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Introduction: Perinatal women tend to have difficulties with sleep along with 
autonomic characteristics. This study aimed to identify a machine learning 
algorithm capable of achieving high accuracy in predicting sleep–wake conditions 
and differentiating between the wake conditions before and after sleep during 
pregnancy based on heart rate variability (HRV).

Methods: Nine HRV indicators (features) and sleep–wake conditions of 154 pregnant 
women were measured for 1 week, from the 23rd to the 32nd weeks of pregnancy. 
Ten machine learning and three deep learning methods were applied to predict three 
types of sleep–wake conditions (wake, shallow sleep, and deep sleep). In addition, 
the prediction of four conditions, in which the wake conditions before and after 
sleep were differentiated—shallow sleep, deep sleep, and the two types of wake 
conditions—was also tested.
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Results and Discussion: In the test for predicting three types of sleep–wake 
conditions, most of the algorithms, except for Naïve Bayes, showed higher areas 
under the curve (AUCs; 0.82–0.88) and accuracy (0.78–0.81). The test using four 
types of sleep–wake conditions with differentiation between the wake conditions 
before and after sleep also resulted in successful prediction by the gated recurrent 
unit with the highest AUC (0.86) and accuracy (0.79). Among the nine features, seven 
made major contributions to predicting sleep–wake conditions. Among the seven 
features, “the number of interval differences of successive RR intervals greater than 
50 ms (NN50)” and “the proportion dividing NN50 by the total number of RR intervals 
(pNN50)” were useful to predict sleep–wake conditions unique to pregnancy. These 
findings suggest alterations in the vagal tone system specific to pregnancy.

KEYWORDS

deep learning, heart rate variability, machine learning, pregnant women, sleep 
condition, wake condition

1. Introduction

In recent years, perinatal maternal care has become an 
increasingly important part of public health in society (1). 
Accelerometers have been widely used to ascertain sleep patterns 
through recording movement of the body throughout the night, 
which may be usable to monitor perinatal maternal health. Unlike 
traditional methods such as polysomnography (PSG), accelerometers 
allow estimation of sleep–wake conditions because the body tends to 
remain stationary when falling asleep. The motion amplitude during 
sleep becomes distinctively smaller than that in the waking state (2, 
3). While the accuracy of accelerometer-based evaluations of sleep 
conditions remains limited, and accelerometers have not been listed 
by the American Academy of Sleep Medicine as one of the four types 
of devices that can evaluate sleep (4), numerous studies have 
investigated and summarized the validity of using accelerometers to 
measuring sleep objectively. Research to date has supported to some 
extent the validity of using accelerometers and actigraphy devices 
(e.g., fitbit, Jawbone, MovBand) for measuring sleep outside of the 
laboratory setting (5, 6). Various studies have examined the accuracy 
of such devices in patients with sleep problems and found no 
significant differences in sleep onset latency (SOL), wakefulness after 
sleep onset, and total sleep time between PSG and actigraphy 
measurements in subjects with or without sleep problems (7–10). 
Another study assessing the validity of the MovBand 3 against 
previously validated medical sleep monitors reported that it provided 
a valid and reliable assessment of sleep conditions, including the 
number of awakenings, deep sleep, light sleep, and physical activity 
(4). Therefore, ample evidence has been presented to confirm the 
stability and accuracy of such devices.

Regardless of the abovementioned limitations, accelerometers 
offer a significant advantage in terms of ease of use in daily life. For 
example, the sleep patterns of perinatal women can be monitored 
using accelerometers throughout the pregnancy and postpartum 
periods. Perinatal women tend to have difficulties sleeping. Many 
studies have reported that pregnant women experience significant 
sleep disruption and sleep disorders (11–13), and it is generally known 
that sleep disturbances occur during the third trimester of pregnancy 
(14–16). Sleep disorders can be related to mental health problems 

during the perinatal period, including postpartum depression (PPD) 
(17). Pregnancy is marked by considerable physiological changes and 
a multitude of symptoms, many of which are likely to disrupt sleep. It 
is also accompanied by dramatic hormonal changes, which have a 
significant potential to impact sleep quality (18). Given the impact 
sleep has on physical and mental well-being, assessing sleep quality 
throughout pregnancy is crucial. Therefore, to recognize and evaluate 
the sleep quality of pregnant women and the risk of PPD, it is 
important to gain a better understanding of the characteristics of 
sleep–wake conditions during pregnancy.

There are several types of sleep in a sleep cycle: shallow sleep 
(stages 1 and 2) and deep sleep (stages 3 and 4), which are categorized 
as non-rapid eye movement (NREM) sleep, and rapid eye movement 
(REM) sleep (19–21). In the typical sleep process, the sleep cycle, 
including the wake condition, shallow sleep, deep sleep, and REM, is 
repeated several times during the night, and sometimes, each cycle is 
spanned by short-term wake conditions. There are several types of 
sleep disturbances, including difficulty falling asleep, maintaining 
sleep, and awakening in the early morning. To develop 
countermeasures to sleep problems, it is important to consider the 
sleep cycle and these types of sleep disturbances. Even though 
accelerometers cannot detect REM sleep precisely, they present the 
benefit of allowing us to grasp the overall sleep cycle patterns 
throughout sleep with only limited effort on the part of 
study participants.

It is noteworthy that the arousal levels in wake conditions before 
and after sleep can differ. The arousal level in the wake condition 
before sleep can be related to difficulty falling asleep, and that in the 
wake condition after sleep can be related to sleep quality. Therefore, it 
may be  worthwhile to differentiate between the wake conditions 
before and after sleep.

