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Unique large-scale cooperation and fairness norms are essential to human society, 
but the emergence of prosocial behaviors is elusive. The fact that heterogeneous 
social networks prevail raised a hypothesis that heterogeneous networks facilitate 
fairness and cooperation. However, the hypothesis has not been validated 
experimentally, and little is known about the evolutionary psychological basis 
of cooperation and fairness in human networks. Fortunately, research about 
oxytocin, a neuropeptide, may provide novel ideas for confirming the hypothesis. 
Recent oxytocin-modulated network game experiments observed that intranasal 
administration of oxytocin to a few central individuals significantly increases 
global fairness and cooperation. Here, based on the experimental phenomena 
and data, we show a joint effect of social preference and network heterogeneity 
on promoting prosocial behaviors by building evolutionary game models. In the 
network ultimatum game and the prisoner’s dilemma game with punishment, 
inequality aversion can lead to the spread of costly punishment for selfish and 
unfair behaviors. This effect is initiated by oxytocin, then amplified via influential 
nodes, and finally promotes global cooperation and fairness. In contrast, in the 
network trust game, oxytocin increases trust and altruism, but these effects are 
confined locally. These results uncover general oxytocin-initiated mechanisms 
underpinning fairness and cooperation in human networks.
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1. Introduction

Humans are self-organized to form a variety of social networks, upon which large-scale 
cooperative behaviors among genetically unrelated individuals persist (1–3). Human cooperation 
is crucial to the success of the human species and discriminates them from other species (4–6). 
To maintain cooperation, a preference for fairness in resource sharing is imperative and becomes 
a social norm (7–11). Despite significant progress in understanding the incentives of cooperation 
and fairness in spite of the temptation to be selfish, such as reciprocity and reputation (12–15), 
the emergence and evolution of cooperation and fairness in structured populations remain 
puzzling (16, 17).
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Many efforts have attempted to interpret the effect of social 
networks on cooperation and fairness, among which a promising 
hypothesis is enlightened by a discovery in the field of complex 
networks (18–22). Much empirical evidence demonstrates that a large 
number of social and economic networks are heterogeneous, 
consisting of a small fraction of densely connected central nodes and 
a majority of sparsely connected peripheral nodes (23–26). It is 
believed that network heterogeneity plays a key role in cooperation 
and fairness, and several microscopic mechanisms based on social 
learning and natural selection have been proposed to explain the 
network reciprocity on cooperation (27–31). However, previous 
behavior experiments attempting to verify the network reciprocity 
hypothesis show negative results, and the influence of heterogeneous 
networks on prosocial behaviors becomes a debate (32, 33). How 
cooperation and fairness norms are enforced by social networks 
remains an outstanding problem.

Recent studies on social and behavioral neuroscience have 
explored the relationship between human behavior and oxytocin, a 
hypothalamic neuropeptide that has been associated with trust, 
fairness expectations, and social value representation (34–37). In 
particular, a placebo-controlled pharmacological study combining 
oxytocin and heterogeneous networks has shown that intranasal 
administration of oxytocin to a few central individuals can enhance 
global cooperation and fairness, but cannot affect global trust (38). 
Consequently, we hypothesize that heterogeneous networks indeed 
play a role in cooperation and fairness, but the effect of network 
heterogeneity is not prominent unless it is in coordination with 
individual differences in social preferences. Specifically, the leading 
effect of those prosocial individuals can be amplified by occupying 
influential nodes and could further exert a global impact on the whole 
network. It has been shown that oxytocin as a biological basis of 
prosocial behaviors accounts for the individual difference in social 
preference (37, 39, 40). We  further hypothesize that individual 
differences are mainly differences in inequality aversion modulated by 
oxytocin and analyze the general mechanism underpinning fairness 
and cooperation in network environments initiated by oxytocin 
through a data-driven approach. Based on data from three network 
game experiments about fairness, cooperation, and trust (38), we build 
three evolutionary game dynamic models and reveal a remarkable 
joint effect of enhanced inequality aversion and network heterogeneity 
on global prosocial behaviors.

