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Internet addiction (IA) has become an impulse control disorder included in the

category of psychiatric disorders. The IA trend significantly increased after the

outbreak of the new crown epidemic. IA damages some brain functions in humans.

Emerging evidence suggests that exercise exerts beneficial effects on the brain

function and cognitive level damaged by IA. This work reviews the neurobiological

mechanisms of IA and describes the brain function impairment by IA from three

systems: reward, execution, and decision-making. Furthermore, we sort out the

research related to exercise intervention on IA and its effect on improving brain

function. The internal and external factors that produce IA must be considered when

summarizing movement interventions from a behavioral perspective. We can design

exercise prescriptions based on exercise interests and achieve the goal of quitting

IA. This work explores the possible mechanisms of exercise to improve IA through

systematic analysis. Furthermore, this work provides research directions for the future

targeted design of exercise prescriptions.

KEYWORDS

exercise, Internet addiction, brain function, reward system, executive system, decision-
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1. Introduction

The concept of Internet addiction (IA) was first introduced by Ivan Goldbery, an American
psychiatric researcher. Later, psychologist Kimberly Young first defined IA as a “behavior-
control disorder” that did not involve intoxication (1). With the study of the definition of
IA, it gradually extended from psychology to the field of psychiatry. However, no uniform
definition of this concept has been established to date. The academic community still remains
in disagreement with this terminology, and several terms are obscured. Existing research
commonly defines IA as compulsive behaviors and cognitions associated with Internet use that
result in significant distress in daily life (2). With an Internet penetration rate of over 94.9% in
China, the prevalence of IA is on a surge (3). In particular, the proportion of underage Internet
users with Internet dependency psychology has been as high as 17.3% (4). This condition
can lead to social withdrawal tendencies (5), suicidal tendencies (6), and a range of other
behavioral and psychological problems in minors. At present, the brain reward circuit function,
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decision-making ability, and executive ability of IA patients are
significantly lower than those of healthy individuals (7–10).

Although clinical methods for treating IA are available, such
as pharmacotherapy and psychotherapy, they are still deficient to
a certain degree. Studies have shown that medication reduces the
craving for the Internet by suppressing the activity in some areas
of the brain of people with IA. This mechanism brings the patient’s
brain activity into a rewarding balance. Then, the patient’s brain
activity reaches a rewarding balance. Although this method can
improve IA, its exogenous nature leads to severe side effects and
high dependence on the patient. Psychotherapy consists in improving
the cognition of IA patients through psychological counseling, which
leads to abstinence from IA. However, this method suffers from the
disadvantages of long periodicity and low abstinence (11). Exercise
is gradually becoming a major means of intervention for IA due to
its unique advantages of high withdrawal and few side effects. In
comparison with pharmacological and psychological interventions,
the sensations generated during the exercise intervention can replace
much of the experience of internet use, thus allowing patients to
return to real life more quickly. Medication is frequently used with
fluoxetine and bupropion to eliminate anxiety in patients with IA.
However, this effect is not entirely effective because most anti-
anxiety approaches require active neurogenesis (12). Patients with
IA are frequently accompanied by a sense of stigma, and medication
makes them psychologically resistant. Exercise not only helps active
neurogenesis but also greatly reduces the patient’s sense of stigma.
In a meta-analysis, exercise interventions were more effective than
medication (13). A 1 year exercise intervention on IA patients was
found to effectively improve IA and its negative effects on body
and mind, and it significantly improves the patient’s interpersonal
relationship, mental health, and IA symptoms and reduces the risk
of IA (14). Although exercise can be effective in improving IA,
understanding of the underlying neural mechanisms of exercise to
alleviate IA is scarce. Current research has found that exercise may
alleviate IA by improving neuro molecular mechanisms, including
increasing the activation of the brain-derived neurotrophic factor
(BDNF) (13), 5-hydroxytryptamine (5-HT), and noradrenaline (14).
These neural molecules can improve the structure and function of
synapses between neurons and influence the development of new
neurons. In turn, this situation can compensate and restore the
damage caused by IA to brain function (15). With the outbreak
of COVID-19, the frequency of internet use among adolescents
has dramatically increased, in contrast with a decrease in social
and outdoor exercise, leading to an increase in the number of IA
patients (16). We must explore the mechanisms of the effectiveness
of exercise interventions in IA. The databases searched included
PubMed, Google Scholar, Sport Discus, Web of Science, Scopus, and
China National Knowledge Infrastructure. The keywords used in the
search include the following: internet addition, internet dependency,
internet addition, internet dependency, pathological internet use,
on-line dependency, problematic internet use, excessive internet
use, exercise, physical fitness, movement, physical activity, sports,
neurogenesis, reward system, execution system, decision-making
system, brain, brain function, and cognition. From a neurobiological
perspective, we analyze the mechanisms by which exercise improves
brain function in patients with IA. This overview also summarizes the
current state of research on exercise interventions for IA. This work
also suggests the possible neurobiological mechanisms for an exercise
intervention in IA rehabilitation, providing directions for future
exploration of more effective IA treatments and means of prevention.