Heart rate can be  a useful marker for assessing sleep cycles 
because it is known to differ between wake and sleep conditions (22). 
Some investigators have reported correlations between sleep and 
autonomic nervous system (ANS) activity. Various studies have 
indicated that the parasympathetic nervous system (PNS) activity is 
principally influenced by the circadian system, whereas the 
sympathetic nervous system (SNS) activity is principally influenced 
by the sleep system (23). It is generally known that the cardiac PNS is 
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activated during NREM sleep (24–26). In contrast, the cardiac PNS is 
inactivated during REM sleep (27, 28). Heart rate variability (HRV) is 
the physiological phenomenon of variations in the time interval 
between heartbeats. HRV can reflect numerous physiological factors 
and is always used as a measure of ANS activity (29–31). Time domain 
features include the coefficient of variation R-R interval (CVRR), the 
standard deviation of all NN intervals (SDNN), the square root of the 
mean squared differences of successive NN intervals (RMSSD), the 
number of interval differences of successive RR intervals greater than 
50 ms (NN50), and the proportion dividing NN50 by the total number 
of RR intervals (pNN50). Frequency domain features include low 
frequency (LF), high frequency (HF), and the ratio of LF to HF (LF/
HF). Determining the influence of sleep on HRV is of considerable 
interest because of the relevance of sleep stages, HRV, and ANS. Many 
studies have reported a correlation between different sleep conditions 
and HRV. Some investigators (32–34) have used changes in HRV to 
analyze and consider sleep quality, sleep disorders, and mental 
diseases. Prediction of whether someone is asleep or awake based on 
HRV has also been attempted.

HRV may be related to not only the sleep–wake conditions, but 
also the physiological conditions underlying sleep disturbances, which 
are considered to be  related to the dysregulation of the SNS and 
PNS. The perinatal period introduces a myriad of changes, such as 
sleep disturbances characterized by insomnia symptoms and poor 
sleep quality, which are highly prevalent during pregnancy and can 
increase depressive symptomatology and PPD (35). Regarding the 
correlation between the ANS, HRV, and sleep, prior studies have 
investigated whether accounting for sleep disturbances may explain 
some of the heterogeneity in the association between HRV and 
depression (36–39).

Machine learning algorithms are a widely used technology that 
have become one of the core technologies of artificial intelligence and 
data science. Regarding HRV and other types of clinical information, 
many scientists have also used machine learning to establish 
prediction models for different sleep conditions. In addition, several 
studies (40–42) have shown that the k-nearest neighbor (k-NN) can 
be used as a sleep condition classifier for different sleep conditions. 
Some studies (40, 43) have indicated that support vector machine 
(SVM) is an appropriate method for discriminating between the 
different sleep conditions. Various studies (41, 42, 44) have also 
reported that artificial neural network (ANN) is a suitable method for 
distinguishing the different sleep conditions. Other studies (41, 42, 
44–48) have also shown that the random forest (RF) could solve the 
sleep condition recognition problem, which was considered arousal 
and valence prediction based on physiological signals. Some studies 
(49, 50) have confirmed that a deep learning algorithm, long short-
term memory (LSTM), was an useful method for predicting different 
sleep conditions. Mendez (51) set HRV as an important feature and 
carried out a hidden Markov model (HMM) as a classifier. On this 
basis, the HMM was used to classify the different sleep stages (NREM 
and REM). However, since the publication of these previous studies, 
various new machine learning algorithms have been developed, 
including RF, gradient boosting trees, stochastic gradient descents, 
extreme gradient boosting, and ANNs. The application of these 
algorithms may be beneficial, allowing more efficient prediction of 
sleep conditions based on HRV.

This study aimed to indicate the extent to which the sleep–wake 
condition and differentiation between the wake conditions before and 

after sleep could be predicted in pregnant women based on heart rate-
relevant information as indicators of ANS functioning using various 
algorithms, considering the difference in the arousal level during the 
wake conditions before and after sleep. Thirteen methods [k-NN, 
SVM, logistic regression (LR), RF, Naïve Bayes (NB), decision tree 
(DT), gradient boosting tree (GBT), stochastic gradient descent 
(SGD), extreme gradient boosting (XGBoost), ANN, convolutional 
neural network (CNN), LSTM, and gated recurrent unit (GRU)] were 
applied to predict three types of sleep–wake conditions in pregnant 
women (“wake,” “shallow sleep,” and “deep sleep”) followed by 
prediction of four types of sleep–wake conditions (“wake condition 
before sleep,” “wake condition after sleep,” “shallow sleep,” and “deep 
sleep”), and the accuracy of each prediction model was 
subsequently evaluated.

2. Materials and methods

2.1. Participants and procedures

The study participants were recruited from among women 
registered with the Tohoku Medical Megabank Project Birth and 
Three-Generation Cohort Study (TMM BirThree Cohort Study) (52–
54). In the process of following up with the participants after delivery, 
a flyer was presented to notify women about the opportunity to 
participate in the present project after conceiving their next baby. 
From May 2018 to November 2019, 154 pregnant women (mean age, 
32.1 ± 3.2 years) who were measured with an accelerometer for 1 week 
starting from the 23rd to 32nd weeks of pregnancy enrolled and 
completed the project. Among 154 participants, 78 gave birth to a 
baby girl and 76 to a baby boy. Three of the 154 mothers bottle-fed 
their babies with formula milk, 38 combined breastfeeding and bottle 
feeding, and 108 breastfed only. This study was approved by the 
Tohoku University Graduate School of Medicine Ethical Research 
Committee (2021-4-137, 2021-1-266). Written informed consent was 
obtained from all participants.

