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Objectives: Several studies have indicated a potential association between early 
life course-related traits and neurological and psychiatric disorders in adulthood, 
but the causal link remains unclear.

Methods: Instrumental variables (IVs) that have been shown to be  strongly 
associated with exposure were obtained from summary data of genome-wide 
association studies (GWASs). Four early life course-related traits [i.e., birthweight 
(BW), childhood body mass index (BMI), early body size, and age at first birth 
(AFB)] were used as exposure IVs to estimate their causal associations with 
three neurological and psychiatric diseases [i.e., Alzheimer’s disease (AD), major 
depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD)]. 
Four different statistical methods, i.e., inverse-variance weighting (IVW), MR–
Egger (MRE), weighted median (WM), and weighted mode (Wm), were performed 
in our MR analysis. Sensitivity analysis was performed by using the leave-one-out 
method, and horizontal pleiotropy was assessed using the MR-PRESSO package.

Results: There was evidence suggesting that BW has a causal effect on AD  
(ORMR-PRESSO = 1.05, p = 1.14E-03), but this association was not confirmed via 
multivariable Mendelian randomization (MVMR) (ORMVMR = 0.97, 95% CI 0.92–1.02, 
p = 3.00E-01). A strong relationship was observed between childhood BMI and 
ADHD among both sexes; a 1-SD increase in BMI significantly predicted a 1.46-
fold increase in the OR for ADHD (p = 9.13E-06). In addition, a similar relationship 
was found between early life body size and ADHD (ORMR-PRESSO = 1.47, p = 9.62E-05), 
and this effect was mainly driven by male participants (ORMR-PRESSO = 1.50, p = 1.28E-
3). Earlier AFB could significantly predict a higher risk of MDD (ORMR-PRESSO = 1.19, 
p = 1.96E-10) and ADHD (ORMR-PRESSO = 1.45, p = 1.47E-15). No significant causal 
associations were observed between the remaining exposures and outcomes.

Conclusion: Our results reveal the adverse effects of childhood obesity and 
preterm birth on the risk of ADHD later in life. The results of MVMR also show 
that lower BW may have no direct relationship with AD after adjusting for BMI. 
Furthermore, AFB may predict a higher risk of MDD.
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Introduction

The “developmental origins of adult health and disease hypothesis” 
(DOHAD) was first proposed in the 20th century to explain how 
adverse effects during early development can cause permanent 
changes in physiology and metabolism, ultimately leading to an 
increased risk of diseases in adulthood (1). This theory was first 
applied and widely studied in metabolic and cardiovascular diseases 
(2, 3). As the theory progressed, it posited that early life traits are 
associated with a higher risk of adult mental diseases (4–6), including 
schizophrenia (SCZ), major depressive disorder (MDD), cognitive 
impairment, and attention-deficit hyperactivity disorder (ADHD).

Numerous studies have shown a significant relationship between 
early life-related traits and neurological and psychiatric diseases in 
adulthood, which may be due to increased oxidative stress in the 
central nervous system (CNS) (7) during early life. For instance, lower 
birth weight (BW) is associated with ADHD (8), anxiety, depression 
(9, 10), social problems (11–14), and Alzheimer’s disease (AD) (15, 
16). Preterm birth (PTB) is associated with neurocognitive 
impairment (17). In addition, the increasing prevalence of adiposity 
among children is a serious public health concern, and the complex 
association between childhood obesity and mental health in adulthood 
is suggested to strengthen the severity and interdependency of each 
factor (18, 19). Mental diseases among adults have been proven to 
be associated with overweight and obesity in childhood (20), such as 
MDD (21) and ADHD (22, 23). In the past 30 years, the global number 
of mental disorders has increased from 80.8 million to 1.25 billion 
(24); in particular, mental disorders have had a considerable influence 
on the burden of the economy on both families and society (25, 26). 
Therefore, demonstrating the causal effects of early life traits on 
mental illness and estimating the magnitude of such effects would 
provide evidence to guide the development of health policies and 
would advance the therapeutic window to the prenatal period, thus 
helping to overcome and mitigate the human, social, and economic 
costs of mental illness (27). However, the relationship between early 
life traits on mental illness in adulthood remained unclear, and 
previous results have been criticized due to bias, pleiotropy, and 
common confounders of observational studies, which may reflect false 
information (28–30).