2. Formation of IA

We need to grasp the process of IA production to effectively
explore the withdrawal mechanisms of exercise interventions for
IA. Young (17) proposed the ACE (Availability, Controllability,
Excitability) model to illustrate the formation process of IA in terms
of three factors: availability, controllability, and excitability (Table 1).
Availability refers to the accessibility of the Internet, the attractiveness
of the Internet content, and the inner satisfaction of using the
Internet. Controllability refers to the degree of control over the use
of the Internet, a stage of withdrawal behavior that creates inner
restlessness. Excitability refers to the dependence on the Internet and
the difficulty in suppressing the strong urge to go online (17).

First, neurons of multiple transmitters, such as dopamine (DA) in
the ventral tegmental area (VTA), project to the nucleus accumbens
(NAcc) via efferent nerve fibers during the embryonic phase of IA
formation. However, the excitability of neurons within the NAcc is
governed by G protein signaling within the prefrontal cortex (PFC),
which causes an increased release of DA in the NAcc (18). After
repeated stimulation, NAcc showed abnormal activity (19). This
condition causes the reward system in people’s brains to be activated.
At the molecular level, this adaptation to the network environment is
a reflection of plasticity changes. This change mainly affects the way
the neurotransmission of DA and glutamate is integrated to enhance
or diminish the inter-synaptic communication (20). Accordingly,
individuals can gain full satisfaction in using the Internet. This
change also upsets the balance of natural rewards and promotes the
formation of IA.

Second, as people unusually use the Internet for longer periods
of time, the rewards system becomes more sensitive to the use of the
Internet. This situation occurs because 1FosB (a marker of repetitive
neuronal activity associated with reward) continues to accumulate
when IA patients use the Internet. After removal of the stimulus, this
marker remains in the brain for a long time (21). This phenomenon
not only enhances the motivation and sensitivity of IA patients to
rewards (22) but also reduces the aversion sensitivity (22). When
patients at this stage do not use the internet, they become upset by
withdrawal. However, the rewards obtained from occasional Internet
use no longer maintain the homeostasis of DA in the brain. Patients
pursue longer use of the Internet to satisfy pleasure or to reduce
negative emotions. This behavior enabled the patients to receive more
dopamine reward, causing them to normalize their dopaminergic
energy. Nonetheless, this repeated stimulation can contribute to the
development and maintenance of IA (23), creating a vicious cycle that
can lead to an imbalance in the reward system.