2.2. Measures

2.2.1. Sleep condition information
Sleep–wake conditions were evaluated based on data obtained 

from a wearable motion sensor installed on Health Care MovBand 3 
Wristbands (WMB-03; Docomo, Tokyo, Japan) (55, 56). Every 5-min 
period during the observation period was classified as the “wake,” 
“shallow sleep,” or “deep sleep” condition based on body motions 
recorded by the device. The conditions of being awake for 30 min 
before sleep and being awake for 30 min after sleep were included in 
the “wake” condition. Although electroencephalographs (EEGs) may 
allow more accurate assessment of sleep–wake conditions, alternative 
methods based on wearable accelerometers are sometimes used to 
measure body motions during sleep because of their applicability to 
monitoring sleep conditions in daily life. Multiple studies have 
confirmed the validity of the accelerometer-based evaluation of sleep–
wake conditions by simultaneous measurement with EEG to predict 
sleep–wake conditions (57, 58). In addition, the validity of the 
MovBand as a wrist-mounted accelerometer was confirmed in a 
previous study (59).
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2.2.2. Heart rate variability
HRV was obtained using a wearable heart rate monitor (MyBeat; 

Union Tool, Tokyo, Japan) attached to the pregnant women’s 
underwear (Toyobo, Osaka, Japan). The validity of the heart rate 
monitoring function of the MyBeat was confirmed in previous studies 
(60, 61). The HRVs (62) measured in the present study were CVRR, 
SDNN, RMSSD, NN50, pNN50, LF, HF, LF/HF, and LF/(LF + HF). 
HRV indicators were calculated for every 5-min segment over 7 days. 
Descriptive HRV information is summarized in 
Supplementary Table S1.

2.3. Statistical analyses

The HRV indicators were calculated separately for each sleep and 
wake pattern. Multiple sets of variables in the present study were 
consistent with homogeneity of variance (Brown-Forsythe test 
p-value < 0.05 and Bartlett’s test p-value < 0.05). Therefore, analysis of 
variance was used to compare multigroup variables, and Tukey’s 
multiple comparisons test was used to compare intergroup variables. 
A p-value < 0.05 was considered significant. Most statistical analyses 
were performed using Prism 8 (GraphPad Software, San Diego, CA) 
(63–65).

2.4. Machine learning and deep learning 
algorithms

Machine learning algorithms (k-NN, SVM, LR, NB, SGD, DT, RF, 
GBT, XGBoost, and ANN) and deep learning algorithms (CNN, 
LSTM, and GRU) (66–91) were applied to predict the different types 
of sleep–wake conditions and to differentiate between the wake 
conditions before and after sleep based on HRV data (78). Descriptions 
of the 10 machine learning algorithms (92) and three deep learning 
algorithms are provided in Supplementary Text 1. For the test set, 
we used the trained models to test and compare their prediction of 
sleep–wake conditions and differentiation between the wake 
conditions before and after sleep with actual data (93, 94). The 
accuracy, precision, sensitivity, specificity, F1 score, and the area under 
the receiver operating characteristic curve (AUC) have been described 
elsewhere (92). Multi-head attention was applied in the GRU 
prediction model. Weight initialization and an early stopping 
mechanism were applied in the model. The design of the present study 
is shown in Figure 1, and the structure of the deep learning prediction 
models is shown in Figure 2.

2.5. Evaluations of feature contributions

RF was used to evaluate feature contributions to predicting 
different sleep–wake conditions and differentiating between the wake 
conditions before and after sleep (92). Feature analysis evaluated all 
features and observed the important features significantly related to 
the different types of sleep–wake conditions and differentiation 
between the wake conditions before and after sleep based on feature 
contributions. Thus, as used in previous studies, RF is usually used as 
a classifier (95–97) and a method for evaluating the feature 
contribution method (98–100).

2.6. Validation of the analyses

2.6.1. Alternative applications for machine 
learning predictions

The Waikato Environment for Knowledge Analysis (WEKA) (101, 
102) and JMP statistical software (SAS Institute, Cary, NC, 
United States) (103, 104) were used to analyze the same dataset to 
validate the abovementioned Python-based prediction models, as 
described elsewhere (92).

2.6.2. Alternative calculations of HRV indicators
We primarily used the HRV indicators calculated using the 

program installed in the MyBeat device. The source codes of the 
algorithms used to calculate the HRV indicators in the device are 
proprietary. To validate the HRV indicators provided by the device, 
we calculated HRV indicators in Python using open-source codes 
(92). The multiple formulas used to calculate the time domain features 
included CVRR, SDNN, RMSSD, NN50, and pNN50, and the 
frequency domain features included LF and HF. The formula (105–
110) used to calculate the remaining HRV indicators was summarized 
in a previous paper (92). The HRV indicators given by the MyBeat 
were compared with those calculated using Python to ensure 
consistency (92).

2.7. Cross-validation of models for the 
hyper-parameter search

Three major approaches to automatic hyper-parameter tuning—
GridSearch CrossValidation (GridSearchCV) (111–113), 
RandomizedSearch CrossValidation (RandomizedSearchCV) (114–
116), and Bayesian optimization search (117–119)—were tested on the 
two datasets in a preliminary study. We selected RandomizedSearchCV 
as the most appropriate method because it provided the highest 
accuracy and required the least amount of time for calculation. The 
optimal parameters are listed in Supplementary Table S2.

2.8. Performance evaluation of the model 
effects

To evaluate the performance of each algorithm, we used k-fold 
cross-validation (KCV) (test size = 0, k = 5) and leave-one-out cross-
validation (LOOCV). The AUC is widely used to evaluate the effects 
of different algorithms. Accuracy measures the prediction accuracy of 
a model at a specific threshold. Among the tested algorithms, the 
prediction model with the highest AUC and accuracy was determined.

