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Sexually dimorphic role for insular
perineuronal nets in
aversion-resistant alcohol
consumption
Luana Martins de Carvalho†, Hu Chen, Mason Sutter and
Amy W. Lasek*†

Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago,
Chicago, IL, United States

Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD)

that is particularly resistant to treatment. An understanding of the biological

factors that underly compulsive drinking will allow for the development of

new therapeutic targets for AUD. One animal model of compulsive alcohol

drinking involves the addition of bitter-tasting quinine to an ethanol solution

and measuring the willingness of the animal to consume ethanol despite the

aversive taste. Previous studies have demonstrated that this type of aversion-

resistant drinking is modulated in the insular cortex of male mice by specialized

condensed extracellular matrix known as perineuronal nets (PNNs), which

form a lattice-like structure around parvalbumin-expressing neurons in the

cortex. Several laboratories have shown that female mice exhibit higher levels

of aversion-resistant ethanol intake, but the role of PNNs in females in this

behavior has not been examined. Here we compared PNNs in the insula of

male and female mice and determined if disrupting PNNs in female mice

would alter aversion-resistant ethanol intake. PNNs were visualized in the

insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and

disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that

digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice

were tested for aversion-resistant ethanol consumption by the addition of

sequentially increasing concentrations of quinine to the ethanol in a two-bottle

choice drinking in the dark procedure. PNN staining intensity was higher in

the insula of female compared to male mice, suggesting that PNNs in females

might contribute to elevated aversion-resistant drinking. However, disruption of

PNNs had limited effect on aversion-resistant drinking in females. In addition,

activation of the insula during aversion-resistant drinking, as measured by c-fos

immunohistochemistry, was lower in female mice than in males. Taken together,

these results suggest that neural mechanisms underlying aversion-resistant

ethanol consumption differ in males and females.
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1. Introduction

Alcohol use disorder (AUD) is characterized by the inability
to stop or limit alcohol use despite adverse effects on one’s health,
relationships, and occupation. Although more men than women
have historically been diagnosed with AUD, the prevalence of
this disorder in women has increased in recent decades. From
2002 to 2012, AUD diagnosis in women increased by 83.7% (1).
Socioeconomic factors can account for some of this increase,
but biological factors also play a role in the initiation of alcohol
use and progression to AUD (2). Clinical and preclinical studies
have demonstrated sex differences during different stages of the
addiction cycle (3) and suggest that hormonal and genetic factors
are involved in sex differences in addiction (4). It is necessary to
understand the biological factors that contribute to sex differences
in alcohol consumption to develop new treatments that will be
effective in reducing alcohol drinking in both men and women.

A key characteristic of AUD is compulsive alcohol use, an
inflexible behavior that can persist despite negative consequences
(5). This aversion-resistant phenotype is modeled in animals
by pairing alcohol delivery with a foot shock or by adding
bitter-tasting quinine to the ethanol solution. Animals that are
willing to consume alcohol despite the threat of punishment
(pain or bitter taste) are considered to exhibit compulsive-like
behavior (6). Several studies have shown that female rats and mice
exhibit higher levels of aversion-resistant alcohol consumption
and alcohol seeking behavior than males (7–11). In terms of
pharmacological targets for reducing aversion-resistant ethanol
consumption, inhibition of orexin-1 receptor (12), diacylglycerol
lipase (13), hyperpolarization-active NMDA receptors (14–16),
and alpha-1 noradrenergic receptors (17) can reduce consumption
of quinine-adulterated ethanol. However, except for studies
examining inhibition of orexin-1 receptor (18), these experiments
were conducted in male animals only. Thus, there is a great need to
identify whether mechanisms that drive compulsive-like drinking
in male rodents are also operational in females.

One brain region involved in compulsive alcohol drinking is the
insular cortex (14, 17, 19–23). The insula is a sensory processing
area that regulates decision-making, emotion, motivation, and
aversion. It integrates information about body states and processes
this information to influence emotions and behavior (24).
A functional magnetic resonance imaging (fMRI) study in human
heavy drinkers demonstrated that the anterior insula was activated
when individuals viewed alcohol cues associated with the threat
of electric shock (21). In addition, greater connectivity between
the anterior insula and nucleus accumbens was observed in
heavy vs. light drinkers, which was significantly associated with
measures of compulsive alcohol use (21). Similar findings have been
observed in rats, demonstrating that projections from the anterior
insula to either the nucleus accumbens or brainstem promote
aversion-resistant ethanol intake (14, 17). We previously found
that disrupting specialized extracellular matrix structures, known as
perineuronal nets (PNNs), that surround parvalbumin-expressing
interneurons in the insula can render male mice more sensitive to
ethanol adulterated with quinine (20), suggesting a role for insular
PNNs in maintaining aversion-resistant drinking. It remains to be
determined whether manipulating PNNs in female mice has the
same effect as in males.