Finally, when the patient has formed a habit of using the Internet,
the end stage of IA formation has been reached at this time. During
this phase, glutamatergic projections from the anterior cingulate
gyrus and orbitofrontal lobe to the NAcc cause adaptive changes
in nerve cells. However, this change reduces the value of natural
rewards in the patient’s brain and instead enhances the pursuit of
addictive behaviors (18). A reward circuit is formed in the striatum
cortex regarding IA (Figure 1). First, large amounts of dopaminergic
input from the orbitofrontal cortex, the anterior cingulate cortex,
and the midbrain pass through the nerve fibers to the striatum.
The striatum then projects information to the ventral pallidum
and the VTA/substantia nigra. Finally, the ventral pallidum and
the VTA/substantia nigra projects information to the PFC, NAcc,
hippocampus, and amygdala. Accordingly, a reward cycle is created
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TABLE 1 Formation process of Internet addiction (IA) in the Availability, Controllability, Excitability (ACE) model (Kimberly S. Young).

Stage Features Performance

Indulgence and revelry NAcc is unusually active, and the reward system is shifting from natural rewards to
behavioral inducements.

Hard to resist the urge to use the Internet.

Indulgence and revelry The dopaminergic system causes an imbalance in the reward system and a shift in
motivation to use the Internet from pleasure seeking to alleviating negative emotions.

Severe weakening of inhibitory control and withdrawal
syndrome.

Desire and seek Increasing imbalance in the reward system and a dramatic increase in the thirst for the
Internet.

Unstoppable urge to surf the Internet, which seriously affects
daily life and impairs the brain function.

FIGURE 1

The basic neural circuit of reward for internet addicts.

(24). The reward system for IA patients will continue to be out
of balance during this phase. This condition is due to a dramatic
decrease in dopamine D2 receptor and dopamine transcript levels in
the patient’s NAcc (25). Such a circumstance, coupled with changes in
neuroplasticity mediated by glutamatergic signaling, further disrupts
the regulation of reward and emotion circuits in the PFC region (26).
At this time, if the Internet is not used for a long time, the IA patients
will have an uncontrollable urge to go online, which will seriously
affect their normal life.

3. Abnormalities in brain regions
associated with reward, executive,
and decision systems in IA patients

Currently, researchers commonly use different
neurovisualization methods, such as electroencephalography (EEG),
positron emission computed tomography (PET), single photon
emission computed tomography (SPECT), functional magnetic

resonance imaging (fMRI), and structural magnetic resonance
imaging (sMRI), to study IA. The structure and function of the IA
patients’ brains are extensively studied by these methods when they
are in task conditions or resting states. Based on the assessment of
the gray matter volume and functional connectivity, the researchers
found that the IA patients had some degree of impairment in three
systems: reward, executive, and decision-making. This alteration in
the brain structure and functional connectivity of the various regions
results in abnormal brain function in IA patients.

3.1. Reward system

The reward system is thought to be the most critical neurogenetic
basis for addiction. The key structures of this system are the anterior
cingulate cortex, orbitofrontal cortex, dorsal prefrontal cortex, limbic
striatum, VTA, thalamus, and midbrain (27). Neuroimaging studies
have shown a significant decrease in gray matter volume and
changes in white matter fiber tracts in the PFC region of IA
patients (28). The functional and structural connectivity of the
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pathway between VTA and NAcc to the medial orbitofrontal cortex
was significantly reduced. However, this abnormal performance
affects sensory integration and sensory information processing (29).
Dopamine neurons within the VTA project to the NAcc and PFC
as part of the limbic pathway in the midbrain and are critical for
reward. The diminished function of the reward system in IA patients
was demonstrated by fMRI (30, 31). This result is consistent with
the decreased availability of the DA receptors in the striatum of IA
patients observed by PET (32). In addition, patients with IA have
reduced levels of dopamine D2 receptor availability within various
subregions of the striatum (33). This reduction must be rewarded
by more network participation to normalize its own dopaminergic.
At this time, the patient develops a higher craving for the Internet,
which enhances activation of the left superior frontal gyrus of the
brain (34). This condition It can make IA patients more sensitive
to getting rewards and ignore the adverse effects. IA patients will
prefer immediate rewards to delayed but more favorable rewards
(35, 36). Immediate rewards meet the physical and psychological
needs of the patient. Upon receiving an immediate reward, dopamine
neurotransmitters are released in the brains of IA patients, giving
them a sense of psychological and physical satisfaction. Thus, we
can restore the brain’s reward system by improving the brain’s
dopaminergic levels, which improves IA.