In the rest of this article, we first introduce the three base games 
and their network extensions adopted in the behavioral experiments 
(38): ultimatum game (UG) (41–43), two-stage prisoner’s dilemma 
game with punishment (tPDG) (44–46) (a costly punishment stage is 
introduced on the basis of the classic prisoner’s dilemma), and trust 
game (TG) (47–49). We then analyze strategy evolution in the three 
games on heterogeneous networks. Considering that individuals are 
bounded rational, we introduce (disadvantage) inequality aversion to 
the models (7). Specifically, inequality aversion means that people 
resist inequitable outcomes, and they are willing to give up some 
material payoffs to move in the direction of more equitable outcomes. 
We then construct utility matrices that incorporate both the material 
payoff and the influence of inequality aversion and analyze the 
evolution processes by replicator dynamic equations (50, 51). Based 
on the stability analysis of the dynamical systems and the real data of 
the experiments (38), the inequality aversion parameters are fitted. 
Our results show that in the UG and tPDG experiments, oxytocin can 

increase individual inequality aversion, thereby enhancing altruistic 
punishment, and this effect can be amplified and spread to the entire 
network through the network structure. In contrast, the trust 
enhanced by oxytocin fails to diffuse through the network structure 
to promote the level of prosociality in the TG network. In summary, 
our study can effectively explain the phenomenon in the behavioral 
experiments (38) and confirm that the leading effect caused by 
inequality aversion can be amplified by occupying influential nodes 
and further improve the level of cooperation and fairness of the 
whole network.

2. The ultimatum game on 
heterogeneous networks

2.1. Ultimatum game

The ultimatum game (UG) is a benchmark for studying fairness 
as a bounded rational behavior (7). Following Han et al. (25), we adopt 
a minimum acceptance offer (MAO) variant of UG that is simpler for 
playing on a network, but the essence of UG is not affected. In the 
networked UG, nine proposers and nine responders are placed at two 
kinds of nodes in a bipartite network, as shown in Figure 1A. Proposers 
have an identical neighborhood size with four responder neighbors. 
In contrast, there are two categories of responders, (i) three central 
responders with six proposer neighbors and (ii) six peripheral 
responders with three proposer neighbors. Every proposer connects 
to two central and two peripheral responders to ensure an unbiased 
influence from both categories. In each round, a proposer makes a 
single offer, resource p  for each of his/her responder neighbors; a 
responder claims a single minimum amount, resource q  that she/he 
can accept for all neighbors. Proposers and responders make decisions 
simultaneously, and every pair of connected subjects shares a fixed 
amount of resources. For each pair, if p q≥ , they make a deal and the 
proposer gets 1− p  and the responder acquires p . If p q< , both 
get nothing. To control the effect of profit inequality resulting from 
heterogeneous connections, the actual payoff of subjects in a round is 
the average over their pairs of games.

2.2. Utility matrix

We classify the behaviors of proposers to be  two categories: 
rational (R) with self-interest in payoffs or fairness (F) with fair 
sharing (52). To simplify our analyses, we assume the polarization of 
the two categories, i.e., rational proposers offer a small number of 
resources, s (with s < 0 5. ), to responders, and fair proposers offer 
50% of resources to responders. Akin to proposers, we  classify 
responders as cooperation (C, acquire any proposals not less than s) 
and defect (D, reject any proposals). In combination with the influence 
of disadvantage inequality aversion, we  can define the utility of 
subjects with respect to both payoffs and inequality aversion and 
construct a utility matrix. Specifically, we assume that the utility of 
responders resulting from inequality aversion is proportional to the 
payoff difference, and an internal parameter characterizes the diversity 
of subjects in responding to inequality (7). The network inhomogeneity 
accounts for two representative responders: responders occupying 
central nodes and those occupying peripheral nodes. Thus, we define 
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two utility matrices for the games between proposers and two types of 
responders (refer to Table 1), where 1 2− s  is the payoff difference 
between a rational proposer and a cooperative responder, α1  and α2  
are the internal parameters for central and peripheral responders, 
respectively, which measure the degree of aversion to unfairness.

Our purpose is to estimate the values of internal parameters 
α1  and α2  that characterize the influence of oxytocin on the 
perception of inequality. To accomplish this goal, we  employ 
replicator dynamics to model the evolution of subjects affected by 
their interactions. To enable analytical results, we  reduce the 
network system with multi-type players based on the mean-field 
approximation method introduced in Zhang et al. (53) and Pei 
et al. (54). The basic idea of this method is to approximate the local 
network structure around a player (i.e., the distribution of different 
types of players in his/her neighborhood) with the global network 
structure (which can be derived from the frequencies of different 
types of edges) and approximate his/her local strategy distributions 
with the global strategy distributions. We note that this method 

can be applied to arbitrary networks, but in this article, we only 
focus on specific networks in Li et al. (38). As shown in Figure 1B, 
the simplified system consists of three nodes, a proposer, a 
peripheral responder, and a central responder, representing three 
typical players in the network. The links in the original network are 
converted to the interaction weights in the reduced network. The 
principle of the approximation is as follows:

 • Because in the original network, each proposer connects to two 
central responders and two peripheral responders, in the reduced 
network the interaction weight from the central responder and 
the peripheral responder to the proposer is the same.