Sex differences in the density and intensity of PNNs have been
described in the mammalian basolateral and medial amygdala (25,
26), with male rodents having increased numbers and/or intensity
of PNNs in these brain regions. Similarly, juvenile male rats had
more PNNs in the CA1 region of the hippocampus compared with
juvenile females (27). However, PNNs have not been compared
between males and females in the insular cortex. Given that PNNs
in male mice regulate aversion-resistant ethanol consumption, that
there are sex differences in PNNs, and that female mice exhibit
higher levels of aversion-resistant ethanol consumption than males,
we hypothesized that there would be sex differences in PNN
structure in the insula that could account for increased aversion-
resistant ethanol consumption in female mice. Specifically, we
hypothesized that there would be increased PNNs intensity in
the insula of female mice and decreased activation of the insula,
as measured by c-fos immunohistochemistry (IHC) in females
during drinking of quinine-adulterated ethanol. Consistent with
our hypothesis, we found increased PNN intensity and decreased
c-fos levels during aversion-resistant drinking in the insula of
female mice compared to males. However, in contrast to males,
disrupting PNNs in the insula of female mice did not affect
aversion-resistant ethanol consumption. Together, these results
indicate that sex-specific mechanisms regulate aversion-resistant
ethanol consumption in male and female mice.

2. Materials and methods

2.1. Animals

Adult male and female C57BL/6J mice at the age of 8 weeks
were purchased from the Jackson Laboratory (Bar Harbor, ME,
USA). All mice were individually housed in a temperature- and
humidity-controlled room with a 12-h reversed light/dark cycle
(lights off at 10 a.m.) for 2 weeks prior to beginning experiments
and tested for alcohol drinking behavior from 10 to 13 weeks of age.
Food and water were available ad libitum. Mice were fed Teklad
7912 diet (Envigo, Indianapolis, IN, USA). All procedures with
mice were conducted according to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and approved by
the UIC Animal Care and Use Committee.

2.2. Ethanol drinking procedures

Mice were tested for consumption of quinine-adulterated
ethanol in a modified drinking in the dark (DID) test. Mice received
a two-bottle choice between water and 15% ethanol, 3 h into the
dark cycle, for 4 h per day over the course of 5 consecutive days.
Water and ethanol solutions were provided to mice in 10 ml clear
polystyrene serological pipets truncated at the end to accommodate
connection to a 2.5-inch stainless steel ball-bearing sipper tube
(Ancare Corp., Bellmore, NY, USA). On the first day, mice had
access to ethanol without quinine. Over the next 4 days, quinine
was added in increasing concentrations each day (50, 100, 250, and
500 µM, respectively) to the ethanol solution. Tube placements
were alternated daily to avoid the confound of preference for a
particular side. Ethanol consumption was calculated as g ethanol
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per kg of body weight in 4 h, and % preference for the ethanol
solution was calculated as volume of ethanol consumed divided
by total fluid consumed × 100. To test consumption of a quinine
solution without ethanol, a separate group of mice were presented
with a two-bottle choice of water or water plus quinine in the
dark cycle for 4 h per day over 5 days. On the first day, both
bottles contained water, then over the next 4 consecutive days one
bottle of water had quinine added in increasing concentrations
daily as described above. Quinine consumption was calculated as
ml quinine solution per kg body weight over 4 h and % preference
was calculated as volume of quinine solution divided by total fluid
consumed × 100.