Two-sample Mendelian randomization (TSMR)—a novel 
analysis method for estimating the causal link between exposures 
and outcomes based on genome-wide association study (GWAS) 
datasets—offers an unprecedented challenge to classical 
epidemiology by revealing a causal relationship at the genetic level 
rather than the population level. MR analysis includes three basic 
assumptions. First, instrumental variables (IVs) should have a 
strong association with the exposures of interest. Second, selected 
IVs should remain independent of confounders related to exposures 
and outcomes. Third, genetic IVs should only affect the outcome 
through exposure rather than other alternative ways (31). 
Randomized controlled trials (RCTs) are usually considered the 
gold standard for proving a scientific hypothesis in clinical research. 
The basic principle of TSMR is similar to that of RCT, as the alleles 
of genetic variants are assorted randomly and independently (based 
on Mendel’s law) by eggs and sperm during the pregnancy period, 
which makes genes independent from confounders such as 
environmental or racial factors. In short, the results of TSMR are 
considered to be reliable.

Recently, MR studies have provided evidence of a positive 
association between BW and ADHD (32, 33), while an inverse 
correlation was confirmed between life course adiposity and AD (34), 
ADHD (35), and MDD (36). Herein, lower birth weight (LBW), 
childhood BMI, early life body size, and age at first birth (AFB) were 
described as early life course-related metrics, and we assessed the 
causal link between these four variables and three common 
neurological and psychiatric diseases in later life. The results remained 
stable, significant, and robust even after considering the influence of 
heterogeneity, sensitivity, and horizontal pleiotropy.

Materials and methods

Selection of outcome GWAS (AD, ADHD, 
and MDD)

To obtain comprehensive and reliable results regarding the causal 
link between early life traits and the incidence of mental disorders in 
adulthood, the largest and most commonly cited GWAS were selected. 
A meta-analyzed GWAS of AD among individuals with European 
ancestry was included in our study (total n = 455,258, cases n = 71,880, 
and controls n = 383,378). The first group consisted of 24,087 patients 
who were clinically diagnosed with late-onset AD and paired with 
55,058 controls. The second phase collected 47,793 AD-by-proxy 
phenotype cases and 328,320 controls based on the UK Biobank 
(UKB) for whom parental AD status was available (37, 38). The 
summarized statistics for MDD were collected from a genome-wide 
meta-analysis consisting of seven cohorts, including 480,359 
participants (cases n = 135,458 and controls n = 344,901) (39). In 
addition, a meta-analyzed dataset of ADHD was obtained from 12 
cohort studies, which included 20,183 cases and 35,191 controls (40). 
Furthermore, we collected sex-specific ADHD GWAS data from the 
Psychiatric Genomics Consortium and iPSYCH Project and Swedish 
population register data (male-only GWAS: cases n = 14,154 and 
controls n = 17,948; female-only GWAS: cases n = 4,945 and controls 
n = 16,246) (41) (see Table  1 and Supplementary Tables S1–S8 
for details).

Selection of exposure IVs (BW, childhood 
BMI, early life body size, and AFB)

Based on research from the Early Growth Genetics (EGG) 
Consortium (42), 47 independent single-nucleotide polymorphisms 
(SNPs) were filtered from the largest GWAS as IVs representing BW 
to conduct TSMR analysis, and a significant association was observed 
(p < 5.0E-08). To date, the EGG consortium study has collected data 
from more than 30 studies, including 153,781 cases and 16,245,523 
imputed SNPs. The sources of data include results of measurement at 
birth by medical practitioners, obstetrics records, medical and 
interview registers, and self-reports with mothers and adults in each 
study. Sex-specific BW was transformed into a z-score, and 
qualification control was based on the following exclusion criteria: 
extreme BW value, i.e., more than 5 SD of the average mean value; 
monozygotic or polyzygotic siblings; and preterm births, i.e., 
gestational age less than 37 weeks at birth. Exposure to SNPs of 
childhood BMI was identified from a GWAS meta-analysis containing 
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41 studies with a total sample size of 61,111 European children aged 
2–10 years (43). Based on the UKB prospective cohort study and four 
GWAS consortiums, early life body size-related SNPs were gained 
from 453,169 participants (44, 45). All data were collected from 
clinical examinations, detailed information on self-reported health 
characteristics, genome-wide genotyping, and testing of biological 
samples (46). BMI was obtained using height (measured and recorded 
in meters) and weight (kilogram) measured at baseline and calculated 
as follows: kg/m2. Participants also answered the following question: 
“When you were 10 years old, would you have defined your body 
shape as thinner, plumper, or about average?” This item was used to 
assess early life body size. Exposure to AFB was determined from the 
largest meta-analysis of GWAS, including 542,901 participants from 
36 cohort studies of European ancestry (47). All selected exposure 
SNPs are shown in Table 1, and detailed information on the meta-
analysis is displayed in Supplementary Tables S1–S8.