3.2. Execution system

The executive function of the brain plays an important role
when people are faced with a multitude of problems and need to
quickly select the necessary information. This function enables many
cognitive processing processes to simultaneously operate to optimize
brain cognition to make optimal choices. The study found a reduction
in the volume of gray matter in some brain regions in IA patients,
including the dorsolateral prefrontal cortex, orbitofrontal cortex, and
cingulate gyrus (37). These regions are thought to be important
brain areas involved in cognitive and executive control (38–40). This
notion suggests that the executive dysfunction in IA patients may be
related to abnormalities in their brain structure. However, changes
in the brain structure lead to a decrease in nerve cell activity in
the brain regions, which results in impaired brain function. In the
Stroop task, impaired executive ability mechanisms were revealed by
recording relevant brain potentials in IA patients. This injury does
not successfully inhibit brain activation (41). However, the continued
activation of the brain may cause IA patients to lose the ability to
judge short-term benefits versus long-term damage, driving them
to seek immediate rewards (42). Addiction is not only associated
with the breakdown of the structure and function of separate brain
regions but also has a relationship with the functional connectivity
of individual brain regions. The functional connectivity of the
executive control network was found to be significantly lower in IA
patients than in healthy individuals by fMRI scans (43). A reduced
anti-correlation was observed between the medial prefrontal cortex
and the anterior cingulate gyrus. These reductions in functional
connectivity may cause dysregulation of cognitive control networks
and reduce cognitive efficiency (30). Another study found impaired
inhibitory neuromodulation of PFC by putamen when the IA patients
performed a cue craving task (42). Furthermore, the study of IA
was refined. The dorsolateral prefrontal cortex, cingulate gyrus,
and medial prefrontal cortex brain regions are more active in IA
patients when they are in the Internet state. This activation results in

diminished cognitive executive control and a strong craving response
to the network. Patients with IA exhibit longer reaction times and
higher error rates in task states compared with normal individuals
(41). Moreover, the Internet thirst is higher in the quiet state. This
cognitive impairment increases the likelihood that IA will be difficult
to control (44).

3.3. Decision-making systems

Decision-making is the ability of an individual to make the best
choice from among multiple options. The decision-making process
is complex and characterized by risk aversion. Addicts reap high
rewards and often ignoring negative consequences. This tendency
occurs because of abnormalities in decision-making and impulse
control (45, 46). Abnormal decision-making behaviors may reflect
dysfunctions in the structure and function of the brain’s decision-
making system. Studies have shown that patients with IA have
reduced white matter density and gray matter density in the inferior
frontal gyrus and insula (9). The inferior frontal gyrus is an important
brain region for assessing the relationship between reward and risk
(47). Meanwhile, insula integrates mutual perception states into
conscious sensing and involves risk and reward in the decision-
making process (48). Damage to the inferior frontal gyrus and
insula inevitably produces unfavorable decision-making. Structural
changes in the associated brain regions can also cause abnormalities
in brain function. This abnormality is manifested by less oxygen
level-dependent signal activation in the inferior frontal gyrus (49)
and enhanced functional connectivity in the insula. However, the
functional connectivity of the insula is positively correlated with
impulsivity (50). Consequently, patients with IA show poorer control
in the face of greater attraction. In addition, the IA symptoms
are accompanied by a range of psychological problems, such as
depression, social fear, and suicidal tendencies. These problems
may also be related to dysfunction in the conversion of somatic
and emotional sensory signals (51), which affects cognitive abilities.
The likelihood of poor decision-making is increased in IA patients.
Another study found that IA patients performed significantly lower
in terms of decision quality by using physiological markers of late
positive potential (LPP) and identifying the source of LPP (35).
In summary, the IA can seriously affect decision-making and risk
assessment capabilities. Patients with IA exhibit a reduced aversion
to risk and are unable to adequately assess the potential loss behind
risky choices. The patients are also unable to effectively control their
reward-seeking behavior, which leads to higher risky choices (49).
This situation may be one of the reasons why IA patients continue to
use the Internet. The damage to brain areas caused by IA differs from
substance addiction because it tends to be more of a spontaneous
processing of information by the brain (36). Specifically, the decision-
making and risk-assessment abilities of IA patients can be enhanced
by human intervention.