2.3. PNN labeling and
immunohistochemistry

Mice were euthanized during the dark cycle with a lethal dose
of a commercial euthanasia solution containing pentobarbital and
then transcardially perfused with ice-cold PBS followed by 4%
paraformaldehyde. Brains were post-fixed in 4% paraformaldehyde
overnight and cryoprotected in 30% sucrose for 48 h. Every
fourth section of 50 µm serial coronal sections were collected
from the area of the brain containing the insula, spanning 1–
2 mm anterior to bregma. Free-floating sections were treated
twice with 50% ethanol and then treated with 1% hydrogen
peroxide. Sections were blocked in carbo-free blocking solution
(Vector Laboratories, Burlingame, CA, USA), and then incubated
with biotinylated Wisteria floribunda agglutinin (WFA, Vector
Laboratories, 1:1,000) to label PNNs, followed by Dylight 488-
conjugated streptavidin secondary antibody (Vector Laboratories).
Subsequently, the sections were washed with PBS and blocked with
normal donkey serum (Jackson Immunoresearch, West Grove,
PA, USA) and then incubated with mouse anti-parvalbumin (PV,
#195011, Synaptic Systems, Göttingen, Germany, 1:1,000), followed
by Alexa Flour 594-conjugated secondary antibody (#711-585-
150, Jackson Immunoresearch, 1:4,000). Fluorescent sections were
mounted on slides with Fluoromount-G from SouthernBiotech
(Birmingham, AL, USA). For c-fos IHC, 40 µm serial coronal
sections were treated with 1% hydrogen peroxide for 10 min and
blocked with 5% goat serum plus 0.25% Triton X-100 for 1 h at
room temperature, then incubated with rabbit-anti mouse c-fos
antibody (Synaptic Systems, #226008, 1:1,000) in blocking solution
overnight at 4◦C. Then sections were incubated with biotinylated
goat anti-rabbit IgG (Vector Laboratories, #PK4001, 1:500). DAB
signal was developed by VECTASTAIN R© ABC-HRP Kit and DAB
Substrate Kit (Vector Laboratories, #PK4001 and SK4100).

2.4. Image acquisition and analysis

Fluorescent images were captured using an Olympus
BX51/IX70 fluorescent microscope (Olympus, USA) with a
10× objective. The same exposure time for each fluorescent
channel (WFA, 22.2 ms; PV, 83.3 ms) was used for all images so
that we could quantify the intensity of staining across images. Cell
counts and fluorescence intensity were measured using the ImageJ
macro plug-in Pipsqueak AI (Rewire Neuro, Portland, OR, USA)

(28). Pipsqueak AI was run in “semi-automatic mode” to select
ROIs to identify individual PV+ cells and PNNs. Double-labeled
neurons were considered when WFA was located around the
perimeter of the PV + staining inside the cell. For reporting PNN
and PV intensity, each data point represents the fluorescent WFA
or PV intensity in a single section, obtained by calculating the
average fluorescent intensity of ∼100 individual cells per section.
WFA and PV intensity and cell counts were obtained from 4
mice per sex, with 4 sections (females) and 2–4 sections (males)
per mouse, giving an n of 16 for females and 13 for males. For
categorizing PNNs and PV neurons into low, medium, and high
intensity, quartiles were used as the cutoff based on the intensity of
PNNs or PV in female mice. Low intensity PNNs or PV neurons
were below the 25th percentile (PNNs <5.23 and PV <2.26 raw
intensity units), medium intensity PNNs or PV neurons were
between the 25th and 75th percentile (PNNs = 5.23–6.65 and
PV = 2.26–3.36 raw intensity units) and high intensity PNNs or
PV neurons were in the 75th percentile (PNNs >6.65 and PV
>3.36 raw intensity units). For imaging c-fos IHC, brightfield
images were taken with a 20× objective using a Zeiss AxioScope
A1 microscope and analyzed using ImageJ. Each data point is
the average number of c-fos counts per mouse, with 4 sections
analyzed per mouse and 6 mice per sex.

2.5. Stereotaxic surgery and intra-cranial
injections

For injection of chondroitinase ABC (ChABC), C57BL/6J
mice at the age of 8–12 weeks were anesthetized with ketamine
[100 mg/kg, intraperitoneal (i.p.)] and xylazine (10 mg/kg, i.p.)
and placed into a digital stereotaxic apparatus. A 1 cm incision
was made in the scalp and 0.28 mm diameter holes were drilled
bilaterally in the skull. ChABC (0.5 µl of a 50 U/ml solution in
PBS, Millipore Sigma, St. Louis, MO, USA) or PBS was infused at
a rate of 0.2 µl per min into the anterior insular cortex (1.5 mm
anterior to bregma, 2.9 mm from the midline, and 2.6 mm ventral
from the top of the skull) using 33-gauge stainless steel hypodermic
tubing connected to a 1 µl gastight Hamilton syringe with PE20
tubing and an infusion pump. Mice were given a subcutaneous
injection of meloxicam (2 mg/kg) for analgesia immediately after
the completion of the surgery. Mice recovered for 3 days prior to
testing ethanol consumption. After the completion of behavioral
testing, WFA staining was performed on insula sections from
each mouse spanning 1–2 mm anterior to bregma to confirm that
ChABC disrupted PNNs in the anterior insula.