Then, instrument variables were removed from the linkage 
disequilibrium (LD) after conducting the process of clumping 

(R2 < 0.001, window size = 10,000 kb) to ensure their independence. 
Third, the robustness of the results was based on the sufficient 
power of IVs that were applied in our TSMR analysis, and all 
IV-SNPs were confirmed to have a strong effect (overall F-statistics 
value >10) by performing the F-statistics. The SNP of IVs for 
lower BW or earlier AFB was presented by supplying a negative 
sign on the estimated BW/AFB effect (42). Finally, these 
stringently collected SNPs were used as the IVs for subsequent 
TSMR analysis.

Statistical analyses

We conducted a TSMR analysis in R software (version 4.0.3 
for Mac) using the two-sample MR and MR-PRESSO packages 
(48, 49). We used different MR tools with distinct strengths and 
assumptions. The inverse-variance weighted (IVW) approach was 
chosen as the main tool for estimating causality (50). Estimates of 
correlations of early life-related traits with AD, ADHD, and 
depression from large GWAS were obtained by applying the IVW 
method with the fixed effects model. The weighted median (WM) 
method, MR–Egger (MRE) regression, weighted mode, and 
Mendelian Randomization Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) were also conducted as supplementary analyses to 
ensure the stability and reliability of our results (51). Assuming 
over 50% weights from valid IVs, the WM method provides 
consistent estimates of associations (52).

MR–Egger regression allows the existence of unbalanced 
pleiotropy, which relaxes the assumptions of MR and causes low 
power (53). However, the validity of the results in our TSMR 
analysis was demonstrated when these methods maintained 
consistency in both direction and effect size. MR-PRESSO analysis 
was used to detect possible outliers and eliminate bias due to 
horizontal pleiotropy, and correct results were obtained from 
MR-PRESSO analysis after removing the outlier SNPs (54). In 
other words, comparing the distance of a single SNP to the fitted 
line, the larger the distance, the more likely the SNP is to be an 
outlier and the more likely it is to exhibit horizontal pleiotropy; 
such SNPs need to be excluded (51). The level of heterogeneity 
was quantified by Cochran’s Q-test and I2 statistics, and significant 
heterogeneity was identified by a p-value of <0.05. In addition, 
sensitivity analysis was performed using the leave-one-out method 
to identify whether the effects of causal relationships would 
disappear when any single SNP was excluded. Furthermore, a 
multivariable MR procedure was performed after adjusting for the 
main determinants of exposure and outcome to reduce bias. All 
results are displayed in forest plots, scatterplots, leave-one-out 
plots, and funnel plots. Causal associations with p-values 
<4.16E-03 (P Bonferroni correction = 0.05/12) were deemed statistically 
significant after Bonferroni correction for four exposures and 
three outcomes (55). p-values between 4.16E-03 and 5E-02 were 
considered to suggest evidence of causal associations. Because a 
positive genetic relationship of BW with BMI was considered, the 
causal association of LBW with AD was estimated by applying the 
multivariable MR analysis (MVMR) model. All results are 
presented as odds ratios (ORs) with 95% confidence intervals 
(CIs) (Supplementary Tables S18–S20).

TABLE 1 Overview of exposure and seven outcomes GWAS.

Traits Consortium (Case/Control) 
Sample Size

PMID

Exposure

Birth weight 

(BW)

Early Growth 

Genetics (EGG)
153,781 27,680,694

Childhood 

BMI

Genome-Wide 

Meta-Analysis
61,111 33,045,005

Early life 

body size

UK Biobank, 

GWAS 

consortiums

453,169 32,376,654

Age at first 

birth (AFB)
UK Biobank 542,901 34,211,149

Outcomes

Alzheimer’s 

disease (AD)

Genome-Wide 

Meta-Analysis
(71,880/383,378)455,258 30,617,256

Major 

depressive 

disorder 

(MDD)