 • Due to the fact that the payoff of each subject from playing with 
his/her neighbors is normalized by his/her number of neighbors, 
in the reduced network the sum of incoming link weights 
should be one.

Based on the approximation principle stemming from local 
interaction patterns, we can reasonably obtain the reduced network 
system in Figure 1B.

2.3. Replicator dynamics

To analyze the evolutionarily stable strategies for different types 
of nodes, we formulate replicator dynamics of the reduced network 
system. We denote the probability of proposers using the R strategy 
by ρR , the probability of central responders using the C strategy by 
ρC

C , and the probability of peripheral responders using the C strategy 
by ρ

C

P , respectively. In combination with the utility matrices, we can 
calculate the expected payoffs of subjects with different roles and 
strategies as follows:

A B

FIGURE 1

Network structure and mean-field approximation of the ultimatum game. (A) The network structure of UG. UG network has three central responders 
each connected to six proposer neighbors; six peripheral responders, each connected to three proposers and nine proposers each connected to four 
responders. The payoff of each subject is normalized by his/her number of neighbors. (B) The mean-field approximation of the UG network. The 
simplified system consists of three (types of) nodes, a proposer, a peripheral responder, and a central responder, representing three typical players in 
the network. The afferent arrows represent interaction with the neighbors of nodes. The thickness of the arrow and the value on the arrow represents 
the link weight.

TABLE 1 Utility matrix between proposer and responder.

(a) Proposer vs. central 

responder

C D

R ( )1 , 1 21s s sα− − − 0,0

F 0.5,0.5 0,0

(b) Proposer vs. peripheral 

responder
C D

R ( )1 , 1 22s s sα− − − 0,0

F 0.5,0.5 0,0

https://doi.org/10.3389/fpsyt.2023.1131769
https://www.frontiersin.org/journals/psychiatry


Li et al. 10.3389/fpsyt.2023.1131769

Frontiers in Psychiatry 04 frontiersin.org

 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

C P
C C

C P
C C

C
R 1 R

C

P
R 2 R

P

1 1R 1 1 ,
2 2

1 1F ,
4 4

1C 1 2 1 ,
2

D 0,
1C 1 2 1 ,
2

D 0,

ρ ρ

ρ ρ

ρ α ρ

ρ α ρ

 = − + −

 = +

 =  − −  + − 


=

 =  − −  + − 
 =

E s s

E

E s s

E

E s s

E
 

(1)

where E R( )  and E F( )  are the expected payoffs of proposers 
with R and F strategies, respectively, EC C( )  and EC D( )  are the 
expected payoffs of central responders with C and D strategies, 
respectively, and EP C( )  and EP D( )  are the expected payoffs of 
peripheral responders with C and D strategies, respectively.

Thus, the replicator dynamics for the three types of nodes in the 
reduced network can be formulated as follows:
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where E , EC , and EP  are the mean expected payoffs of 
proposers, central responders, and peripheral responders, respectively.

2.4. Stability analysis

The replicator dynamics do not have interior fixed points and have 
eight boundary fixed points ρ ρ ρR C

C

C

P
, ,( ) , namely, (0, 0, 0), (0, 0, 1), 

(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), where stable 
boundary fixed points correspond ESS of the game. We  then 
implement stability analysis for each of the boundary fixed points (see 
SI for details). In general, Eq. (2) can have multiple stable fixed points. 
Since R is a dominant strategy for both types of proposers, we are 
more interested in the stable point with ρ ρ

C

C

C

P
, ,( ) = ( )11 . In this case, 

the only possible stable point is (1, 1, 1), where at this point proposers 
are rational and responders are cooperative.

Finally, we estimate the values of α1 , α2 , and s  at (1, 1, 1) from 
the experimental data. From the stability condition, we have
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For convenience, let q1 1

11 2
=

+
α
α  and q2 2

21 2
=

+
α
α . Intuitively, 

q1  (or q2 ) represents the acceptance threshold of the central (or 

peripheral) responders adjacent to the proposer, where offers lower 
than the threshold will be  rejected due to inequality aversion. 
Thus, we have

 

1
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(4)

Eq. (4) implies that the values of the inequality aversion 
parameters α1  and α2  can be  estimated from the minimum 
acceptance offers q1  and q2 . Here, we  use data from the UG 
experiment in the study (38) to fit the parameters. The central nodes 
were given oxytocin or placebo in the experiment (the settings are the 
same in the following tPDG and TG experiments). The experimental 
group (administered oxytocin, OT) and the control group 
(administered placebo, PL) generated two sets of data, respectively. 
We use the mean minimum acceptance offers over 60 rounds of the 
central (or peripheral) responders adjacent to proposers to estimate 
q1  (or q2 ; see Table 2). The estimated values of α1  and α2  for OT 
and PL groups are shown in Table 3.