2.6. Experimental design and statistical
analysis

Data are presented as the mean ± SEM. Statistical analyses
were performed using Prism software (version 9.1, GraphPad, San
Diego, CA, USA). Two-way repeated measures (RM) ANOVAs
were performed for the results presented in Figure 1 (with sex
as the between-subject factor and quinine concentration as the
within-subject factor). For Figure 2, an unpaired Student’s t-test
was used with sex as the between-subject factor (Figures 2G, I, J, L)
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and a Chi-squared test was performed to evaluate the distribution
between sexes (Figures 2H, K). Three-way RM ANOVAs were
performed for the results presented in Figure 3 with sex and
treatment as between-subject factors and quinine concentration
as the within-subject factor. These were followed by two-way RM
ANOVAs within each sex with quinine concentration as the within-
subject and treatment as the between-subject factor. Bonferroni’s
multiple comparisons tests were done if there was a significant
quinine concentration by treatment interaction. The number of
mice in each group is indicated in the figure legend for each figure.
For the c-fos IHC in Figure 4, data was analyzed by two-way
ANOVA with sex and region as between-subject factors.

3. Results

3.1. Sex differences in aversion-resistant
ethanol consumption

Previous reports indicated that female mice exhibit greater
aversion-resistant ethanol consumption than males when tested
for quinine-adulterated ethanol drinking (7, 10). To confirm these
results, we performed a modified two-bottle choice DID procedure
in which quinine was added to the ethanol solution consecutively
each day in sequentially increasing concentrations (Figure 1A;
50, 100, 250, and 500 µM quinine). We observed significant sex
differences in both ethanol consumption and preference, with
male mice reducing ethanol intake and preference as the quinine
concentration increased, whereas females did not significantly alter
their ethanol consumption or preference at any of the tested
quinine concentrations (Figure 1B, ethanol consumption: sex,
F(1,21) = 15.16, P = 0.0008; quinine concentration, F(4,84) = 3.97,
P = 0.0054; Figure 1C, ethanol preference: sex, F(1,21) = 6.66,
P = 0.017; quinine concentration, F(4,84) = 11.32, P < 0.0001).
There was also a significant interaction between sex and quinine
concentration for ethanol preference (F(4,84) = 3.63, P = 0.0089;
post-hoc Bonferroni’s multiple comparisons test, P = 0.0071 and
P = 0.013 when comparing males and females at 250 and 500 µM
quinine, respectively). These results confirm that female mice
demonstrate higher levels of aversion-resistant ethanol drinking.

To determine if female mice are simply less sensitive than
males to the bitter taste of quinine, we tested them in a
modified two-bottle choice DID procedure with quinine added
to water (Figure 1D). Both sexes similarly decreased their
consumption and preference for the quinine-adulterated water
as the quinine concentration increased (Figure 1E, consumption:
quinine concentration, F(4,56) = 27.94, P < 0.0001; Figure 1F,
preference: quinine concentration, F(4,56) = 17.46, P < 0.0001).
There were no significant effects of sex on water consumption
or preference, although there was a sex by quinine concentration
interaction for water consumption on the first day, which was due
to females drinking more water relative to body weight than males
(F(4,56) = 3.32, P = 0.017; post-hoc test comparing males to females
at 0 µM quinine, P = 0.002). Thus, male and female mice appear
to be equally sensitive to the taste of quinine, indicating that the
increased aversion-resistant ethanol drinking by female mice is not
simply due to deficient bitter taste perception.