3. Results

3.1. HRV indicators in different sleep–wake 
conditions and differentiation between the 
wake conditions before and after sleep

CVRR during the wake condition after sleep was significantly 
larger than that during shallow sleep. CVRR during shallow sleep was 
significantly larger than that during deep sleep. CVRR during the 
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wake condition before sleep was significantly larger than that during 
deep sleep. SDNN during shallow sleep was significantly larger than 
that during the wake condition after sleep. SDNN during the wake 
condition after sleep was significantly larger than that during the wake 
condition before sleep. SDNN during the wake condition before sleep 
was significantly smaller than that during the sleep condition. RMSSD 
and HF during deep sleep were significantly larger than those during 
shallow sleep, the wake condition before sleep, and the wake condition 
after sleep. NN50s during deep and shallow sleep were significantly 
larger than those during the wake conditions. pNN50 during shallow 
sleep was significantly larger than that during deep sleep. pNN50 
during deep sleep was significantly larger than that during the wake 
condition after sleep. pNN50 during the wake condition after sleep 
was significantly larger than that during the wake condition before 
sleep. LF during the wake condition after sleep was significantly larger 

than that during shallow sleep. LF during shallow sleep was 
significantly larger than that during deep sleep. LF during deep sleep 
was significantly larger than that during the wake condition before 
sleep. LF/HF and LF/(LF + HF) during the wake condition after sleep 
were significantly larger than those during the wake condition before 
sleep. LF/HF and LF/(LF + HF) during the wake condition before sleep 
were significantly larger than those during shallow sleep. LF/HF and 
LF/(LF + HF) during shallow sleep were significantly larger than those 
during deep sleep (Figure 3).

To test whether maternal HRV differed among gestational weeks, 
the subjects were divided into two groups based on gestational weeks 
at the time of recruitment (23–28 or 28–32 weeks) and then HRV 
indicators were compared between the two groups. None of the HRV 
indicators were significantly different between the two groups 
(Supplementary Figure S4).

FIGURE 1

The design of this study. The figure indicates the types of information, including heart rate variability (HRV), sleep–wake condition, and the 
differentiated wake conditions of before and after sleep submitted for analysis, as well as the data analysis methods, including machine learning and 
deep learning algorithms.

FIGURE 2

The structure of the deep learning prediction models.
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FIGURE 3

Differences in heart rate variability indicators among the sleep–wake conditions. The figures show differences in the nine heart rate variability (HRV) 
indicators among the four conditions (deep sleep, shallow sleep, wake before sleep, and wake after sleep). Featured HRV indicators were as follows: 
(A) coefficient of variation of R-R interval (CVRR), (B) the standard deviation of the time interval between successive normal heart beats (SDNN), (C) the 
square root of the mean of the sum of the squares of differences between adjacent RR intervals. Reflects high frequency (fast or parasympathetic) 
influences on HRV (RMSSD), (D) number of interval differences of successive RR intervals greater than 50 ms (NN50), (E) the proportion dividing NN50 
(the number of interval differences of successive RR intervals greater than 50 ms) by the total number of RR intervals (pNN50), (F) low frequency from 
0.04 to 0.15 Hz (LF), (G) high frequency from 0.15 to 0.4 Hz (HF), (H) the ratio of LF to HF (LF/HF), and (I) the ratio of LF to (LF + HF) [LF/(LF + HF)]. The 

(Continued)
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3.2. Prediction of sleep–wake conditions 
and differentiating between the wake 
conditions before and after sleep

Among the 13 machine and deep learning algorithms applied to 
predict three selected sleep–wake conditions (wake, shallow sleep, and 
deep sleep) based on HRV indicators, GRU, XGBoost, RF, and GBT 
showed AUCs and accuracy of 0.88 and 0.81, respectively, compared 
with ANN (0.87 and 0.81), LSTM (0.86 and 0.81), CNN, DT (0.86 and 
0.80), SGD (0.87 and 0.79), LR (0.87 and 0.79), k-NN (0.86 and 0.79), 
SVM (0.82 and 0.80), and NB (0.59 and 0.42). According to the 
prediction model results of the three types of sleep–wake conditions 
with different methods, most tested algorithms, except for NB, were 
excellent with high AUC and accuracy. The accuracy, precision, 
sensitivity, F1 score, and AUCs of the algorithms are summarized in 
Table 1 and Supplementary Figures S5–S7.

Among the 13 machine and deep learning algorithms applied to 
predict four selected sleep–wake conditions and differentiate between 
the wake conditions before and after sleep (wake condition before 
sleep, wake condition after sleep, shallow sleep, and deep sleep) based 
on HRV indicators, GRU showed the highest AUC and accuracy of 
0.86 and 0.79, respectively, followed by LSTM (0.78 and 0.73), 
ensemble learning methods (RF, GBT and XGBoost) (0.76 and 0.71), 
CNN (0.75 and 0.71), k-NN(0.75 and 0.67), ANN (0.74 and 0.70), DT 
(0.73 and 0.69), SVM (0.73 and 0.67), SGD (0.72 and 0.70), LR (0.72 
and 0.67), and NB (0.61 and 0.42). According to the prediction model 
results for the four sleep–wake conditions, GRU was an appropriate 
method, achieving the highest AUC and accuracy. The accuracy, 
precision, sensitivity, F1 score, and AUCs of the algorithms are 
summarized in Table  2 and Supplementary Figures S8–S10. 
Confusion matrix for multi-classification is shown in 
Supplementary Figures S11, S12.