Not surprisingly, α1  of the OT group is greater than those of the 
PL group, which implies that oxytocin indeed promotes inequality 
aversion. Interestingly, α2  of the OT group is also higher. It indicates 
that oxytocin not only increases the inequality aversion of the central 
nodes but also spreads this influence to the entire network. 
Subsequently, we can predict the offer s  of proposers determined by 
α1  and α2  based on our model. Note that to guarantee a deal with 
responders, a rational proposer’s offer is confined by the condition 
s q q= { }max 1 2,  (25). The predicted values of s  for both OT and PL 
groups are shown in Figure 2.

The theoretical predictions are in good agreement with the 
experiment results, indicating that our model is effective. In particular, 
our model shows that the inequality aversion of the central responders 
and peripheral responders can be directly or indirectly increased by 
oxytocin. This is due to a subtle network effect, inequity aversion of 
central responders initiated by OT, self-interest of proposers induced 
by loss aversion, and conditional fairness of peripheral responders, 
which together constitute a mechanism underpinning the prosocial 
behaviors. Specifically, due to the endowment effect and loss aversion 
(55, 56), proposers use the best response strategy to maximize their 
payoffs and regard the offer to responders as a loss and often match 
the maximum q in their neighbors attempting to make all deals (25). 
The fact that responders refuse low offers because of inequity aversion 
resembles costly punishment to proposers. OT stimulates inequity 
aversion of central responders and imposes more punishment threats 
to unfair proposers. Despite the insignificant effect of OT exerting on 
only a small fraction of subjects, the local effect is amplified by central 

TABLE 2 Estimated values of 1q  and 2q  in OT and PL groups.

Central responder 
( 1q )

Peripheral 
responder( 2q )

OT 0.47 0.49

PL 0.43 0.47
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nodes with a larger number of connections. As a result, the central 
subjects become leaders in driving fairness behaviors via 
costly punishment.

Moreover, two complementary effects nudge network fairness. The 
first one is the complement among central nodes. Note that each 
proposer links to two central responders. Thus, only one of the central 
subjects who is qualified as a leader is sufficient to drive fairness of 
proposers who attempt to make all deals with their neighbors. The 
second complementary effect is ascribed to the conditional fairness of 
peripheral responders who increase their q insofar as their proposer 
neighbors increase their offers. In other words, the responders 
experience an inner conflict between advocating fairness and loss 
aversion, and the latter outweighs the former. The leaders help the 
responders overcome the obstacle of loss aversion and pursue fairness. 
Conditional fairness as compensation is important to sustain a high 
level of fairness during evolution in case of the fluctuation of the leader 
effect occasionally.

Taken together, OT initiates local costly sanctions on unfair 
behaviors by increasing the inequity aversion of subjects. The local 
effect is amplified by network heterogeneity and further assisted by 
conditional fairness and network complementary effects. Finally, the 
threat of punishment diffuses in the network and a high level of global 
fairness emerges. The mechanism underpinning network fairness 
enlightens us to explore network cooperation with costly punishment. 
We speculate that OT plays a similar role in costly punishment for 
selfish behaviors, and in combination with subtle network effects, 
cooperation could be  fostered. We  next analyze the behavioral 
evolution of the two-stage prisoner’s dilemma game (tPDG) on the 

heterogeneous network by building the model to validate 
our hypothesis.

3. The prisoner’s dilemma game with 
costly punishment on heterogeneous 
networks

3.1. Two-stage Prisoner’s dilemma game

In the network of tPDG, there are two categories of nodes, three 
central nodes and nine peripheral nodes (Figure 3A), where each 
central and peripheral node has eight and four neighbors, respectively. 
To balance the influence of both categories, each peripheral node 
connects two central and two peripheral nodes, and each central node 
connects two central and six peripheral nodes. There are two stages in 
each round. In stage I, subjects choose either cooperate (C) or defect 
(D), and play with their neighbors simultaneously. The payoffs 
between each pair of neighboring subjects are calculated according to 
the payoff matrix (Table 4), where T̂ > R̂ > P̂ > Ŝ . Similar to UG, the 
actual payoff of each subject is the average over all pairs of games in a 
round. In stage II, subjects can opt to costly punish their neighbors 
choosing D in stage I (57). The cost and punishment are normalized 
by the neighborhood size.