FIGURE 1

Sex differences in aversion-resistant ethanol consumption.
(A) Experimental design for measuring aversion-resistant ethanol
consumption. Mice (n = 11 males and 12 females) were given a
two-bottle choice (2BC) ethanol drinking in the dark test with 15%
ethanol (E) and water (W) on the first day. Each day, the quinine (Q)
concentration was increased in the ethanol from 50 to 500 µM
(EQ50, EQ100, EQ250, and EQ500). (B) Daily ethanol consumed in
g per kg body weight over 4 h. ***P < 0.001, effect of sex by
two-way RM ANOVA. (C) Daily ethanol preference, expressed as
ethanol consumed divided by total fluid consumed × 100.
**P < 0.01 and *P < 0.05 when comparing females to males at
EQ250 and EQ500, respectively, by Bonferroni’s post-hoc multiple
comparisons testing. (D) Experimental setup for measuring quinine
consumption. Mice (n = 8 males and 8 females) underwent 2BC in
the dark on the first day with water only and then with quinine
doses increasing daily from 50 to 500 µM (Q50, Q100, Q250, and
Q500). (E) Daily quinine consumed in ml quinine per kg body
weight over 4 h. **P < 0.01 when comparing females to males in
water consumption by Bonferroni’s post-hoc multiple comparisons
testing. (F) Daily quinine preference, expressed as quinine
consumed divided by total fluid consumed × 100.

3.2. Sex differences in PNN intensity in
the anterior insula

We previously demonstrated a role for PNNs in the insular
cortex of mice in modulating aversion-resistant ethanol drinking
(20). One possible reason for greater aversion-resistant ethanol
consumption in females could be due to altered PNN structure
in the insula. To test this, we fluorescently labeled PNNs using
WFA in the insula of mice that were euthanized during the
dark phase because this is when we found sex differences in
aversion-resistant drinking and PNN intensity has been shown
to vary throughout the diurnal cycle (29, 30). The mean WFA
fluorescence intensity around individual neurons was greater in
females than in males (Figure 2G; t27 = 3.26, P = 0.003; female
mean: 5.84 ± 0.14, male mean: 5.20 ± 0.13), which was primarily
seen in cortical layers 2/3 (Figures 2A–F). Additionally, when
PNNs were categorized as high, medium, or low intensity, only
3% of the PNNs in males were high intensity compared to 25%
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FIGURE 2

Sex differences in perineuronal net (PNN) intensity in the anterior insula. (A–F) Representative images of male (top panels) and female (bottom
panels) insula sections that were fluorescently labeled with Wisteria floribunda agglutinin (WFA, in green), which binds to PNNs, and parvalbumin (PV,
in magenta). Scale bar, 200 µm. Cortical layers are indicated at the bottom of the images. Quantified WFA (G) and PV (J) fluorescence intensity. Each
data point represents the average intensity surrounding neurons in a single section, with ∼100 cells per section analyzed in 2–4 sections per mouse
from 4 mice per sex. **P < 0.01. Percentage of neurons with low, medium, and high intensity PNNs (H) and PV staining (K). There was a significant
sex difference in PNN intensity, with females having more high intensity and less low intensity PNNs than males, X2 = 9.77 × 10-37. Average number
of PNNs (I) and PV (L) neurons per section in males and females.

in females, while 50% of PNNs in males were categorized as low
intensity compared to 25% in females (Figure 2H, χ2 = 22.71,
P < 0.0001). No significant difference was found between males
and females in the number of neurons surrounded by PNNs,
although there was a trend toward an increase in females
(Figure 2I, t27 = 1.97, P = 0.058; female mean: 99.88 ± 2.29, male
mean: 92.38 ± 3.12). There were no significant sex differences
in the intensity of PV immunofluorescence or number of PV-
immunoreactive neurons (Figures 2J–L). Consistent with the
WFA fluorescence staining, we also found by Western blotting
increased levels in the insula of females of the chondroitin
sulfate proteoglycans aggrecan and brevican that are components
of PNNs (Supplementary Figure 1). Together, these results
suggest that females have innately higher PNN deposition around
insular neurons than males during the dark phase of the diurnal
cycle.

