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Elucidating gut
microbiota–hippocampus
interactions in emerging
psychosis: A new perspective for
the development of early
interventions for memory
impairments
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Hippocampal dysregulation might be a key pathophysiological factor for memory

impairments in psychosis. Contemporary models particularly postulate that an

imbalance of hippocampal glutamate and GABA leads to impaired memory

and may thus serve as a therapeutic target to improve memory deficits.

However, currently available interventions in early stages of psychosis do not

explicitly target hippocampal pathology. A novel approach for manipulating

hippocampus-dependent memory processes is provided via the gut microbiota.

In this perspective article, we first recapitulate compelling evidence for emerging

hippocampus pathology during the development of psychosis. The following

sections emphasize the critical role of the gut microbiota in hippocampus

plasticity and memory, and summarize existing evidence of gut microbiota

alterations in different stages of psychosis. Finally, we propose a novel conceptual

roadmap for future studies deciphering gut microbiota–hippocampus synergisms

in emerging psychosis and argue that specific microbial supplementation might

be promising for improving hippocampus-dependent memory deficits in early

stages of psychosis.

KEYWORDS
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Introduction

The hippocampus is crucial for episodic memory (1) and deficits in this function have
been associated with subsequent transition to frank psychosis (2) and functional disability (3)
in clinical high-risk (CHR) individuals. Reduced gray matter volume in the hippocampus
is one of the most robust neuroimaging findings in patients with schizophrenia (4), a
finding that is also evident in their non-psychotic relatives (5), patients with first-episode
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psychosis (FEP) (6, 7), and CHR subjects (8, 9), especially in
those with the later transition to psychosis (10). It has further
been shown that smaller hippocampus volume is related to
poorer verbal memory performance in schizophrenia patients
(11) and predictive of transition to schizophrenia at a 2-year
follow-up in patients with early psychosis (12). Patients with
schizophrenia (13), early psychosis (14), FEP (15), and those
at CHR (16) do also exhibit reduced hippocampus activation
during episodic memory processing. Reductions in hippocampal
activation and volume have been associated with impaired global
cognition, symptom severity (17, 18) and predicted by negative and
disorganized schizotypal symptoms in non-clinical samples (19).
This suggests hippocampus pathology to be prevalent early during
the psychosis continuum, thus potentially serving as a predictive
marker for disease progression and target for novel approaches to
early intervention.

Hippocampus pathology in
psychosis–underlying mechanisms

A compelling line of evidence for hippocampal dysfunction
comes from a neurodevelopmental model of schizophrenia,
the methylazoxymethanol acetate (MAM) model (20). A key
abnormality in the MAM model is a deficit expressed in the
parvalbumin-expressing gamma-aminobutyric acid (GABA)ergic
inhibitory interneurons of the hippocampal region in mice. This
augmented hippocampal function drives the elevated striatal
dopamine associated with psychosis via a polysynaptic pathway
involving altered GABAergic and glutamatergic neurotransmission
within the hippocampus-striatum-midbrain network (20–22).
Intriguingly, administration of a positive allosteric modulator of the
a5GABAA receptor and a group 2 metabotropic glutamate receptor
(mGluR2/3) agonist normalized hippocampal hyperactivity and
striatal dopamine dysfunction after having developed in the MAM
model (23, 24).

In support of the model, hyperperfusion of the hippocampus
was reported in patients with full psychosis (25, 26) and CHR
individuals (27, 28). Notably, CHR subjects who experienced
remission showed a longitudinal reduction in hippocampal
perfusion (28) and those who later converted to frank psychosis
showed hippocampal hyperperfusion which was predictive of
hippocampal volume loss (25). Increased resting perfusion of the
hippocampus is already evident in non-clinical samples with high
schizotypy (29) and related to delusional thinking and distress in
non-help seeking individuals from the general population (30).
A recent study in patients with early psychosis further showed
that increased hippocampal blood flow was inversely related to
task-related activation during scene processing in the anterior
hippocampus (31). This finding suggests that baseline hippocampal
hyperactivity in early psychosis patients appears to limit effective
recruitment of this region during task performance.

In accordance with the MAM model, elevated hippocampal
glutamate levels have been observed in unmedicated patients
with schizophrenia (32, 33), first-episode schizophrenia (34),
FEP patients with >12 months duration of untreated psychosis
(6) and CHR individuals (35, 36). One study in CHR subjects
also reported an inverse relationship between visuospatial ability

and hippocampal glutamine concentrations (36) and another
showed a trend of negative relationships between hippocampus
activation during episodic memory and hippocampal glutamate
concentrations (37). Moreover, CHR individuals who developed
psychosis also show higher hippocampal glutamate levels
compared with those who did not become psychotic (38).
Hippocampus abnormalities along the progression of psychosis are
summarized in Supplementary Table 1.