3.2. Utility matrix

To simplify our analyses and modeling processes, we merge the 
two steps and make an expanded payoff matrix associated with four 
strategies, i.e., cooperate and not punish (C+N), cooperate and punish 
(C+P), defect and not punish (D+N), and defect and punish (D+P) 
(46). The payoff matrix is shown in Table 5, where C



 is the cost of 
punishing neighbors with D strategy and F



 is the fine of punishment.
We speculate that few subjects will employ the D+P strategy. This 

strategy is not only strictly dominated by D+N but also cognitive 
dissonant in the sense that defectors punish other defectors. Thus, the 
payoff matrix can be  reduced to three dimensions. Similar to the 
scenario in the UG [note that an alternative explanation for rejection 
in UG is that the responder punishes proposers by paying s such that 
the proposer loses 1-s, see (46)], we assume that the motivation of 
punishment is inequality aversion, where the willingness to punish 
defectors is positively related to F C

 

−  (i.e., the efficiency of 
punishment). Meanwhile, cooperators who are defected may not 
choose to punish, especially central players tended to exhibit choosing 
to cooperate without punishing others’ defection in oxytocin (vs. 
placebo) network (38). We speculate that the underlying reason is a 
kind of altruism (i.e., maximum group benefit) and may be affected 
by oxytocin. We further assume that this effect is positively related to 
R P
 

− , (i.e., the benefit of mutual cooperation minus mutual 
defection). Regarding both inequality aversion and dilemma aversion, 
we  have the utility matrix (Table  6) for central subjects, where 

( )1 ˆ ˆβ −R P  is the increase of utility by avoiding mutual defections, β1  
is an internal parameter capturing the individual difference in 
dilemma aversion, ( )1 ˆˆα −F C  captures the willingness of punishment 
because of inequality aversion, and the internal parameter α1  
measures the degree of inequality aversion that could be affected by 
oxytocin. For peripheral subjects, we can write a similar utility matrix 

TABLE 3 Estimated values of α1 and α2 in OT and PL groups.

α Central responder 
( 1α )

Peripheral 
responder( 2α )

OT 8.73 19.61

PL 3.17 7.30

FIGURE 2

Experimental and predicted results of the proposers’ offer. The blue 
bar and the red bar represent the mean value (all rounds of data) of 
the proposers’ offer in the OT group and the PL group, respectively. 
Each error bar represents the standard deviation, and each yellow 
six-pointed star represents the theoretical value.
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(Table  6), where β2  and α2  represent the parameters of 
peripheral subjects.

Our aim is to estimate parameter values and reveal the effect of 
OT on the internal parameter α1 , α2 , β1 , and β2 . Analog to the 
case of network UG, we also use mean-field approximation to simplify 
our analyses. Because of the normalization of payoffs and punishment 

over neighbors of every subject, the original network can be reduced 
to a two-node graph with self-loops, as shown in Figure 3B.

In the original graph, a peripheral node connects to two other 
peripheral nodes and two central nodes, and a central node connects 
to six peripheral nodes and two other central nodes. Thus, the link 
weight of the self-loop of the peripheral node is 0.5, the same as the 
link weight from the central node to the peripheral node. The weight 
of the self-loop of the central node is 2 2 6 0 25/ .+( ) = , and and the 
link weight from the peripheral node to the central node is 6/
(2+6)=0.75.

3.3. Replicator dynamics

Next, we formulate replicator dynamics equations of the reduced 
network system. We denote the probabilities of central nodes using 
C+N, C+P, and D+N strategies by ρ

C N

C

+ , ρ
C P

C

+ , and ρ
D N

C

+ , 
respectively. Similarly, we denote the probabilities of peripheral nodes 
using C+N, C+P, and D+N strategies by ρ

C N

P

+ , ρ
C P

P

+ , and ρD N
P
+ , 

respectively. In combination with the utility matrices, we can calculate 
the expected payoffs of subjects with different roles and strategies, see 
SI for details. The replicator dynamics equations for the two nodes in 
the reduced network can be formulated as follows:
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A B

FIGURE 3

Network structure and mean-field approximation of the two-stage prisoner’s dilemma game. (A) There are three central players and nine peripheral 
players in the tPDG network. Each central player was connected to eight neighbors (two central and six peripheral players), and each peripheral player 
was connected to only four neighbors (two central and two peripheral players). (B) The mean-field approximation of the tPDG network. The simplified 
system consists of (types of) two nodes, a peripheral node and a central node, representing two typical players in the network. The afferent arrows 
represent interaction with the neighbors of nodes. The thickness of the arrow and the value on the arrow represents the link weight.