Genome-Wide 

Meta-Analysis
(135,458/344,901)480,359 29,700,475

Attention 

deficit and 

hyperactivity 

disorder 

(ADHD)

Genome-Wide 

Meta-Analysis
(20,183/35,191)55,374 30,478,444

ADHD-

female

Psychiatric 

Genomics 

Consortium and 

iPSYCH Project 

and Swedish 

population 

register data

(4,945/16,246)21,191 29,325,848

ADHD-male (14,154/17,948)32,102 29,325,848

Early life 

body size
UK Biobank 454,718 ukb-b-4,650

https://doi.org/10.3389/fpsyt.2023.1098664
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


He et al. 10.3389/fpsyt.2023.1098664

Frontiers in Psychiatry 04 frontiersin.org

Results

Two-sample Mendelian randomization 
analysis for the causal association between 
lower BW and three neurological and 
psychiatric diseases

Four methods of TSMR (including IVW, MRE, WM, and Wm 
regression) were used to estimate causal associations between lower 
BW and three cognitive and psychiatric diseases. The results of the 
TSMR analysis indicated that lower BW had a positive causal effect on 
AD (ORIVW = 1.04, 95% CI 1.01–1.08, p = 6.98E-03; ORWM = 1.06, 95% 
CI 1.02–1.11, p = 2.69E-03; ORMRE = 0.97, 95% CI 0.88–1.07, p = 5.18E-
01; ORWm = 1.08, 95% CI 1.02–1.15, p = 1.43E-02). In this association, 
rs138715366 and rs13266210 were regarded as outlier SNPs, and the 
results reached the corrected threshold of p-value and showed 
statistical significance (p = 1.14E-03). However, there was no 
significant causal association between lower BW and MDD 
(ORIVW = 1.01, 95% CI 0.98–1.13, p = 8.08E-01) or ADHD 
(ORIVW = 1.12, 95% CI 0.91–1.38, p = 2.76E-01). There was 
heterogeneity in the association between lower BW and AD 
(QIVW = 76.781, Q_df = 43, p = 1.17E-03; QMRE = 71.89, Q_df = 42, 
p = 2.77E-03). No significant horizontal pleiotropy was observed in 
this MR, as shown by MR–Egger analysis (Egger_intercept = −2.72E-
03, p = 9.83E-02). All results of the four methods are shown in Figure 1 
and Supplementary Figure S1. The estimated effects of each exposure 
SNP (lower BW) on the outcomes (Supplementary Tables S9–S17) are 
shown both in forest and scatter plots (Figure  2 and 
Supplementary Figure S3; Figure 3 and Supplementary Figure S4). 
Directional horizontal pleiotropy was assessed by funnel plots, which 
are shown in Figure 4 and Supplementary Figure S5. Leave-one-out 
plots are shown in Figure 5 and Supplementary Figure S2.

Two-sample Mendelian randomization 
analysis for the causal association between 
childhood BMI and three neurological and 
psychiatric diseases

Using the IVW method, causal relationships between childhood 
BMI and the risk of ADHD were confirmed. BMI in childhood was 
positively associated with ADHD (ORIVW = 1.46, 95% CI 1.23–1.74, 
p = 1.52E-05). Similar results were observed and proven by weighted 
median regression methods; the findings were still sufficiently 
powered to exceed adjusted p-value thresholds after Bonferroni 
correction (ORWM = 1.38, 95% CI 1.15–1.66, p = 3.61E-04; ORMRE = 1.55, 
95% CI 0.9–2.68, p = 1.29E-01; ORWm = 1.20, 95% CI 0.86–1.68, 
p = 2.96E-01).

There was evidence suggesting a causal association of children’s 
BMI with AD and MDD (AD: ORWM = 1.03, 95% CI 1.00–1.05, 
p = 3.17E-02; ORMRE = 1.10, 95% CI 1.04–1.17, p = 2.12E-03; MDD: 
ORWM = 1.15, 95% CI 1.04–1.27, p = 7.20E-03; ORWm = 1.18, 95% CI 
1.04–1.34, p = 1.51E-02); however, these results were not confirmed 
via IVW. Funnel plots, scatter plots, and leave-one-out plots are 
displayed in Figures 1–5 and Supplementary Figures S1–S5. These 
results suggest that directional pleiotropic effects and heterogeneity 
are not present in the association between childhood BMI and 
ADHD risk.