In summary, episodic memory deficits are evident early in
the psychosis continuum and are predictive of adverse clinical
outcomes in high-risk individuals. Those deficits correspond
with insufficient task-related hippocampus activation, caused
by hippocampal hyperactivity that results from an imbalance
of excitation/inhibition (glutamate/GABA) which contributes to
subsequent hippocampal volume loss (39, 40).

Gut microbiota–hippocampus
synergisms

Regulation of neurogenesis, plasticity,
and memory performance

The presence of microbes is crucial for the development
of hippocampus-dependent memory (41) and even adult
hippocampal neurogenesis can be regulated by the gut microbiota
(42). Recent studies in laboratory animals have shown that gut
microbes drive individual differences in memory (43) and that diet-
induced increases in microbial diversity improved performance
on tests of working and spatial memory (44). Adult mice treated
with antibiotics showed decreased hippocampal neurogenesis and
memory retention that could be reversed with probiotics (45).
A decrease in the Brain-derived neurotrophic factor (BDNF), a
neurotrophin which regulates hippocampal neuroplasticity (46),
and thereby learning and memory functioning (47), was found in
the hippocampus of germ-free mice (48). Furthermore, gut vagal
sensory signaling enhances memory (49), facilitates hippocampal
neurogenesis and increases hippocampal expression of BDNF
(50, 51), as well as regulates hippocampus function through
multi-order pathways (52). Although the specific mechanisms
are largely unknown, short-chain fatty acids (SCFA), particularly
butyrates, are speculated to have a key role in gut-brain crosstalks
[for an extensive review see Dalile et al. (53)]. SCFA produced
by the bacterial commensals in the gut are able of signaling
the brain indirectly via vagus nerve activation or directly via
neurotransmission by influencing dopamine, glutamate and GABA
synthesis (54) (Figure 1).

Butyrates produced in the gut can also directly be transported
across the blood-brain-barrier (55). Administration of probiotics
can increase butyrate-producing bacteria in the gut and the
supplementation of prebiotics promotes their production of
butyrates (56, 57) and possibly hippocampal plasticity through
enhanced BDNF expression (56). As an antioxidant response,
probiotics also have the ability to down-regulate the production
of inflammatory cytokines within the hippocampus (58). It
could be shown that 4-week probiotic supplementation improved
hippocampal memory performance and enhanced prefrontal
brain signal in healthy volunteers (59). A 12-week probiotic
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FIGURE 1

(A) SCFAs produced by bacterial commensals in the gut signal the brain via vagus nerve or neurotransmission influencing glutamate and GABA
synthesis (54). Vagal sensory signaling enhances memory (49), facilitates neurogenesis, and increases the expression of BDNF (50, 51). A decrease in
the BDNF, which regulates hippocampal neuroplasticity (46), decreases learning and memory functioning (47). GABAergic and glutamatergic
neurotransmission drives elevated striatal dopamine (20–22). Hippocampal hyperperfusion predicts hippocampal volume loss (26). Hippocampal
hyperactivity results in excitation/inhibition (glutamate/GABA) imbalance which contributes to hippocampal volume loss (39, 40) leading to memory
impairment. (B) Discovery of gut microbiome markers: (1) curve of psychosis progression adapted from Fusar-Poli et al. (118) and Schultze-Lutter et
al. (119), (2) peripheral signals such as stress (e.g., cortisol, sirtuins), inflammation (e.g., CRP, IL, TNF-α), plasticity (BDNF), and vagal signaling (e.g.,
ghrelin), and (3) first psychotic episode. Figure 1 was created with BioRender.com.

supplementation also improved cognitive function in older adults
accompanied by increased levels of BDNF and changes in
the gut microbiota (60). The most intriguing support for gut
microbiota-hippocampus interactions comes from a recent fecal
microbiota (FMT) transplantation study in mice (61). In this
study, FMT from young to aged mice reversed brain immunity,
hippocampal metabolome and transcriptome, as well as attenuated
memory impairments.

To conclude, accumulating evidence from animal research and
(intervention) studies in healthy volunteers reveal the critical role
of the gut microbiota in the regulation of hippocampal plasticity,
inflammation and hippocampus-dependent memory (62).