TABLE 4 Payoff matrix in the prisoner’s dilemma game.
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TABLE 5 Payoff matrix in the two-stage prisoner’s dilemma game.
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where EC C N+( )  and EC C P+( )  are the expected payoffs of 
the central node with C+N and C+P strategies, EP C N+( )  and 
EP C P+( )  are the expected payoffs of the peripheral node with C+N 

and C+P strategies, and EC  and EP  are the mean expected payoffs 
of the central node and peripheral node, respectively.

We then estimate the values of α1 , α2 , β1 , and β2  by the virtue 
of experimental results. Note that the replicator dynamics are 
complicated with a large number of terms. This precludes us from 
deriving complete stability analyses for Eq. (5). Alternatively, we take 
the mean proportions of strategies of the last 20 rounds in experiments 
as the equilibrium points of the replicator dynamics, such that the 
parameter values in the dynamics can be estimated. Specifically, the 
(stable) proportions of strategies in OT and PL groups are shown in 
Table  7 (38). Thus, by inserting the equilibrium points into the 
replicator dynamics, we can solve the values of α1 , α2 , β1 , and β2  
for OT and PL groups, as shown in Table 8.

3.4. Stability analysis

Finally, we implement stability analysis to test if the equilibrium 
points in the experiments are indeed stable under Eq. (5). 

We formulate the Jacob matrix and calculated its eigenvalue using the 
estimated parameter values. We see that the real part corresponding 
to each eigenvalue of the Jacobi matrices is non-positive (see 
Supplementary Table S1), which indicates that the equilibrium state 
in the experiments is stable and can be achieved in our model. Thus, 
our evolutionary model is valid to model the evolution of cooperative 
behaviors in the prisoner’s dilemma experiments with costly 
punishment (see Figure 4).

Our results indicate that oxytocin improves both the inequality 
aversion parameters α1  and α2  and the dilemma aversion parameters 
β1 , and β2 . Specifically, the costly punishment in stage II is 

analogous to rejecting unfair offers in UG, and OT triggers willingness 
to costly punishment by increasing inequity aversion of central 
subjects. The local punishment effect is amplified by central nodes and 
diffuses in the network by virtue of motivating conditional 
punishment of peripheral subjects. Actually, inspired by the sanction 
behaviors of central nodes, peripheral subjects’ willingness to costly 
punishment in OT groups is significantly higher than that in 
PL groups.

4. The trust game on heterogeneous 
networks

4.1. Trust game

Due to the intensively studied effect of OT on trust, one may 
wonder whether trust (and altruism) increased by OT plays a role in 
fairness and cooperation in combination with inequity aversion and 
whether OT increases the trust of the whole network. In order to 
answer the questions, we analyze the trust game (TG) on the same 
heterogeneous network as that of UG (Figure  5A). Central and 
peripheral nodes are occupied by investors, and trustees have the same 
neighborhood size with four investor neighbors. Investors can choose 

TABLE 6 Utility matrix in the two-stage prisoner’s dilemma game.
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TABLE 7 Stable proportions of strategies in OT and PL groups.

OT PL

Central 
node

Peripheral 
node

Central 
node

Peripheral 
node

C+N 0.18 0.30 0.09 0.15

C+P 0.10 0.09 0.06 0.05

D+N 0.72 0.61 0.85 0.80
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a certain proportion of the initial endowment as an investment. 
Trustees receive the investment increased by a certain multiple and 
decide how much to return to their investors. Therefore, both investors 
and trustees can obtain benefits through trust and reciprocity. 
However, trustees can exploit trust not to return any resources. In 
analogy with the settings in UG, the actual payoff of subjects in a 
round is the mean payoff over the number of their neighbors.

4.2. Utility matrix

In general, we  classify the behaviors of investors into two 
categories: invest (I) in trustees from the initial endowment or do not 
invest (NI). Analogously, we  classify trustees into two categories: 
return (R) a part of the investment to investors or do not return (NR). 
In addition, we take the altruistic preference of trustees into account 
to better model their behaviors and assume that the increase in the 
utility of trustees is proportional to the return. In the experiment, 
there are two categories of investors, those occupying central nodes 
and those occupying peripheral nodes. Thus, we define two utility 
matrices between a central investor and a trustee, and between a 
peripheral investor and a trustee, respectively.

The utility matrix of a central investor and a trustee is shown in 
Table  9, where T C  is the investment of a central investor with 
I strategy, r  is the proportion of the investment that a trustee return 
to a central investor, g  is the increase factor of investment ( g = 3  in 
TG), rgTC  is the return from a trustee, gT rC

1−( )  is the net gain 

of a trustee after returns gT rC , and the altruistic parameter λ  
( λ > 0 ) measures the willingness of return. In a similar manner, 
we define the utility matrix for a peripheral investor and a trustee 
(Table 9), where the superscript P denotes peripheral investors.