3.3. Evaluations of each feature

The importance scores of each feature for predicting sleep–wake 
condition and differentiating between the wake conditions before and 
after sleep based on the nine HRV indicators using RF revealed that 
pNN50, RMSSD, SDNN, CVRR, HF, and LF were important for the 
prediction of sleep–wake condition and differentiating between the 
wake conditions before and after sleep. In addition, pNN50, RMSSD, 
NN50, SDNN, CVRR, HF, and LF made major contributions to 
predictions for both three and four types of sleep–wake conditions 
and differentiating between the wake conditions before and after sleep. 
The importance scores of each feature in predicting sleep conditions 
based on the nine HRV indicators using RF are plotted in Figure 4. 
Cross-validation scores were plotted with the number of features used 
to predict sleep–wake conditions and differentiate between the wake 
conditions before and after sleep. The cross-validation scores increased 
as more features were included in the prediction; many of the above 
features are included in Figure  5. pNN50, RMSSD made major 
contributions to the stability of model predictions. Regarding the 
results of feature importance, the accuracy, precision, sensitivity, F1 
score, and AUCs of the algorithms used for three and four types of 
sleep–wake conditions and differentiation between the wake 
conditions before and after sleep with important features are 
summarized in Supplementary Tables S3, S4.

3.4. Validation of analyses

Predictions of sleep–wake conditions and differentiation between 
the wake conditions before and after sleep using the Python-based 
open-source codes of algorithms to calculate HRV indicators (92) 
provided the same predictions using the HRV indicators produced by 

value of each HRV indicator was calculated every 5 min throughout the time to be assigned as “deep sleep” or “shallow sleep” during the 7 days of the 
observation period of the participants. The value of each HRV indicator was also calculated for every 5 min throughout 30 min to be assigned as wake 
condition just before falling asleep (wake before sleep), and 30 min after waking up in the morning (wake after sleep). Data were obtained from 154 
pregnant women, and the average minutes of deep sleep and shallow sleep were 8.82 and 8.27 per day/per person. Therefore, the number of 5 min of 
observations for deep sleep, shallow sleep, wake before sleep, and wake after sleep were 9,515, 8,924, 6,988, and 6,821. One-way ANOVA with Tukey’s 
multiple comparisons test was used to compare intergroup variables; data were represented as mean ± standard deviation. A p-value < 0.05 was 
considered significant.

FIGURE 3 (Continued)

TABLE 1 Model evaluation indices of the 13 machine and deep learning algorithms in predicting the three sleep–wake conditions (wake, shallow sleep, 
and deep sleep).

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN CNN LSTM GRU

Accuracy 0.80 0.79 0.79 0.78 0.80 0.42 0.81 0.81 0.81 0.81 0.80 0.81 0.81

Precision 0.73 0.75 0.74 0.77 0.77 0.62 0.79 0.78 0.79 0.78 0.75 0.77 0.78

Sensitivity 0.80 0.79 0.79 0.78 0.80 0.42 0.81 0.81 0.81 0.81 0.80 0.81 0.81

F1 score 0.72 0.75 0.74 0.77 0.77 0.43 0.76 0.78 0.77 0.75 0.72 0.73 0.78

AUC 0.82 0.86 0.87 0.87 0.86 0.59 0.88 0.88 0.88 0.87 0.86 0.86 0.88

The table summarizes accuracies, precisions, sensitivities, F1 scores, and areas under the curve (AUC) of the 13 machine and deep learning predictions of the three sleep–wake conditions 
(wake, shallow sleep, and deep sleep). In these analyses, wake conditions before and after sleep were uniformly integrated into wake conditions. Ten machine learning algorithms, including 
support vector machine (SVM), k-nearest neighbor (k-NN), stochastic gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve Bayes (NB), random forest (RF), gradient 
boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural network (ANN) and three deep learning algorithms including, Convolutional Neural Networks (CNN), Long 
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were tested.

https://doi.org/10.3389/fpsyt.2023.1104222
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Li et al. 10.3389/fpsyt.2023.1104222

Frontiers in Psychiatry 08 frontiersin.org

FIGURE 5

Numbers of features and cross-validation scores of random forest-based predictions of sleep–wake and differentiated wake conditions of before and 
after sleep. Cross-validation scores for each number of features used in the prediction of sleep conditions are plotted. pNN50, RMSSD made major 
contributions to the stability of model predictions. As more features are included in the prediction, cross-validation scores increase. A plateau is 
reached when the features are included.

the program installed in the MyBeat device. In addition, WEKA and 
JMP analyses of the same dataset produced the same results regarding 
the AUC of the predictions using the 10 algorithms. The results of 
other applications are provided in Supplementary Tables S5, S6.

With respect to validating the machine learning algorithms for 
building prediction models of the different sleep–wake conditions and 
differentiating between the wake conditions before and after sleep, 
RandomizedSearchCV achieved the highest accuracy as well as the 

TABLE 2 Model evaluation indices of the 13 machine and deep learning algorithms in predicting the four sleep–wake and differentiated wake 
conditions of before and after sleep (wake condition before sleep, wake condition after sleep, shallow sleep, and deep sleep).