In summary, patients with IA exhibit higher impulsivity, reduced
ability to delay gratification and assess risk, altered expected
outcomes for risky situations and decisions, and the presence of
risk-taking tendencies. This performance behavior is closely related
to abnormalities in the brain structure and function. Although
the damage to the brain from IA is described in this work in
three systems, evidence shows that they are functionally related
and could potentially interact to cause inappropriate or maladaptive
behavior (52). The process is intertwined from the generation of
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rewarding affective and cognitive responses to the reduction of
executive function and inhibitory control and to the generation of
adverse decisions. Given that the IA patients respond to cues and
crave networks, the dysfunctional interaction between their brain’s
executive function impairment and contextual reward seeking may
promote adverse decision-making. Despite knowing the negative
consequences of long-term Internet use, people with IA seek short-
term satisfaction to reduce cravings and increase emotional decision-
making through Internet use. People will still use the Internet for long
periods of time.

4. Exercise intervention to improve IA

Internet addiction is a behavioral addiction that triggers
structural changes in the brain’s reward system, giving the brain
transcendental pleasure. However, this condition can also cause
damage to the structure and function of the brain’s reward, executive,
and decision-making systems. Changes in the patient’s reward
circuitry are a key factor in addiction and a pathway to recovery.
However, no standard of care is available for the treatment of
IA. Currently, the four commonly used treatments are exercise
prescription intervention, group counseling, general psychological
intervention, and cognitive behavioral therapy. Exercise prescription
interventions are currently the optimal solution for interventions
in IA (53). Exercise prescription interventions are easier and
more economical than the other three interventions. The physical
sensations induced by prolonged exercise not only replace the
satisfaction generated by Internet use but also improve the brain
function (54), causing withdrawal from IA.

Some studies have shown that regular participation in physical
activity is not only effective in relieving IA but also in preventing
its occurrence. We should intervene by controlling the duration,
intensity, and frequency of exercise. In comparison with acute
exercise, the duration of chronic exercise has a moderating role in
addiction symptomatology, and chronic exercise for at least 12 weeks
is most beneficial in reducing addictive behaviors. Improving reward
and inhibitory control structures and functions in the associated
brain through exercise requires longer exercise programs (e.g.,
12+ weeks) for brain-related morphological adaptations to occur
(55). This study determined the minimum period of intervention
in which exercise could effectively interfere with IA. Aerobic
intermittent exercise contributes to recovery of the PFC function
and withdrawal from addiction (56), and moderate intensity exercise
reduces craving levels (57). However, the experimental form of this
exercise intervention is rather boring and homogeneous, and the
long-term intervention cannot create a strong desire for exercise in
IA patients, and it cannot replace the satisfaction brought by the
network. To slow down or quit IA, people with IA can acquire
exercise skills, form exercise habits, develop an interest in exercise,
and reduce cyber behavior. A study has proposed the concept of
exercise addiction replacement IA. Forty IA high school students
were developed to master skills, exercise interest, and form exercise
habits through a year-long exercise intervention (the exercise was led
by IA patients). After the intervention experiment, the researchers
conducted a 9 months follow-up. They found that patients with
mild IA showed significant improvement after the intervention,
and patients with severe IA also showed significant improvement
after 3 months of intervention. A total of 45 IA adolescents had