Gut microbiota and mechanisms of
psychosis pathology

Many risk factors for psychosis such as maternal infection,
stress and malnutrition, early life stress, smoking and cannabis
use, as well as urban environment and migration are associated
with changes in gut microbiota [for a review see Kelly et al.
(63)]. As stated above the gut microbiota also has an impact
on different psychosis-relevant neurotransmitter systems within
the hippocampus-striatum-midbrain network such as dopamine,
GABA or glutamate (63). For instance, Heijtz et al. (64)
showed that mice developmentally lacking any gut microbiota
exhibit elevations in dopamine turnover in the striatum coupled
with a hyperactivity phenotype. This is of particular relevance,
as elevated striatal dopamine levels are evident in psychotic
patients (65) and CHR individuals, especially those who later

developed full-blown psychosis (66, 67). A groundbreaking
study has further shown that optogenetic stimulation of gut
vagal afferents mediated motivation for reward and striatal
dopamine activity in mice (68), establishing a neural circuit
for gut-induced reward. This resonates with previous evidence
demonstrating that alterations to the gut microbiome can affect
behavioral responses to psychostimulant drugs, possibly via
altered dopamine and glutamate-related transcripts in the ventral
striatum (69). Of note, decreased ventral striatum activation
during reward processing has consistently been reported in
patients with psychosis (70). The gut microbiome also influences
GABA. Indicatively, GABA levels are decreased in the stool and
blood of germ-free mice (71). Germ-free mice receiving FMT
from schizophrenia patients had lower glutamate and higher
GABA in the hippocampus and displayed schizophrenia-relevant
behaviors (72).

Several gut bacteria are known to produce GABA, while
Lactobacillus rhamnosus is the most cited (73, 74). Previous
preclinical studies showed that L. rhamnosus, a butyrate-producing
bacterial strain (75), increased GABA receptor levels in the
hippocampus (76). Notably, the increase in hippocampal GABA
receptor levels was not found in vagotomized mice, identifying
the vagus as a major regulator between the gut microbiome
and the brain (77). A previous magnetic resonance spectroscopy
study further revealed that 4-weeks of supplementation with
L. rhamnosus increased brain GABA and glutamate in mice
(77). These findings correspond with another animal study
indicating that prebiotics like fructo-oligosaccaride and galacto-
oligosaccharide can increase GABA receptor gene expression in the
hippocampus (78). This raises the question whether the postulated
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glutamate/GABA imbalance in psychosis (39, 40) is accompanied
or strongly driven by gut microbiome alterations and whether they
can be normalized with microbial interventions. The ability of
certain gut bacteria such as Lactobacillus brevis DPC6108 to convert
glutamate to GABA (79) is of particular interest.

Gut microbiota composition in
schizophrenia

At present, only a few studies used next-generation sequencing
to explore microbiota alterations in patients with schizophrenia
and even though there are inconsistent findings in alpha diversity
measures so far, differences in beta diversity appear to be consistent
in schizophrenia (80, 81). Furthermore, there are significant
differences in microbiota composition in schizophrenia compared
to healthy volunteers, as listed in Table 1 (71, 82–89). A recent
meta-analysis suggests that schizophrenia and other psychiatric
disorders, are associated with a reduction of anti-inflammatory
butyrate-producing bacteria, while pro-inflammatory genera are
enriched (81).

Further evidence for a relationship between gut microbial
composition and schizophrenia comes from interventional
studies with probiotics. In an open-label single-arm study,
Okubo et al. (90) found that 4 weeks of administration of
Bifidobacterium breve improved symptoms of anxiety and
depression. Furthermore, combined probiotics and vitamin D
supplementation for 12 weeks significantly improved psychotic
symptoms in schizophrenia patients accompanied by decreases of
C-reactive protein concentrations (91).

Gut microbiota composition in early
psychosis

Evidence of microbial alterations in early stages of psychosis
comes from two studies and is thus very sparse. In a study
with FEP patients, Schwarz et al. (92) found differences at the
family level; Lactobacillaceae, Halothiobacillaceae, Brucellaceae,
and Micrococcineae were found to be increased, whereas
Veillonellaceae were decreased in FEP patients compared
to controls. In subjects with FEP they found statistically
significant increases among genera in, Lactobacillus, Tropheryma,
Halothiobacillus, Saccharophagus, Ochrobactrum, Deferribacter,
and Halorubrum. In contrast, Anabaena, Nitrosospira, and
Gallionella showed decreased levels. Of note, the level of
Lactobacillus correlated positively with the severity of positive
symptoms and negatively with the degree of functioning.
Furthermore, patients with the strongest microbiota changes
at baseline showed poorer response after up to 12 months of
antipsychotic treatment (92).