Two-sample Mendelian randomization 
analysis for the causal association between 
early life body size and three neurological 
and psychiatric diseases

Similar to the results regarding the association between childhood 
BMI and ADHD, there was a strong causal effect of early life body size 
on ADHD (ORIVW = 1.48, 95% CI 1.21–1.82, p = 1.29E-04; ORWM = 1.42, 
95% CI 1.09–1.84, p = 9.22E-03; ORMRE = 2.35, 95% CI 1.50–3.67, 
p = 2.28E-04; ORWm = 1.51, 95% CI 1.09–2.09, p = 1.44E-02). After 
performing MR-PRESSO and deleting outliers (rs3774604, 
rs78444298, and rs663129) to account for the heterogeneity 
(QIVW = 538.65, Q_df = 267, p = 1.68E-20; QMRE = 528.62, Q_df = 266, 
p = 1.51E-19), the causal relationship was still observed (ORMR-

PRESSO = 1.47, 95% CI 1.22–1.79, p = 9.62E-05). There was suggestive 
evidence for causal relationships between early life body size and AD 
(ORWM = 1.05, 95% CI 1.00–1.09, p = 2.59E-02; ORWm = 1.05, 95% CI 
1.00–1.10, p = 4.49E-02) and MDD (ORWM = 1.18, 95% CI 1.01–1.38, 
p = 3.50E-02; ORWm = 1.28, 95% CI 1.03–1.59, p = 1.68E-02). However, 
these associations did not remain significant after accounting for the 
heterogeneity by conducting sensitivity analyses and using the 
MR-PRESSO method (AD: OR = 1.02, 95% CI 0.99–1.05, p = 7.20E-05; 
MDD: OR = 1.06, 95% CI 0.95–1.18, p = 3.28E-01).

Two-sample Mendelian randomization 
analysis for the causal association between 
AFB and three neurological and psychiatric 
diseases

Sufficient and strong evidence was obtained via four methods of 
TSMR and indicated that age at first birth had a causal effect on MDD 
(ORIVW = 1.19, 95% CI 1.13–1.26, p = 8.31E-10; ORWM = 1.21, 95% CI 
1.14–1.28, p = 4.92E-10; ORWm = 1.22, 95% CI 1.09–1.37, p = 1.30E-03). 
Although unbalanced horizontal pleiotropy (MR–Egger intercept, 
p = 4.70E-06) and significant heterogeneity (QIVW = 108.87, Q_df = 52, 
p = 6.62E-06) were observed, the results remained stable after 
performing the MR-PRESSO procedure (ORMR-PRESSO = 1.20, 95% CI 
1.15–1.25, p = 1.96E-10) and after excluding rs2069278, rs11167753, 
and rs1606974. In addition, we obtained other information on the 
causal link between AFB and ADHD: earlier AFB was found to 
be associated with a higher risk of ADHD (ORIVW = 1.49, 95% CI 
1.38–1.60, p = 6.62E-25; ORWM = 1.38, 95% CI 1.26–1.53, p = 5.79E-11; 
ORWm = 1.41, 95% CI 1.19–1.66, p = 2.13E-04), and this effect remained 
significant even after performing the MR-PRESSO procedure 
(outliers: rs7516843, rs4443016; ORMR-PRESSO = 1.45, 95% CI 1.35–1.54, 
p = 1.47E-15).

Reverse Two-sample Mendelian 
randomization analysis for the causal 
association of ADHD with childhood BMI 
and early life body size

To determine the reverse effects of ADHD on childhood BMI 
and early life body size, we  conducted additional 
TSMR. Unfortunately, only potential and suggestive causal links 
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were observed between ADHD and childhood BMI (ORIVW = 1.08, 
95% CI 1.00–1.17, p = 4.67E-02), and this result was not confirmed 
via other methods (ORMRE = 1.26, 95% CI 0.94–1.68, p = 1.79E-01; 
ORWM = 1.11, 95% CI 0.99–1.23, p = 5.20E-02; ORWm = 1.15, 95% CI 
0.96–1.36, p = 1.70E-01). ADHD was also not found to have a 
reverse causal effect on early life body size (ORIVW = 1.01, 95% CI 
0.99–1.03, p = 7.23E-02; ORMRE = 0.96, 95% CI 0.90–1.01, 
p = 1.76E-01; ORWM = 1.01, 95% CI 0.99–1.03, p = 2.34E-01; 
ORWm = 1.02, 95% CI 0.99–1.06, p = 2.52E-01). Detailed 
information about these analyses is displayed in 
Supplementary Tables S11, S14 and Supplementary Figures S6, S7.