formed exercise habits and quit IA. It demonstrated the effectiveness,
persistence, and low recurrence rate of exercise interventions for
IA and the feasibility of exercise addiction replacement for IA
(14). However, there are differences in the causes of IA, and
different living environments, personalities, and other factors play
a role in the development of IA to different degrees. Accordingly,
exercise interventions should be appropriately combined with
psychological interventions and targeted exercise choices to more
effectively improve IA. In conclusion, physical exercise can effectively
strengthen the muscle strength of IA patients, enhance self-
confidence, develop tough willpower, enhance interpersonal skills
in real life, and reduce the impulse to go online. Therefore, in
future exercise interventions, we need to design exercise prescriptions
according to their exercise interests and in response to the internal
and external factors that produce IA. Such work will be more precise
and effective to achieve the goal of withdrawal from IA.

5. Mechanisms of exercise enhanced
neuroplasticity

Neuroplasticity refers to the ability of the nervous system to
produce adaptive responses by improving its structure, function,
and connectivity following stimulation (58). This feature involves a
variety of mechanisms, such as neurogenesis, synaptic plasticity, and
dendritic plasticity (59). The developing brain is more neuroplastic
than the adult (60). Some studies have shown that neuroplasticity
can be induced through physical exercise after an adult brain injury
(61, 62).

5.1. Neurogenesis

Neurogenesis is one of the main manifestations of brain
plasticity at the cellular level. It refers to the generation of new
neurons by neural stem cells or neural progenitor cells under
induction (63). Neurogenesis still exists in the adult central nervous
system, and the hippocampal dentate gyrus maintains the ability
to generate new neurons throughout life (64). Aerobic exercise
enhances the proliferation, migration, survival, and differentiation
of neural stem cells or neural progenitor cells in the dentate
gyrus portion of the hippocampus, promoting neurogenesis (65).
In synaptic transmission, multiple presynaptic axons may innervate
a postsynaptic cell. Aerobic exercise disrupts the balance of
competition between synapses, causing changes in synaptic circuits
and a reorganization of synaptic connections, which affects the
structure and function of the brain (66). Furthermore, aerobic
exercise alters the hippocampal gray matter volume, possibly
by changing neurogenesis, glial cell production, or the strength
of interneuronal connections (synaptogenesis), thereby modifying
existing cortical structures (67).

5.2. Synaptic plasticity

Synaptic plasticity includes short-term synaptic plasticity and
long-term synaptic plasticity. Short-term synaptic plasticity consists
mainly of facilitation, depression, and potentiation. Meanwhile, long-
term synaptic plasticity is mainly manifested in the form of long-term
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potentiation (LTP) and long-term depression (68). Exercise increases
the synaptic strength of the perforant pathway connecting the
entorhinal cortex to the dentate gyrus, which can enhance LTP (69).
In neurodegenerative diseases, cognitive decline is accompanied by a
reduction in hippocampal neurogenesis (70). The main pathological
features are neurofibrillary tangles and the formation of amyloid-
beta (Aβ) plaques (71). Aβ can inhibit LTP in the dentate gyrus via
N-methyl-D-aspartate receptor (NMDA) signaling (72). At the post-
synaptic regulation level, the BDNF-tyrosine kinase receptor B signal
induces NMDA phosphorylation and increases the opening of ion
channels. The influx of calcium ions can activate Ca2+/calmodulin-
dependent protein kinase II (CaMKII) to maintain enhanced synaptic
efficiency (73). In a rat model, exercise protects synaptic transmission
and LTP in the dentate gyrus and normalizes the levels of synaptic
plasticity-related molecules, such as CaMKII, calcineurin, and BDNF
(74). Thus, exercise enhances synaptic plasticity. In addition, in a rat
model, exercise was found to increase the levels of synaptophysin,
postsynaptic density-95, microtubule-associated protein, and tau
protein in the hippocampus (75). An increase in these indicators
may facilitate the repair and reconstruction of nerve damage and
remodel brain function.