We aim to investigate the immediate effect of OT on investment 
T C  of central investors, and its possible indirect effect on investment 
T P  of peripheral investors, and the altruistic parameter λ  of a 
trustee. We  also use mean-field approximation to simplify our 
analyses. Because of the normalization of payoffs over neighbors of 
every subject, the original network can be reduced to a three-node 
graph, as shown in Figure 5B. The simplified system consists of a 
trustee, a peripheral investor, and a central investor. The links in the 
original network are converted to the interaction weights in the 
simplified graph, where the principle of the approximation is similar 
to the case of network UG. Based on the approximation principle 
stemming from local interaction patterns, we can obtain the simplified 
network system, as shown in Figure 5B.

4.3. Replicator dynamics

Next, we formulate replicator dynamics equations of the simplified 
network system. We denote the probability of trustees using the R 
strategy by ρR , the probability of central investors using the I strategy 
by ρ

I

C , and the probability of peripheral investors using the I strategy 
by ρIP , respectively. According to the utility matrices, we can calculate 
the expected payoffs of subjects with different roles and strategies 
as follows:
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(6)

where E R( )  and E NR( )  are the expected payoffs of trustees 
with R and NR strategies, EC I( )  and EC NI( )  are the expected 
payoffs of central investors with I and NI strategies, and EP I( )  and 
EP NI( )  are the expected payoffs of peripheral investors with I and 

NI strategies, respectively.
The three replicator dynamics equations for the three nodes in the 

simplified graph can be formulated as follows:
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(7)

where E , EC , and EP  are the mean expected payoffs of 
trustees, central investors, and peripheral investors, respectively.

TABLE 8 Estimated values of α1, α2, β1, and β2 in OT and PL groups.

OT PL

Central node 1α =3.13 1β =1.13 1α =3.04 1β =1.04

Peripheral node 2α =3.07 2β =1.07 2α =3.02 2β =1.02

FIGURE 4

Experimental and predicted results of the global cooperation rate in 
tPDG. The solid lines represent the time evolution of the global 
cooperation rate in the iterated tPDG experiments and shaded areas 
represent standard error. The blue (red) lines represent OT (PL) 
group. The dotted lines represent the global cooperation rate at the 
stable fixed point of the replicator equations.
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4.4. Stability analysis

There exist nine possible equilibrium points ρ ρ ρR I

C
I
P

, ,( )  in the 

replicator dynamics equations, i.e., (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), 

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), 1
0 0

rg
, ,









 . We  implement a 

stability analysis for each of the equilibrium points. For λ <1 , Eq. (7) 
has only one stable equilibrium, (0, 0, 0), but this equilibrium cannot 
explain all the experimental results. For λ >1 , Eq. (7) can have four 
possible stable states: (0, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1). According 
to stability conditions, these stable states can be classified into three 
categories ( g = 3 ) as follows:

 (i) For r = 0 , (0, 0, 0) is stable;
 (ii) For r = 1

g
, (1, 0, 1) and (1, 1, 0) are stable;

 (iii) For r > 1
g

, (1, 1, 1) is stable.

Subsequently, we  analyze the stable points of each group of 
experiments to classify these groups into three categories. There are 
nine groups in the OT experiments and 10 groups in the PL 
experiments. The stable point and the classification of each group can 
be found in Supplementary Tables S2, S3.

The classification and stable point of experimental results 
demonstrate that our model is valid to characterize the evolutionary 
features of the trust experiment. In particular, we can see that the 
behavior r of the trustee is not affected by the investment T of 
investors or the altruistic parameter λ , and only the relation 
between r  and g  influences the category of experimental 
behaviors. In other words, OT that directly affects T and λ  values 
plays a negligible role in the behavior of trustees, such that the 
dynamics of the experiment is not affected by OT as well. It is worth 
noting that OT, indeed, enhances the investment T C  of central 
investors administrated OT by comparing with those of peripheral 
investors without inhaling OT (38). The results indicate that the 
effect of OT on enhancing the trust of investors is confined locally 
and cannot spread to other peripheral investors, due to the fact that 
the neighboring trustees of the central investors show no response 
to the generosity of the investors and shield the effect of OT. This 
finding is consistent with a pioneering experiment of one pair of 
investor and trustee, in which OT only affect the generosity of 
investors but is useless to trustees (58).

Taken together, locally administrated OT has no effect on the 
trust game experiments. This is mainly ascribed by the awarding 
from investors trigger by OT, which is not strong enough to 
motivate significant higher return of trustees. In contrast, in the UG 
and PD with costly punishment, the punishment stemming from 
inequality aversion triggered by locally administrated OT is 
effective to promote fairness and cooperation. In brief, group 
fairness and cooperative behavior can result from inequity aversion 
rather than trust.