Two-sample Mendelian randomization 
analysis for the causal associations of 
childhood BMI, early life body size, and AFB 
with sex-specific ADHD

A sex-specific TSMR was performed to examine the causal 
associations of childhood BMI, early life body size, and AFB with 
ADHD among male and female participants separately. We observed 
the causal relationship between early life body size and ADHD among 
male participants (ORMR-PRESSO = 1.50, 95% CI 1.17–1.90, p = 1.28E-03) 
but not among female participants. For childhood BMI and AFB, the 

A B

C

E

D

FIGURE 1

Results of four different methods of MR analysis. The MR analysis shows the effect of the exposure SNPs on the outcomes. (A) Lower birth weight 
(BW)-Alzheimer’s disease (AD); (B) childhood body mass index (BMI)-attention-deficit hyperactivity disorder (ADHD); (C) early life body size-ADHD; 
(D) age at first birth (AFB)-major depressive disorder (MDD); (E) AFB-ADHD; the solid dot means the causal effects of exposure on outcomes with four 
methods [MR-Egger (MRE); weighted median (WM); weighted mode (Wm); inverse-variance weighting (IVW); MR-Egger and Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO)]. The results of the binary outcomes are shown by OR [95%CI]. Numbers in bold mean P-values 
<5.00E-02, and italic and bold font means P-values <4.16E-03.
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results were consistent across the sexes. Detailed information about 
these analyses is displayed in Supplementary Tables S12, S15, S17 and 
Supplementary Figures S8–S12.

Multivariable Mendelian randomization

Performing multivariable mendelian randomization (MVMR) 
resulted in the elimination of influence estimates in the previous LBW 

and AD MR analysis after adjusting for adult BMI. In the MVMR 
analysis controlling for BMI, there was no evidence of a causal link 
between LBW and AD (ORMVMR = 0.97, 95% CI 0.92–1.02, p = 3.00E-
01) (Supplementary Table S18).

Discussion

Based on the theory of Barker, we selected four variables assessed 
between birth (AFB and BW) and the age of 10 years (early life body 
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FIGURE 2

Results of the scatterplot. (A) Lower birth weight (BW)-Alzheimer’s disease (AD); (B) childhood body mass index (BMI)-attention-deficit hyperactivity 
disorder (ADHD); (C) early life body size-ADHD; (D) age at first birth (AFB)-major depressive disorder (MDD); (E) AFB-ADHD; the solid dot means the 
causal effects of exposure on outcomes with four methods [MR-Egger (MRE); weighted median (WM); weighted mode (Wm); inverse-variance 
weighting (IVW); MR-Egger and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO)]. The results of the binary outcomes are 
shown by OR [95%CI]. Numbers in bold mean P-values <5.00E-02, and italic and bold font means P-values <4.16E-03.
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size and childhood BMI) from aggregated GWAS data, and 
we examined their causal effects on ADHD in adolescence, MDD in 
adulthood, and AD in old age. Our findings strongly suggest that three 
early indicators—i.e., higher childhood BMI, larger early life body 
size, and earlier AFB—predict a higher risk of ADHD. We  also 
observed causal relationships between lower BW and a higher 
incidence of AD, earlier AFB, and a higher occurrence of MDD. To 
the best of our knowledge, this is the first systematic study based on 
genetic information to study the possible causal relationships between 
early life course-related characteristics and neurological and 
psychiatric diseases across the whole life span.

Challenges in early life, including perinatal and early postpartum 
periods, may have a profound impact on the neural development of 
offspring (56). The perinatal period is the most sensitive period to 
nutritional status in the life process. Interruptions to the concentrated 
flow of fetal nutrition during this time, such as premature delivery, 
malnutrition, or placental insufficiency, may lead to LBW. Some 
studies have shown an association between LBW and a high risk of 
adult mental illness (57, 58). Observational evidence has shown that 
smaller birth size and LBW are significantly associated with cognitive 
and motor impairment, which have lower composite cognitive scores 
(β = −0.12, 95% CI[−0.19, −0.05], p = 0.001) in later life compared to 
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FIGURE 3