5.3. Dendritic plasticity

Dendritic morphology is a key factor in the proper functioning
of the nervous system, which shows great diversity in different types
of neurons (76, 77). The complexity of this factor directly affects the
function of the nerve tissue. Dendritic remodeling can be observed
under physiological conditions and following neuropathological
stimulation, suggesting that dendrites are dynamic structures (77).
Degeneration of dendrites and loss of synapses may be one of the
mechanisms of brain damage in neurological disorders, such as
Parkinson’s, Alzheimer’s, depression, and other brain injuries (78–
80). In a mouse model with Parkinson’s, the density of dopamine
receptor-containing dendritic spines is reduced. However, exercise
prevented the loss of density of dendritic spines of spiny neurons in
the striatum and upregulated the expression of postsynaptic density-
95 protein, resulting in improved symptoms in Parkinson’s mice
(81). Evidence shows that stress-induced reductions in neurogenesis,
dendritic atrophy, and loss of spines in hippocampal and prefrontal
cortical neurons are involved in the pathophysiology of depression
(79). The use of an animal model of corticosterone-induced
stress demonstrates that physical exercise can reverse inhibited
hippocampal neurogenesis and reduce spinal density. Running
the wheel enhanced the hippocampal neurogenesis, increased the
dendritic length, and restored the spinal density, thereby improving
the depressive activity in a rat stress model (82). Recent studies have
found that exercise can reverse prefrontal cortex abnormalities in
dendritic length and branching (83). These exercise-induced benefits
suggest that exercise can be used as a treatment modality for some
neurological disorders to improve the condition of patients.

6. Exercise improves brain damage in
Internet addicts

We believe that exercise is the most effective way to promote
physical health. The neurotransmitters and neurotrophic factors

that benefit the brain are synthesized after physical exertion (84,
85). These factors may delay the progression of neurodegenerative
diseases and mental disorders (86) and promote a sense of pleasure
and wellbeing, thereby promoting physical and mental health. Studies
have shown that exercise-induced neurotransmitter release and
elevated neurotrophic factor activity contribute to neuroplasticity
(87) and normal cortical activity (88). Glial cell-derived neurotrophic
factor (GDNF), 5-HT, and vascular endothelial growth factor
production are important not only for neurogenesis but also for
neuronal maintenance and prevention of psychological disorders
(89). These neurotrophic factors are induced by muscle contraction,
causing changes that promote the formation of a more plastic
and adaptive brain and enable the maintenance of the brain
structure and function.

6.1. Changes in neurotransmitters and
their receptors in the brain

6.1.1. Dopamine and its receptors
Dopamine and its D2 receptors are closely associated with

activation levels in the brain regions, such as the PFC, anterior
cingulate gyrus, and insula, which are responsible for the reward,
execution, and decision-making. However, dysregulation of the
dopamine system underlies IA behavior and craving, ultimately
causing uncontrolled behavior in IA patients. Studies have shown
that exercise alters circuits of dopamine in the midbrain-striatum
and those involved in emotional assessment (90). Exercise increases
the synthesis and release of DA and stimulates neuroplasticity.
These receptors can act as powerful triggers not only for peripheral
adaptation processes (e.g., cardiovascular and musculoskeletal
adaptation) but also for brain plasticity (91). People’s chronic
addiction to the Internet can cause blockage of dopamine release
pathways in the brain. After a motor intervention, the IA reward
circuit triggered by DA was not activated, and the release of DA
and the utilization of its receptors were significantly decreased
(92). In this case, IA patients’ satisfaction was suppressed, thereby
reducing their participation in the network. Moreover, active aerobic
exercise not only enhances dopamine conversion but also increases
its density, inducing neuroadaptation and improving control. The
adherence of IA sufferers to long-term voluntary exercise can
promote the release of DA in the striatum, improve DA transmission,
and increase dopamine D2 receptor activity. Furthermore, such
adherence can improve the dopaminergic system of IA patients,
maintain midbrain dopaminergic homeostasis, and normalize the
reward system (93). In addition, an association exists between
low levels of monoamine neurotransmitters and negative mood in
patients with IA. Long-term aerobic exercise increases the release of
monoamine neurotransmitters (dopamine and norepinephrine in the
hypothalamus), thereby reducing feelings of stress and anxiety (94)
and cyber behavior.