A B

FIGURE 5

Network structure and mean-field approximation of the trust game. (A) The network structure of TG. The network has three central investors each 
connecting to six trustees; six peripheral investors, each connecting to three trustees, and nine trustees each connecting to four investors. (B) The 
mean-field approximation of the TG network. The simplified system consists of three (types of) nodes, a trustee, a peripheral investor, and a central 
investor, representing three typical players in the network. The afferent arrows represent interaction with the neighbors of nodes. The thickness of the 
arrow and the value on the arrow represents the connection link weight.

TABLE 9 Utility matrix between trustee and investor.

(a) Trustee vs. central 

investor

R NR

I ( ) ( )1 , 1C C C CT rgT gT r T rgλ− + − + 1 ,C CT gT−

NI 1, 0 1, 0

(b) Trustee vs. 

peripheral investor
R NR

I ( ) ( )1 , 1P P P PT rgT gT r T rgλ− + − + 1 ,P PT gT−

NI 1, 0 1, 0
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5. Conclusion and discussion

Humans have a strong capacity to cooperate with genetically 
unrelated individuals. Yet because cooperation is exploitable by free-
riding, when and how large-scale cooperation emerges and spreads 
through human social networks remains puzzling from both 
evolutionary and societal perspectives.

The effect of the heterogeneous network on group cooperation 
has always been a hot issue in related fields. Considering oxytocin 
is believed to be a neuropeptide with positive effects on prosocial 
behavior (e.g., positive effects on trust), the recent research 
conducted oxytocin-modulated network game experiments, 
including: the ultimatum game, the two-stage prisoner’s dilemma 
game (with the costly punishment stage), and the trust game in 
heterogeneous networks, respectively, and found that the 
administration of oxytocin (vs. matching placebo) to central 
individuals can increase the level of cooperation and fairness in 
the whole network significantly. Here, in order to further explore 
the intrinsic mechanism of this experimental phenomenon, 
we analyzed the evolution process of three game experiments in 
heterogeneous networks by constructing evolutionary game 
dynamics, respectively.

Based on the experimental data, the parameter estimation on the 
analytical results of the evolutionary game models shows that oxytocin 
can significantly enhance the prosocial preferences of the central 
subjects in all three games. In the UG and tPDG models, the altruistic 
punishment caused by inequality aversion is amplified and diffused 
through the heterogeneous network structure, thereby promoting 
cooperation and fairness in the overall network.

However, no cascading effects of oxytocin-induced prosocial 
behavior were observed in repeated rounds of TG experiments that 
did not involve inequality aversion (38). Oxytocin can significantly 
increase the investment (trust level) of investors, which is equivalent 
to a reward for the trustee (the incentive effect of reward is far weaker 
than punishment). However, the investor may lack a mechanism for 
punishment, and the trustee is not threatened with punishment and 
thus will not increase his/her return. In our model, we find that the 
trustee’s return ratio r  is not affected by the investor’s investment T
, which can effectively explain the experimental results. Therefore, 
we can conclude that the rewarding effect of trust is not sufficient to 
generate prosocial utility and that the costly punishment caused by 
inequality aversion is more effective in promoting the level of fairness 
and cooperation in the social network. These results confirm our 
hypothesis and may also explain existing network-free findings on 
punishment and reward (46, 59).

Our study opens an avenue to uncover general oxytocin-initiated 
mechanisms underpinning fairness and cooperation in human society 
through building evolutionary game models. Our evolutionary game 
model is a network variant of the replicator dynamics. Replicator 
dynamics have been widely used to study the evolution of cooperation 
and fairness in social networks (17, 60–62). One implicit assumption 
of the replicator dynamics is that imitation only occurs among 
individuals of the same type. While in the game experiments (38), 
subjects were also informed of the choices and payoffs of other types 
of subjects. Thus, they may not make decisions based on local 
imitation. However, it is worth noting that the goal of our study is not 
to exactly reproduce individual behaviors in the game experiments, 
but rather to show that the results observed in the experiments can 

be  achieved and are evolutionarily stable in simple evolutionary 
game models.

In addition, our study provides an effective means to quantitively 
estimate the effect of oxytocin on inequality aversion and trust based 
on the experimental data. Thus, a possible direction for future research 
is to design experiments with different quantities of oxytocin, and 
we believe that our method can contribute to measuring how the 
quantity of oxytocin affects different social preferences. In short, our 
study and its future extension provide a new perspective for 
understanding the relationship between neuropeptides and 
prosocial behaviors.
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