Preliminary evidence from a single study including 19
unmedicated ultra high-risk subjects and 81 high-risk individuals
showed that the orders Clostridiales, Lactobacillales, and
Bacteroidales and genera Lactobacillus and Prevotella were
increased in ultra high-risk compared to high-risk and healthy
controls (93). At the species level, only Lactobacillus ruminis was
identified by both methods together as a significant feature in the
ultra high-risk group.

Findings of the order Lactobacillales and the family
Lactobacillaceae in phylum firmicutes, as well as order Prevotella
in FEP and ultra high-risk subjects are consistent with the
findings in schizophrenia (Table 1). Intriguingly, they further
found an elevation in the SCFA related pyruvate synthesis in
ultra high-risk subjects (93). The latter result is not surprising
given that Clostridiales, Prevotella, and Lactobacillus are SCFA-
producing bacteria (53). It is important to emphasize that type and
concentration of SCFAs differently influence microglial activation,
a marker of neuroinflammation (94). While butyrate can inhibit
microglial activation (95), propionic acid/propionate (biosynthetic
product of pyruvate) can promote microglial activation (96).

Discussion and future directions

To date psychosis is associated with structural, functional and
chemical alterations in the hippocampus. Compelling preclinical
evidence further demonstrates strong interactions between the
hippocampus and gut microbiota, suggesting that the hippocampus
anomalies seen in psychosis might be related to gut microbiota
alterations. In this final section, we propose potential new
avenues for exploring gut microbiota–hippocampus synergisms
in emerging psychosis. An overview of potential mechanistic
pathways linking gut microbiota and hippocampal memory is
provided in Figure 1.

Discovery of gut microbiome markers in
early stages of psychosis

The field of psychosis research has recognized the immense
importance of the gut microbiome and the first seminal works have
indicated alterations in the gut microbiota of patients. However,
while there is evidence to suggest that the gut microbiome can
influence adult hippocampal neurogenesis and impact disease
progression, our current understanding of underlying mechanisms
is still limited (97). Thus, more large-scale studies of the gut
microbiome using next-generation state-of-the-art sequencing in
human subjects throughout the psychosis continuum are required
(Figure 1). Of particular interest are SCFA-producing bacteria,
which are known to mediate cognitive processes (53). Current
findings in chronic schizophrenia patients are partly inconsistent,
probably due to confounders such as different illness duration
and (divergent) antipsychotic medications, in addition to a wide
range of recently discovered microbiota correlates (98), all of which
have an extensive impact on the compositional variation of human
gut bacteria (99). These confounding factors can be avoided by
studying microbiome alterations in unmedicated samples in the
early stages of psychosis. A special emphasis should be placed
on pre-clinical pathologies (such as high schizotypal traits), since
clinical populations are medicated and often suffer from multi-
morbidity. These findings will additionally contribute to answers
around causality: if the gut microbiome is altered at very early
stages, it will strengthen the evidence that changes to the gut
microbiome commence prior to full disease pathology, rather than
in response to disease. Longitudinal designs will help to track gut
microbial patterns over time and if they are predictive of future
memory impairments.
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TABLE 1 Significant changes in relative abundance of microbial taxa in schizophrenia.

Level Increased Decreased Not consistent

Phylum Actinobacteria (87, 112) Firmicutes (86, 112)

Proteobacteria* (84, 86, 89)

Family Actinomycetaceae (89, 113) Alcaligenaceae (87, 92) Enterobacteriaceae (72, 84, 86)

Prevotellaceae (72, 86) Pasteurellaceae (84) Succinivibrionaceae (84, 86)

Desulfovibrionaceae (89, 113) Lachnospiraceae (72, 86, 89) Enterococcaceae (84, 87)

Lactobacillaceae (84, 86, 92) Turicibacteraceae (84) Ruminococcaceae (113, 114)

Christensenellaceae (84) / Veillonellaceae (72, 84, 86, 92)

Phylum firmicutes Anaerotruncus (89, 113, 115) Coprococcus (86, 89) Blautia (86, 89)

Ruminiclostridium (89, 113) Faecalibacterium (89, 112) Clostridium (84, 86, 116)

Coprobacillus (84, 115) / Turicibacter (84, 113)

Veillonella (84, 115) / Megasphaera (84, 86, 87)

Lactobacillus (84, 86, 92, 112, 115) / Enterococcus (84, 87, 115)

