HPA axis activity as an early indicator of basal
attention system hypoactivity or impairment. Specifically, evidence
suggests that HPA axis activity may be linked to deviations in
frontal brain regions, thereby impeding the proper functioning
of this critical alertness network (50). However, it is crucial to
acknowledge the clinical complexity of ADHD and tailor diagnostic
and treatment strategies to accommodate individual variability
in symptom presentation. Two-sample MR and population-based
sibling comparison study (51) found that individuals with ADHD
are significantly more likely to develop post-traumatic stress
disorder (PTSD) later in life due to HPA axis hyporeactivity. In
addition, Llorens M’s study (52) has found a relationship between
HPA axis hormone levels, the degree of cognitive and inattention
symptoms present in individuals with ADHD, and how sex and
abuse during childhood affect these symptoms.

The mechanism of HPA axis dysfunction caused by ADHD
may be explained as follows: Glucocorticoid (GC), which is a
product of the HPA axis, is essential for many behaviors and
advanced brain functions of the mammalian central nervous
system, such as cognition, emotion, memory, and attention.
When GC levels are low, executive behavior abilities are reduced,
symptoms related to ADHD appear, and self-control abilities
are poor, leading to hyperactivity and difficulty remaining calm
(53). The hippocampus regulates various functions, including
learning and memory, behavior execution, and endocrine and
autonomic nervous activities. GC exerts its extensive biological
effects primarily through the glucocorticoid receptors (GR), which
are concentrated in the hippocampal CA1 region and dentate
gyrus (54). Altered expression of GR can lead to impaired binding
with GC, preventing the proper functioning of endogenous GC
and ultimately resulting in HPA axis dysfunction. Medications
used to treat ADHD, such as methylphenidate, have been shown
to increase cortisol levels in patients by promoting dopamine
release in the central nervous system (55). After 1 month of
methylphenidate hydrochloride treatment, children with ADHD
significantly increased cortisol levels, positively correlated with
neuropsychological performance over 6 months of treatment (56).
Glucocorticoids have been shown to improve impulse control
in continuous performance tests (56), potentially by boosting
the effects of dopamine in the mesolimbic pathway (57). In
addition, stimulant medication may increase baseline cortisol levels
(58). Lower cortisol levels have been found to predict HPA axis
impairment (59). Our MR analysis study indicated a negative
correlation between clinical ADHD and morning plasma cortisol
levels, suggesting that ADHD may lead to low morning cortisol
levels. However, whether low cortisol levels exacerbate clinical
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TABLE 4 The OR values of IVW, MR-Egger, weighted median, simple mode, and weighted mode and their 95% CIs.

Exposure Outcome Method SE Beta OR (95% CI) P IVW MR-Egger

Q P Intercept P

ADHD Plasma cortisol MR-Egger 0.519 −0.988 0.509 (0.255–1.015) 0.113 0.048 0.192

Weighted median 0.101 −0.104 0.842 (0.714–0.992) 0.040

IVW 0.087 −0.135 0.857 (0.755–0.974) 0.018 4.618 0.594

Simple mode 0.140 −0.082 0.851 (0.678–1.068) 0.213

Weighted mode 0.125 −0.082 0.853 (0.697–1.045) 0.176

FIGURE 4

The results of both single- and multi-SNP analyses on the SNP influence of ADHD risk on morning plasma cortisol levels that have undergone a
natural log transformation. (A) The red lines show the results of a multi-SNP analysis, whereas the black lines show the findings of a single SNP
analysis. (B) Applying the IVW, MR-Egger, weighted median, simple mode, and weighted mode for MR analysis.

FIGURE 5

Scatterplots generated through different MR techniques demonstrate the genetic connections between natural-log transformed ADHD and
morning plasma cortisol levels risk. The slopes of each line demonstrate the causal connection for each strategy.

symptoms of ADHD, we have not established a causal relationship
in our MR analysis. Further clarification is pending with larger
sample sizes and more clinical studies in the future.

Limitations

Despite using MR analysis to reduce residual confounding
bias, there are several limitations to consider in this study. First,
one limitation is that a more liberal threshold (P < 5 × 10−6,

r2 = 0.01) was used to select SNPs associated with morning plasma
cortisol levels for analysis since only one SNP reached the genome-
wide significance level (P < 5 × 10−8, r2 = 0.001) in the initial
screening this may have introduced weak instrument bias. This
study calculated the explanatory power of SNPs for phenotypes (R2)
and the strength of association between SNPs and phenotypes to
assess the statistical validity of SNPs in the MR study (F-statistic)
(Tables 1, 3). The likelihood of weak instrument bias (60) may be
mitigated by the fact that the F-statistic of each included SNP was
greater than 10. However, even though the F-statistic was greater
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than 10 in all MR studies, the explanatory power of SNPs for
cortisol (R2 = 0.026) and ADHD (R2 = 0.022) was low; therefore,
bias in MR study results cannot be ruled out due to insufficient
statistical power of SNPs. Second, it is widely believed that using
different databases for different races may affect the results and
cause population stratification bias. Population stratification refers
to changes in the frequency of genetic variants across populations
with various genetic origins, leading to false links between
genetic variants and outcomes. Population stratification in MR
investigations may lead to unjustified assumptions of independence
or exclusivity and, therefore, incorrect causal conclusions. For
example, Haworth et al. (61) found that genetic variation and
primary health outcomes were associated with place of birth
using UK Biobank data; failure to well-correct for population
stratification can lead to spurious associations between genetic
variation and primary health outcomes. To avoid population
stratification bias, the most direct way is to include populations
with the same genetic background for genetic association studies.
However, due to traditional GWAS’s low statistical test efficacy,
there has been a trend to expand the sample size for multicenter
GWAS. In this study, the ADHD Working Group of the PGC
database comprised a population-based cohort of 14,584 adults
with ADHD and 22,492 control subjects. The GWAMA of morning
plasma cortisol levels examined 12,597 people of European descent.
Nonetheless, the analysis considered effect sizes based on the
European members of the Working Group of the PGC database
(19,099 cases and 34,194 controls). Only about 3.7% of the 55,347
participants were non-Europeans, so it is believed that such a
small percentage of non-Europeans doesn’t affect the accuracy of
the results. Third, our analysis was limited to morning plasma
cortisol data; therefore, we could not examine the relationship
between ADHD risk and cortisol levels throughout the day. It is
worth noting that cortisol secretion exhibits a diurnal pattern, and
incorporating data on cortisol fluctuations over a day could provide
additional information. In addition, it is worth noting that after
the submission of this manuscript, the Nature Genetics Journal
updated the latest ADHD GWAS to include 27 markers (62). The
results of this updated GWAS may refine and complement the
conclusions of our study. We plan to conduct further discussions
and studies in the future.

Conclusion

This study represents the first MR investigation to explore
the causal relationship between morning plasma cortisol levels
and ADHD. This study represents the first application of MR
to investigate the causal association between morning plasma
cortisol levels and ADHD. The findings from our study provide
that ADHD is inversely and causally related to morning plasma
cortisol levels. However, no genetic evidence supports that morning
plasma cortisol levels are causally associated with ADHD. Our
study’s results suggest that ADHD causes reduced morning plasma
cortisol levels. In the future, larger and more in-depth cortisol and
ADHD GWAS studies are needed to determine how ADHD affects
disruption in the cycles of cortisol secretion.
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