3.3. Disrupting PNNs in male mice
increases sensitivity to
quinine-adulterated ethanol

To determine if disrupting PNNs in female mice alters
aversion-resistant ethanol drinking, we injected ChABC, a bacterial
enzyme that digests chondroitin sulfate glycosaminoglycans, into
the anterior insula and compared the results to males injected
intra-insula with ChABC (Figures 3A, B). Mice were tested
3 days after injection for consumption and preference of quinine-
adulterated ethanol as described above (Figure 3C). A three-
way RM ANOVA indicated significant main effects of treatment
(F(1,60) = 5.29, P = 0.025), quinine concentration (F(4,240) = 34.17,
P < 0.0001) and sex (F(1,60) = 120.9, P < 0.0001) on ethanol
consumption (Figure 3D). Similar results were found for ethanol
preference (Figure 3E, treatment, F(1,60) = 5.74, P = 0.0197; quinine
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FIGURE 3

Disrupting PNNs only in male mice increases sensitivity to quinine-adulterated ethanol. (A) Illustration of mouse brain coronal section indicating
sites of chondroitinase ABC (ChABC) or PBS injection into the anterior insula. Brown oval shows approximate spread of ChABC, as determined by
reduced fluorescent WFA staining. (B) Representative images of fluorescent WFA staining in male (M, left panels) and female (F, right panel) mice
3 days after PBS (top panels) or ChABC injections into the insula. Scale bar, 200 µm. (C) Experimental design. Mice were injected with ChABC (n = 16
males and 16 females) or PBS (n = 16 males and 16 females) in the insula and recovered from surgery for 3 days, followed by two-bottle choice
(2BC) ethanol drinking in the dark. Quinine was added in increasing concentrations from 50 to 500 µM each day to the ethanol (EQ50, EQ100,
EQ250, and EQ500). (D) Daily ethanol consumed in g per kg body weight in 4 h. (E) Daily ethanol preference, expressed as ethanol consumed
divided by total fluid consumed × 100. ****P < 0.0001, main effect of sex by three-way ANOVA; ***P < 0.001, main effect of ChABC in males by
two-way ANOVA; *P < 0.05, PBS vs. ChABC in females at 500 µM quinine.

FIGURE 4

Sex differences in insula activation during consumption of quinine-adulterated ethanol. (A) Representative images of c-fos immunohistochemistry in
the granular layer of the insula of male and female mice after drinking ethanol with 250 µM quinine. Cortical layers are indicated at the bottom.
Scale bars, 100 µm. (B) Quantification of c-fos immunohistochemistry (n = 6 males and 6 females) in the granular and agranular layers of the insula
of mice after drinking ethanol with 250 µM quinine. **P < 0.05, effect of sex in granular layer 2/3 by Bonferroni’s multiple comparisons test after
two-way ANOVA.

concentration, F(4,240) = 46.2, P < 0.0001; sex, F(1,60) = 36.45,
P < 0.0001; treatment by quinine concentration by sex interaction,
F(4,240) = 2.54, P = 0.041). Since we observed sex differences
in ethanol drinking, we next performed focused two-way RM
ANOVAs within each sex to determine if ChABC treatment
significantly altered ethanol consumption and preference. In
males, ChABC treatment resulted in reduced ethanol intake
and preference when compared to the PBS control (ethanol
consumption: treatment, F(1,30) = 5.81, P = 0.022; quinine
concentration, F(4,120) = 25.66, P < 0.0001; ethanol preference:

treatment, F(1,30) = 5.78, P = 0.023; quinine concentration,
F(4,120) = 23.97, P < 0.0001), whereas in females, ChABC had
no significant effect on ethanol consumption and only reduced
ethanol preference at 500 µM quinine when compared to the
PBS control (ethanol consumption: treatment, F(1,30) = 0.43,
P = 0.52; quinine concentration, F(4,120) = 12.38, P < 0.0001;
interaction, F(4,120) = 1.05, P = 0.39; ethanol preference: treatment,
F(1,30) = 0.52, P = 0.48; quinine concentration, F(4,120) = 24.67,
P < 0.0001; interaction, F(4,120) = 2.96, P = 0.023, post-hoc
Bonferroni’s, PBS vs. ChABC at 500 µM quinine, P = 0.015). These
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results show that digesting chondroitin sulfate glycosaminoglycans
and thus disrupting PNNs in the insula of male mice renders
them sensitive to quinine-adulterated ethanol, while the same
manipulation in the insula of female mice alters their sensitivity
to quinine-adulterated ethanol only at a very high quinine
concentration.