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN CNN LSTM GRU

Accuracy 0.67 0.67 0.70 0.67 0.69 0.42 0.71 0.71 0.71 0.70 0.71 0.73 0.79

Precision 0.65 0.66 0.58 0.55 0.64 0.42 0.67 0.67 0.67 0.65 0.70 0.71 0.76

Sensitivity 0.68 0.67 0.70 0.67 0.69 0.42 0.71 0.71 0.71 0.70 0.71 0.72 0.78

F1 score 0.63 0.66 0.60 0.56 0.63 0.39 0.64 0.66 0.63 0.61 0.70 0.72 0.76

AUC 0.73 0.75 0.72 0.72 0.73 0.61 0.76 0.76 0.76 0.74 0.75 0.78 0.86

The table summarizes accuracies, precisions, sensitivities, F1 scores, and areas under the curve (AUC) of the 13 machine and deep learning predictions of the four sleep–wake condition and 
differentiating wake conditions before and after sleep (wake condition before sleep, wake condition after sleep, shallow sleep, and deep sleep). Ten machine learning algorithms, including 
support vector machine (SVM), k-nearest neighbor (k-NN), stochastic gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve Bayes (NB), random forest (RF), gradient 
boosting trees (GBT), extreme gradient boosting (XGBoost) and artificial neural network (ANN), and three deep learning algorithms including Convolutional Neural Networks (CNN), Long 
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were tested.

FIGURE 4

Importance of each heart rate variability indicator. The importance scores of each feature in predicting sleep conditions based on the nine heart rate 
variability indicators using random forest are plotted. CVRR: coefficient of variation RR intervals, SDNN: standard deviation of all NN intervals, RMSSD: 
square root of the mean squared differences of successive NN intervals, NN50: number of interval differences of successive RR intervals greater than 
50 ms, pNN50: the proportion derived by dividing NN50 by the total number of RR intervals; LF: frequency domain features including low frequency; 
HF: high frequency; LF/HF: the ratio of low frequency to high frequency.
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fastest calculation time. Regarding the performance of each algorithm, 
we  performed KCV (test size = 0, k = 5) to evaluate training 
performance. The features were separated into five folds: four were 
used as training data and the remaining one as a validation dataset. 
The results showed the performance on accuracy, precision, sensitivity, 
F1 score, and AUCs from the test dataset for all iterations. The optimal 
parameters are listed in Supplementary Tables S7, S8. The AUCs of the 
algorithms with LOOCV are summarized in Supplementary Table S9.

4. Discussion

In this study, significant differences among sleep–wake conditions 
were found for all nine HRV indicators [CVRR, SDNN, RMSSD, 
NN50, pNN50, LF, HF, LF/HF, and LF/(LF + HF)]. Post hoc analysis 
indicated that CVRR, SDNN, NN50, pNN50, LF, LF/HF, and LF/
(LF + HF) were significantly lower and RMSSD and HF were 
significantly higher during deep than during shallow sleep. These 
findings support previous studies that reported significant differences 
in CVRR, SDNN, RMSSD, LF, HF, and LF/HF among different sleep–
wake conditions (120, 121). It is noteworthy that many previous 
studies, with several exceptions, ignored NN50 and pNN50. 
Furthermore, several studies investigating NN50 and pNN50 reported 
finding no significant correlations between these two HRV indicators 
and sleep–wake conditions (122–124). Contrary to these previous 
findings, the present study found that NN50 and pNN50 significantly 
differed among sleep–wake conditions. The major difference between 
the present and previous studies was the target participants: pregnant 
women in the present study, compared with non-pregnant women and 
men in previous studies.

NN50 is the number of interval differences of successive RR 
intervals greater than 50 ms, and pNN50 is the proportion dividing 
NN50 by the total number of RR intervals, both of which reflect vagal 
tone (125–128). Previous studies have revealed that vagal tone is 
altered during pregnancy. In general, vagal tone and reactivity are 
reported to decrease as pregnancy progresses (129–131). While 
CVRR, SDNN, LF, LF/HF, and LF/(LF + HF) are useful SNS markers 
for differentiating sleep–wake conditions, NN50 and pNN50 may not 
be distinguishable between different sleep–wake conditions among 
subjects without pregnancy. As pregnancy conditions alter the vagal 
tone, NN50 and pNN50 may constitute useful factors that vary 
according to and allow differentiation between sleep–wake conditions 
(significantly lower NN50 and pNN50 during wake conditions 
compared with sleep conditions).

In the present study, we  investigated whether there were 
differences in HRV indicators between the wake conditions before and 
after sleep as an unprecedented trial. Interestingly, the same HRV 
indicators [CVRR, SDNN, NN50, pNN50, LF, LF/HF, and LF/
(LF + HF)] showed significantly lower values during the wake 
condition before sleep than during that after sleep. In addition, HF 
was significantly higher during the wake condition before sleep than 
during that after sleep. These results suggest that there may be apparent 
differences in arousal levels and ANS conditions between the wake 
conditions before and after sleep, similar to the differences among the 
sleep–wake conditions.

Unlike previous studies, which applied a limited number of 
different algorithms to predict sleep–wake conditions based on HRV 
indicators, the present study conducted comprehensive evaluations of 

widely used machine and deep learning algorithms. Among the 13 
Python-based machine and deep learning algorithms, 12, except NB, 
provided high AUCs (0.82–0.88) and accuracy (0.78–0.81) for 
predicting sleep–wake conditions based on HRV indicators. As for the 
predictions of four conditions (deep sleep, shallow sleep, wake 
condition before sleep, and wake condition after sleep), different 
algorithms showed a wider range of AUCs and accuracy than did 
those in the prediction of three conditions (deep sleep, shallow sleep, 
and wake conditions). GRU showed the highest AUC and accuracy 
(0.86 and 0.79), respectively, followed by LSTM (0.78 and 0.73), RF 
(0.76 and 0.71), GBT (0.76 and 0.71), XGBoost (0.76 and 0.71), CNN 
(0.75 and 0.71), k-NN (0.75 and 0.67), ANN (0.74 and 0.70), DT (0.73 
and 0.69), SVM (0.73 and 0.67), SGD (0.72 and 0.70), LR (0.72 and 
0.67), and NB (0.61 and 0.42) in predicting the four conditions. These 
results suggested that the differences in ANS conditions among the 
three types of sleep–wake conditions were clear enough to be equally 
predictable by most algorithms.