Results of the forest plot. (A) Lower birth weight (BW)-Alzheimer’s disease (AD); (B) childhood body mass index (BMI)-attention-deficit hyperactivity 
disorder (ADHD); (C) early life body size-ADHD; (D) age at first birth (AFB)-major depressive disorder (MDD); (E) AFB-ADHD; the solid dot means the 
causal effects of exposure on outcomes with four methods [MR-Egger (MRE); weighted median (WM); weighted mode (Wm); inverse-variance 
weighting (IVW); MR-Egger and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO)]. The results of the binary outcomes are 
shown by OR [95%CI]. Numbers in bold mean P-values <5.00E-02, and italic and bold font means P-values <4.16E-03.
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those with normal BW (59–62). Other results also indicate that LBW 
newborns exhibit developmental alterations in gene expression 
involved in cell differentiation, neurogenesis, and neurodegeneration 
(63). Although our results provide statistically significant results 
demonstrating the causal link between LBW newborns and AD 
(ORIVW = 1.04, 95% CI 1.01–1.08, p = 6.98E-03), there is still a lack of 
clarity regarding the etiologies and pathogeneses of AD. After 
adjusting for genetic prediction of LBW and BMI initiation by using 
MVMR, there was no direct causal association between LBW and AD 
(ORMVMR = 0.97, 95% CI 0.92–1.02, p = 3.00E-01). Large meta-analysis 

studies also did not state that lower BW was an absolute risk factor for 
AD, but high BMI in late life was a level A strong risk factor for AD 
(64, 65). We did not find any correlation between LBW and MDD or 
ADHD (MDD: ORIVW = 1.01, 95% CI 0.98–1.13, p = 8.08E-01; ADHD: 
ORIVW = 1.12, 95% CI 0.91–1.38, p = 2.76E-01). Some previous 
epidemiological studies found a higher risk of depression among 
preterm birth and LBW individuals than among controls (OR = 2.86, 
95% CI [1.73–4.73]; OR = 1.39, 95% CI 1.21–1.60) (9, 66). 
Furthermore, LBW individuals reported more severe symptoms of 
ADHD (r = –0.15) (67) as well as an increased risk of ADHD (68, 69).
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FIGURE 4

Results of the funnel plot. (A) Lower birth weight (BW)-Alzheimer’s disease (AD); (B) childhood body mass index (BMI)-attention-deficit hyperactivity 
disorder (ADHD); (C) early life body size-ADHD; (D) age at first birth (AFB)-major depressive disorder (MDD); (E) AFB-ADHD; the solid dot means the 
causal effects of exposure on outcomes with four methods [MR-Egger (MRE); weighted median (WM); weighted mode (Wm); inverse-variance 
weighting (IVW); MR-Egger and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO)]. The results of the binary outcomes are 
shown by OR [95%CI]. Numbers in bold mean P-values <5.00E-02, and italic and bold font means P-values <4.16E-03.
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Another prominent and serious issue is obesity, especially in 
adolescents. As of 2019, the World Obesity Federation (WOF) 
estimated that there would be  206 million obese children and 
adolescents (ranging from 5 to 19 years) in 2025, and this number is 
expected to increase to 254 million in 2030 (70). The cooccurrence of 
ADHD and obesity is caused by both genetic and prenatal 
environmental origins (71). A series of studies have revealed a 
significant association between overweight/obesity and children/
adolescents ADHD (overweight: 18.8–31.2%; obesity: 13.5–19.3%) 
(72, 73) but a weak relationship in adults with obesity (74, 75). To 

explain this correlation, Albayrak (76) found that there is a common 
background of genetics (MAP2K5, GPRC5B, and CADM2) between 
ADHD and obesity, while Cortese S. (77) revealed that inflammatory 
cytokines may play a connective role between them. One study 
announced that there was no reliable and robust association between 
ADHD and BMI at any age or time point (75). Herein, the strong 
correlation between childhood obesity and ADHD was due to the use 
of two easy and common measurements: childhood BMI and early life 
body size (ORIVW = 1.46, 95% CI 1.29–1.66, p = 9.13E-06; ORIVW = 1.47, 
95% CI 1.22–1.79, p = 9.62E-05). Furthermore, considering that the 
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FIGURE 5