3.4. Sex differences in insula activation
during consumption of
quinine-adulterated ethanol

Excitatory neurons in the insula are activated during drinking
of ethanol containing quinine (20). To determine if the extent
of insular neuron activation differs by sex, we measured c-fos
expression by IHC in male and female mice after an ethanol plus
quinine drinking session. c-fos expression was higher in granular
layers 2/3 compared to granular layer 5 and agranular regions of
the insula in both sexes. In addition, c-fos expression was elevated
in males compared to females (Figure 4; region, F(2,30) = 24.84,
P < 0.0001; sex, F(1,30) = 8.69, P = 0.0061; post-hoc Bonferroni,
P = 0.0064 when comparing males and females within granular
layers 2/3). These results suggest greater activation of the insula
of male mice compared to female mice during quinine-adulterated
ethanol drinking.

4. Discussion

This study confirms previous observations that female mice are
more resistant than males to the suppressive effects of quinine on
ethanol consumption and provides new evidence that mechanisms
regulating aversion-resistant ethanol consumption differ in male
and female mice. We previously demonstrated that disrupting
PNNs by injecting ChABC into the insula of male mice decreased
aversion-resistant ethanol consumption. We show here that females
have a higher intensity of PNN staining in the insula, suggesting
that this might be a factor that contributes to increased aversion-
resistant drinking in females. However, disrupting PNNs in females
did not result in reduced intake of quinine-adulterated ethanol as
it did in males.

The observation that female mice are less sensitive to the
addition of quinine to ethanol than male mice is consistent with
other studies. For example, Fulenwider et al. found that ethanol
consumption was suppressed in male mice when 30, 100, and
300 µM quinine was added to the ethanol, but 300 µM quinine
was required to suppress ethanol intake by females (7). Sneddon
et al. showed that female mice self-administered more ethanol in
an operant procedure and were able to tolerate higher quinine
concentrations in the ethanol solution than males (10). However,
others have reported no sex differences in quinine-adulterated
ethanol intake, but testing was done after a few weeks of pre-
exposure to ethanol in limited-access procedures (31, 32), which
has been shown to induce aversion-resistant ethanol intake and
increased insular PNN intensity (33) in male mice (34). Thus,
innate sex differences in aversion-resistant ethanol consumption
may disappear after repeated bouts of ethanol drinking but this
could depend on the exposure method. We found that males

and females were equally sensitive to the suppressive effect of
quinine on water intake, indicating that differences in bitter taste
perception are not the cause of increased aversion-resistant ethanol
drinking in female mice.

We initially hypothesized that sex differences in PNNs in the
insula might be driving the higher levels of aversion-resistant
ethanol drinking in female mice. We found that female mice had
more PNN deposition around neurons and increased aggrecan and
brevican protein levels in the insula. Several groups have examined
PNNs in different brain regions of male and female rats and mice.
The number of PNNs in the cornu Ammonis-1 (CA1) region of
the rat hippocampus was higher in juvenile males than females, but
no significant sex differences were observed in the CA3 region or
neocortex, and the sex differences in CA1 PNNs were no longer
apparent in adult rats (27). Similarly, in adult rats and mice, no sex
differences in PNNs in the prefrontal cortex (PFC) were observed
under standard housing and rearing conditions (35–37). In the
basolateral amygdala (BLA), juvenile male rats had more cells
surrounded by PNNs in the left BLA and a greater percentage of PV
cells with PNNs in the right BLA than females (26). The intensity of
PNN staining was also higher in the medial amygdala and medial
tuberal nucleus of adult male compared to female mice (25). These
results are the opposite of what we observed in the insula, in which
females had increased PNN staining. This discrepancy could be due
to differences in the brain region examined.

To add another layer of complexity, recent reports have shown
that PNNs are regulated by hormones in female rats and mice (38,
39). For example, in the CA1 region of the mouse hippocampus, PV
neurons express aromatase, the enzyme that converts testosterone
to estradiol (39). Treatment with letrozole, an aromatase inhibitor,
increased WFA staining intensity in females, but not in males
(39), suggesting that local hippocampal 17β-estradiol production in
females reduces PNN intensity. In addition, ventral dentate gyrus
PNNs change throughout the estrous cycle in mice, with more PV
cells enveloped by PNNs during estrus than diestrus, indicating
that ovarian hormones modulate PNNs (40). Interestingly, estrous
cycle phase had no effect on ventral hippocampal CA1 PNNs (40).
Together, these results indicate that hormones can regulate the
number of cells or intensity of PNN staining in the hippocampus.
It will be important in future studies to determine whether the sex
differences in PNNs in the insula are due to hormonal (such as
gonadal or brain-derived 17β-estradiol) or chromosomal factors.