In contrast, the differences in ANS conditions among the four 
types of sleep–wake conditions were not as evident as those among 
the three types of sleep–wake conditions. Therefore, a specific 
algorithm was needed to obtain high AUCs and accuracy for 
predicting the four conditions. Deep learning (GRU and LSTM) and 
ensemble learning methods in machine learning (RF, GBT, and 
XGBoost) may be  suitable for differentiating between the wake 
conditions before and after sleep in predictions for the four conditions.

In previous studies conducted to predict sleep–wake conditions 
based on HRV indicators, one or several algorithms were tested in 
each study, as summarized in Table 3. In contrast, all previous studies 
testing deep learning algorithms used only one algorithm. Among the 
studies testing multiple algorithms, those carried out to test machine 
learning algorithms, including RF, consistently indicated that RF 
showed the highest prediction accuracy. The studies testing machine 
learning algorithms, including NB, indicated that NB showed lower 
prediction accuracy compared with the others. It is reasonable that the 
accuracy of NB (132–134) would be the lowest among these methods 
because it is a simple algorithm that has the advantage of predicting a 
binary classification. Therefore, NB is not suitable for predicting 
multiple classifications, as conducted in the present research for 
prediction of three types of sleep–wake conditions using nine 
HRV indicators.

GRU showed the highest AUC and accuracy of 0.86 and 0.79, 
respectively, in predicting the four conditions. As mentioned in the 
Methods section, we used GRU with a multi-head attention prediction 
model instead of GRU only. GRU with a multi-head attention 
prediction model can effectively improve the task processing effect. It 
calculates the probability weight of different data, improves the quality 
of hidden layer feature extraction, and reduces the problem of 
information loss in feature extraction. A multi-head attention 
mechanism is widely used in various sequence prediction tasks. A 
number of previous studies (135–137) reported that a model with an 
attention mechanism achieved high accuracy. We  conducted a 
preliminary test using GRU without a multi-head attention 
mechanism, which resulted in a lower AUC and accuracy compared 
with GRU with a multi-head attention mechanism and LSTM (data 
not shown). GRU can automatically classify different sleep–wake 
conditions based on HRV indicators, and thus outperforms 
conventional methods because it considers the complex and cyclic 
characteristics of sleep and wakefulness.
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RF-based evaluation of important features in the prediction 
indicated that pNN50 was the most important feature for predicting 
sleep–wake conditions and differentiating between the wake 
conditions before and after sleep, followed in order by RMSSD, NN50, 
SDNN, CVRR, HF, and LF. pNN50, RMSSD, NN50, SDNN, CVRR, 
HF, and LF may be sensitive SNS-based biomarkers for predicting 
sleep–wake conditions and differentiating between the wake 
conditions before and after sleep. Previous studies have indicated that 
RMSSD, SDNN (138), CVRR (139), HF (122, 139–141), and LF (139, 
140) are useful features for predicting sleep stages, which supports our 
results. Although some previous studies have examined pNN50 and 
NN50, these features did not help differentiate between sleep stages 
(123, 124, 142). The present study noted that pNN50 and NN50 were 
important features for predicting sleep stages among pregnant women, 
suggesting that these features may be related to the ANS characteristics 
during pregnancy conditions. pNN50 and NN50 were identified as 
important features for predicting sleep–wake conditions and allow 
differentiation between the wake conditions before and after sleep 
among pregnant women probably because these features differed 
significantly among the sleep–wake conditions and the wake 
conditions before and after sleep.

The three cross-validation methods with automatic hyper-
parameter tuning, including GridSearchCV, RandomizedSearchCV, 
and Bayesian optimization searches (117, 143), were also tested. 
Among these, RandomizedSearchCV achieved the highest accuracy 
with the shortest time consumption. GridSearchCV can ensure the 
accuracy of parameters within the specified parameter range by 
traversing all possible parameter combinations. However, this is very 
time-consuming and provides low accuracy in the case of large 
datasets and multiple parameters. Regarding hyper-parameter 
optimization, RandomizedSearchCV search is more effective than 
GridSearchCV. Some previous studies have indicated that Bayesian 
optimization searching provides the best accuracy (117, 144), whereas 
others (145) have indicated that the limitations of Bayesian 

optimization sometimes makes its search effectiveness unstable and 
not significantly better than RandomizedSearchCV. Compared with 
RandomizedSearchCV, the drawback of Bayesian optimization is the 
greater consumption of computational resources, which may result in 
its taking longer to escape the local optimum, and its deployment in a 
distributed system (146). Memory consumption, training time, power 
consumption, and parallelism are essential for deep learning, while the 
feature of borrowing ideas from previous results prevents the Bayesian 
method from direct parallelization. Although many recent 
developments have solved this problem, it is still not as natural as 
RandomizedSearchCV, which is easy to combine with early stopping 
strategies. Such a combination could be expected to vastly improve the 
efficiency of narrowing down the search space (145). Regarding the 
performance of the model, while KCV and LOOCV showed almost 
equivalent performance, KCV was selected because LOOCV was 
time-consuming, taking longer to fit a dataset compared with KCV.

A verification study with alternative usages of JMP and WEKA, as 
well as Welch’s method on Python to extract the HRV based on RR 
intervals, assured the validity of the present findings, which showed 
replicated prediction accuracies with slight differences due to the 
variability in parameter regulations.