Acidaminococcus (86, 115) / Streptococcus (84, 86)

Flavonifractor (89, 113) / /

All other phyla Actinomyces (89, 113) / Bifidobacterium (115, 117)

Collinsella (86, 112) / Bacteroides (84, 117)

Eggerthella (87, 89) / Escherichia-Shigella (84, 117)

Prevotella (86, 89)

Bilophila (89, 113)

Citrobacter (86, 115)

Succinivibrio (86, 112)

Methanobrevibacter (86, 115)

Differences were reported at least by 2 studies based on the review and meta-analysis of Nikolova et al. (81). Bold microbial taxa show evidence by more than 2 studies. * Presence of
counterevidence by one study (116).

Quantitative microbiome profiling should be accompanied
by multimodal neuroimaging of the hippocampus, peripheral
markers of inflammation, stress, neuroplasticity, vagal afferent
signaling, and thorough memory assessments. In accordance with
the MAM model (20, 100), hippocampal perfusion, GABA and
glutamate, as well as hippocampus activation during episodic
memory processing represent measures of special interest. Machine
learning and mediation analyses can be conducted to test
relationships between the gut microbiota, hippocampus function
and episodic memory performance. Causality (proof-of-principle)
between gut microbiota, hippocampus measures and memory
can be accomplished through FMT studies from patients
to germ-free mice followed by in vivo microdialysis and
behavioral/cognitive testing. The overall aim of this research line is
to identify targets along the gut microbiota-brain axis for improved
prognosis of memory impairments and the development of novel
microbiota-targeted interventions to treat or prevent memory
impairments in psychosis.

Development of microbiota-targeted
interventions

Identifying robust and reliable gut microbiota markers
that mediate hippocampus-dependent memory performance is

indispensable to test target engagement of potential novel
interventions within early phase clinical studies (Figure 1).
The previously established microbiota markers can be used to
test target engagement of putative novel memory treatments
such as for instance next-generation probiotics (NGP) (101) or
endocannabinoids (e.g., CBD), which are interacting with the gut
microbiome (102, 103) and have anti-(neuro)inflammatory and
anti-(neuro)oxidative central properties (104). Target engagement
studies can be conducted in healthy volunteers to validate
proof of mechanism. Subsequent open-label studies in small
clinical or general population samples will follow to test
feasibility, safety and efficacy of compounds with high target
engagement (proof-of-concept). This line of research is essential
for designing more efficient biomarker-tailored drug trials, likely
accelerating the development of new therapeutics for memory
impairments.

The clinical efficacy of promising interventions must further be
validated in large-scale randomized controlled trials (RCTs). The
findings of these trials will also allow to disentangle relationships
between intervention effects on gut microbiota- brain markers
and outcome measures, providing predictive biomarkers for
future patient stratification. Such stratification biomarkers will be
established with state-of-the art machine learning algorithms to
preselect those individuals who are most likely to respond to the
interventions, e.g., by multiclass learning algorithms. Subsequent
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superiority trials can finally be conducted to compare the effects of
biomarker-guided versus non-stratified trial designs.

Conclusion

Elucidating gut microbiota–hippocampus synergisms
constitute a paradigm shift in psychosis research and hold the
promise of identifying novel targets for the development of
memory interventions. This is of clinical relevance, as memory
impairments are associated with a longitudinal risk of developing
psychosis (2) and poor functional outcomes (3, 105) in high-risk
individuals. In order to decipher the directionality and putative
mechanisms of gut microbiota hippocampus interactions in
psychosis we propose multimodal symptom driven studies.

A particular focus should be placed on people with the liability
to develop psychosis prior to clinical manifestation, as this not only
allows for larger and unbiased samples without typical confounders
such as medication and illness duration, but also broadens the
targeted symptoms and audience for early prevention strategies.
By focusing future research on non-clinical subjects expressing
subclinical symptoms such as schizotypal tendencies it will allow
us to uncover the mechanisms of early psychosis development
and to identify targeted points of intervention. There are currently
no licensed interventions to prevent poor clinical outcomes in
high-risk individuals (106–108) and whether antipsychotic drug
treatment for prevention of psychosis in young individuals is
justified remains controversial (109). As Zhang et al. (110) showed
antipsychotics may even have negative effects on brain structure in
CHR which could increase risk of psychosis onset. In combination
with behavioral therapies such as cognitive remediation (111),
microbial supplementation could offer accessible, pragmatical, and
non-stigmatizing therapies for memory impairments in early stages
of psychosis.
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