Leave-one-out analysis plot. The estimation effects are reported per SD increase in the exposure, and error bars represent 95% CI. (A) Lower birth 
weight (BW)-Alzheimer’s disease (AD); (B) childhood body mass index (BMI)-attention-deficit hyperactivity disorder (ADHD); (C) early life body size-
ADHD; (D) age at first birth (AFB)-major depressive disorder (MDD); (E) AFB-ADHD; the solid dot means the causal effects of exposure on outcomes 
with four methods [MR-Egger (MRE); weighted median (WM); weighted mode (Wm); inverse-variance weighting (IVW); MR-Egger and Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO)]. The results of the binary outcomes are shown by OR [95%CI]. Numbers in bold 
mean P-values <5.00E-02, and italic and bold font means P-values <4.16E-03.
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association was complex and bidirectional rather than simple and 
unidirectional (74, 78), we performed reverse TSMR, and there were 
no positive findings. In addition, sex/gender differences in ADHD 
have been reported (79), but the correlation between childhood 
obesity and ADHD remains unclear. Nigg JT (75) and Fliers EA (80) 
found that ADHD was associated with obesity in adolescent girls but 
not in children or boys, while Jongpitakrat K (78) and Aguirre 
Castaneda RL (81) stated that male children and adolescents with 
obesity were significantly associated with an increased prevalence of 
ADHD. Thus, we also provided evidence that a larger early life body 
size could increase the risk of ADHD in male participants (OR 
MR-PRESSO = 1.50, 95% CI 1.17–1.90, p = 1.28E-03) but not in female 
participants. Many researchers have focused on the association 
between adult and even middle-life obesity and AD (82–85), which 
could alter cognitive and brain reserve (86), but very few studies have 
examined this issue in children. One study reported that there was no 
evidence from individual SNP or polygenic scores, indicating a 
relationship between BMI and increased AD risk (87), consistent with 
our results for childhood BMI (ORIVW = 1.02, 95% CI 0.99–1.04, 
p = 1.54E-01) and early life body size (ORMR-PRESSO = 1.02, 95% CI 0.99–
1.05, p = 7.20E-02). For MDD, studies supported that obesity increased 
the risk of the onset of depression (OR = 1.55; 95% CI 1.22–1.98; 
p < 0.001) (88–90), and obese children and adolescents were more 
likely to have MDD (OR = 1.851, 95% CI 1.41–2.43) (91). However, 
Jokela (92) considered an adverse metabolic profile rather than using 
obesity as a risk factor for depression. We did not obtain any evidence 
for childhood BMI or early life body size.

Preterm birth adults exhibited a 1.14- to 1.3-fold risk of being 
diagnosed with a depressive disorder (93–96), especially extreme 
preterm birth at <28 weeks (97), and our results are consistent with 
these observational studies (ORMR-PRESSO = 1.20, 95% CI 1.15–1.25, 
p = 1.96E-10). Many researchers have reported that preterm-born 
children have an increased incidence of ADHD (RR: ranged from 1.26 
to 2.64) (69, 98–101), as well as our results (ORMR-PRESSO = 1.45, 95% CI 
1.35–1.54, p = 1.47E-15). No causal link was found between AFB and 
AD, although some results reported that preterm birth could reduce 
cognitive scores (98).

The greatest advantage of this study lies in the use of TMSR, a 
new analytical method. Correlation analysis can provide us with 
some research ideas, but its evidence is limited. Sometimes, due to 
the existence of confounding factors, false correlations can occur. 
Four early life course-related characteristics [i.e., birth weight 
(BW), child body mass index (BMI), early body shape, and age at 
birth (AFB)] were used as exposure IVs to analyze their causal 
relationships with neurological and psychiatric diseases. SNP or 
whole-genome sequencing can be  used as a tool to avoid the 
influence of the external environment and improve the strength of 
causal inferences. Of course, this study focuses on the adverse 
effects of childhood obesity and premature delivery on ADHD in 
the future, but the specific mechanism has yet to be fully elucidated. 
An association between exposure and disease is epigenetics. For 
example, the environment triggers epigenetic changes to produce 
unique adult phenotypes, which is also a recent hot research topic 
in this field.

Several limitations inevitably existed in our study. First, most 
of the GWAS data were obtained from European participants, thus 
limiting the ability to generalize these results to other races, sexes, 
or areas. Second, the selected exposure IVs were not divided based 

on sex, which may lead to collider bias with respect to 
ADHD (102).

Conclusion

The results of our study indicate that childhood adiposity and 
preterm delivery have a causal effect on ADHD in adolescence; that 
LBW may not be associated with the risk of AD after adjusting for 
adult BMI; and that preterm birth is associated with a higher incidence 
of MDD symptoms in adulthood.
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