The major finding of the present study in the clinical context is 
that vagal tone appears to be an important factor for differentiating 
between sleep–wake conditions, specifically among pregnant women. 
The findings also suggest that pregnancy conditions alter vagus nerve 
conditions in different ways between sleep and wake conditions. 
Another major finding in the clinical context is that HRV indicators 
can be  useful for differentiating between not only sleep–wake 
conditions, but also the wake conditions before and after sleep. The 
wake condition before sleep may reflect a drowsy state, whereas that 
after sleep may reflect an alert state. By observing HRV indicators, 
drowsiness and readiness to falling asleep can be objectively evaluated. 
This information may be useful in interventions to improve sleep 
health in pregnant women.

TABLE 3 Previous machine and deep learning studies predicting sleep conditions based on heart rate variability indicators.

First author Year
Training 

dataset (n)
Test dataset 

(n)
Total sample 

(n)
Machine learning 

algorithms

Algorithms to 
show higher 

accuracy

Bozkurt (40) 2018 50% 50% 8,452 epochs SVM, k-NN SVM, k-NN

Adnane (43) 2012 20% 80% 16 SVM SVM

Piotrowski (41) 2017 k-fold cross-validation 4 k-NN, NB, ANN ANN

Sharma (42) 2017 10-folds cross-validation 15,136 epochs NB, k-NN, ANN, DT, RF RF

Taran (46) 2020 10-folds cross-validation 8 (30 epochs) DT, k-NN, Ensemble 

learning

Ensemble learning

Xiao (48) 2013 20% 80% 45 RF RF

Mendez (51) 2010 10,000 leave-one-out cross-validation 20,000 epochs HMM HMM

Ebrahimi (44) 2008 N. A. N. A. 7 (30 epochs) ANN ANN

Li (49) 2018 k-fold cross-validation 5,793 epochs CNN CNN

Radha (50) 2019 4-fold cross-validation 292 (541,214 

epochs)

LSTM LSTM

Erdenebayar (72) 2020 89 (80,316 epochs) 23 (20,079 epochs) 112 (100,395 

epochs)

GRU GRU

The table summarizes previous studies of first author, year of the publish, validation of training and test set, sample size, tested machine learning algorithm(s), and the algorithm(s) to show 
high accuracy to predict sleep conditions based on heart rate variability indicators. The previous machine learning and deep learning algorithms included support vector machine (SVM), 
k-nearest neighbor (k-NN), decision tree (DT), random forest (RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural network (ANN), Hidden Markov 
Model (HMM), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU).
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5. Limitations

This research has several limitations. First, the sample size was 
relatively small (N = 154). In the future, the accuracy of the model 
should be  verified with a greater quantity of data, and the most 
suitable algorithms should be  selected. Second, sleep stages were 
defined based on the information collected through body motion 
sensors without recording EEGs; therefore, there was a limitation in 
terms of the accuracy of sleep stage determination. Third, REM sleep 
was not taken into account in the present study because it is not 
detectable by an accelerometer. Fourth, the types of machine learning 
and deep learning were limited. Transformer was not applicable 
because of the small number of sleep condition observations. After 
collecting more data, an advanced method such as transformer may 
be applicable in order to optimize prediction models and parameters 
in the future. Fifth, concerning wake conditions, among the two types 
of wake conditions, we arbitrarily extracted the 30 min of wakefulness 
before sleep and that immediately after waking up in the morning (i.e., 
the wake condition after sleep). In the future, different durations of 
observations, such as 15, 45, or 60 min (both before sleep and 
immediately after waking) could alternatively be  applied to more 
completely investigate the nature of wake conditions. Finally, as this 
study focused on the heart rate of pregnant women, the possibility that 
the fetal heart rate might have interfered with the observed maternal 
heart rate remains. However, unless an ultrasound transducer is 
placed correctly over the fetal heart, the fetal heart rate signal cannot 
be reliably acquired. The disposable electrode placed on the maternal 
heart in this study rarely detects the fetal heart rate. Therefore, the 
observed heart rate should accurately reflect the maternal heart rate 
without considerable interference from the fetal heart rate.

6. Conclusion and future research

This research tested 10 machine and three deep learning 
algorithms to predict sleep–wake conditions based on HRV indicators. 
Most of the tested algorithms except NB could provide a suitably 
accurate prediction of three types of sleep–wake conditions (wake, 
shallow sleep, and deep sleep). GRU was the most accurate method 
for predicting four sleep conditions (including differentiation between 
two wake conditions): the wake conditions before and after sleep, 
shallow sleep, and deep sleep. Moreover, pNN50, RMSSD, NN50, 
SDNN, CVRR, HF, and LF were important features for predicting 
sleep–wake conditions and differentiating between the wake 
conditions before and after sleep.

Statement of significance

The present study is the first trial aiming to predict the sleep–wake 
condition and differentiate between the wake conditions before and 
after sleep in pregnant women. We tested 13 algorithms to predict four 
conditions (deep sleep, shallow sleep, and wake conditions before and 
after sleep) considering the difference in the arousal level of the two 
wake conditions. We  successfully predicted the conditions by the 
gated recurrent unit with the highest area under the receiver operating 
characteristic curve (0.86) and accuracy (0.79). In addition, 
we demonstrated the usability of “the number of interval differences 

of successive RR intervals greater than 50 ms (NN50)” and “the 
proportion dividing NN50 by the total number of RR intervals 
(pNN50)” to predict the sleep–wake condition and differentiate 
between the wake conditions before and after sleep unique to 
pregnancy. These findings suggest the existence of alterations in the 
vagal tone system during pregnancy.
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