Sex differences in the intensity of PNN staining might also
be affected by the timing of brain tissue collection. We examined
PNNs during the dark phase of the diurnal cycle, whereas the
aforementioned studies measured PNNs during the light phase.
The intensity of PNN staining by WFA has been reported to
fluctuate throughout the diurnal cycle (29, 30). PNN staining was
higher in the medial PFC of rats (29) and the PFC, hippocampus,
amygdala, and other brain regions in mice (30) during the dark
phase, when rodents are more active. We have not directly
compared PNNs between light and dark phases but we have
observed that there is no longer a sex difference in PNNs in the
insula when mice are euthanized during the light phase of the cycle
(data not shown). However, it is important to note that our alcohol
drinking experiments were done in the dark so we collected tissue
for PNNs analysis in the dark phase.

To our surprise, injection of ChABC into the insula of female
mice had no effect on aversion-resistant ethanol consumption.
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A caveat of the use of ChABC is that it does not selectively disrupt
PNNs and will remove all chondroitin sulfate glycosaminoglycan
modifications on extracellular matrix proteins. Nonetheless,
disruption of PNNs in the insula did not decrease aversion-
resistant drinking in females as it did in males. One possibility
is that this behavior may be differentially encoded anatomically
in female brain. We injected ChABC into the anterior insula, but
other insular subregions are involved in processing of negative
information (41). The posterior insula plays a role in processing
aversive states (42) and sex differences in posterior insula cortex
connectivity with the bed nucleus of the stria terminalis (BNST)
have been observed in mice (43) and humans (44). In addition,
sexually dimorphic effects of ethanol on the posterior insula to
BNST circuit have also been described (43). The PFC is another
possibility, since a PFC to nucleus accumbens circuit promotes
aversion-resistant ethanol intake in rats (14). Finally, other brain
regions involved in aversion should be considered, such as the
habenula and rostral medial tegmental area (45).

The other explanation for the lack of effect of intra-insular
ChABC in female mice on aversion-resistant ethanol consumption
could be due to hormonal influences on PV interneurons. 17β-
estradiol increases the excitability of cortical PV interneurons in
rats through actions at estrogen receptor β in PV neurons (46).
In the rat agranular insula, approximately 32% of all PV+ neurons
express estrogen receptor β (47). In addition, as mentioned above,
in the mouse hippocampus, PV interneurons express aromatase,
and blocking aromatase activity in females increased the intensity
of PNNs surrounding PV interneurons and increased inhibitory
neurotransmission onto CA1 pyramidal neurons (39). ChABC
injection into the hippocampus of female mice did not affect
inhibitory neurotransmission onto CA1 pyramidal cells, but was
able to block the effect of an aromatase inhibitor on inhibitory
currents, suggesting that when local 17β-estradiol synthesis is
intact, disruption of PNNs does not alter inhibitory activity in
the female hippocampus (39). We hypothesize that estrogen in
female insula could mask the effects of PNN removal on PV
interneuron excitability and thus behavioral output. The increase
in PNN staining intensity in female mouse insula might be a
consequence of higher estrogen levels than in males, but this
remains to be determined.

These findings may also be consistent with our c-fos results. We
found that induction of c-fos expression in the insula was reduced
in females compared to males during quinine-adulterated ethanol
consumption, and we previously demonstrated that c-fos is induced
almost exclusively in excitatory neurons in the insula during this
behavior (20). If females have increased activity of insular PV
interneurons, one might expect increased inhibition on pyramidal
cells and reduced c-fos expression during aversion-resistant ethanol
consumption. More experiments are needed to determine if 17β-
estradiol modulation of PV interneurons in the insula is involved
in PNN structure, the regulation of PV and pyramidal neuron
excitability, and aversion-resistant ethanol consumption.

This study demonstrates that the mechanisms contributing
to aversion-resistant ethanol consumption differ between males
and females. When considering potential therapeutic targets to
reduce compulsive alcohol drinking, sex differences need to be
taken into account. Pharmacotherapies that reduce compulsive
alcohol drinking in males may be ineffective in females. A greater
understanding of the biology of sex differences in AUD will help in
determine the most effective therapies for both sexes.
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