6.1.2. Glial cell derived neurotrophic factor
Glial cell-derived neurotrophic factor is a neurotrophic factor

that is essential in maintaining the development, survival, and
maintenance of dopaminergic neurons in several brain regions
and midbrain dopaminergic neurons (95). Although the role of
GDNF in IA is unknown, studies on IA demonstrated that GDNF
is negatively correlated with the degree of IA and is expected
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to be a target for the IA treatment (96). Studies have shown
that GDNF promotes the survival and differentiation of midbrain
dopaminergic neurons, which may be related to midbrain tyrosine
hydroxylase activity. These changes may alter the synapses and
responsiveness of the limbic dopaminergic system in the midbrain of
IA patients, ultimately weakening the stimulus or reward pathways
and neural adaptations associated with addiction (97). GDNF is
also important in the development and maintenance of spinal
motor neurons and midbrain dopaminergic neurons (98). Exercise
can affect the function and structure of parts of the brain by
modulating the levels of trophic factors, such as GDNF (99), to
regenerate damaged axons and alleviate symptoms in IA patients. In
research regarding the mode of movement, the GDNF expression is
regulated in an activity-dependent manner, and the expression may
depend on the recruitment of muscle fibers. After a low-intensity
exercise, the increased expression of GDNF was observed in the
soleus (predominantly slow contraction). By contrast, this expression
is reduced in the extensor longus digitorum (predominantly fast
contracting) (100). We should increase the recruitment of fast
muscle fibers to obtain higher GDNF levels and achieve the
effect of treating IA.

6.1.3. 5-Hydroxytryptamine and its receptors
5-hydroxytryptamine, also known as serotonin, is an important

inhibitory neurotransmitter in the brain. In neural circuits, 5-HT
neurons in the dorsal raphe nucleus (DRN) can receive projections
not only from the forebrain and limbic system but also to these
brain regions, forming complex neural loops (101–103). In the
reward neural circuit, the 5-HT neurons within the DRN form the
reward neural circuit by interconnecting with dopamine neurons
within the VTA, glutamatergic neurons within the PFC, and gamma-
aminobutyric acid neurons within the NAcc. In the exploration of
addictive disorders, a decrease in the activity of the 5-HT system
was found to be associated with it. 5-HT2A receptors were found
to be reduced in the left and right temporal cortices of IA patients
by PET (32). The decreased levels of this receptor can increase
the anxiety in addicted individuals and may trigger compulsive
online behavior. In mice experiments, exercise may promote 5-HT2A
receptor mediated γ-aminobutyric acidergic inhibition of input to the
amygdala, resulting in anxiolytic effects on psychological stress (104).
In addition, acute aerobic exercise can enhance individual response
inhibition by increasing the expression of 5-HT, thereby suppressing
the urge to go online in IA patients (105). This condition indicates
that the expression of 5-HT and its receptors can be increased by
acute exercise, thereby reducing the anxiety associated with not being
online. Furthermore, the improvement of inhibitory function in IA
patients is promoted, and the strong urge to go online is suppressed.

6.2. Structure and function of the brain
regions associated with reward, executive,
and decision-making systems

6.2.1. Reward system
Prolonged, repeated voluntary exercise produces a reward state

that persists after exercise has ceased and induces plastic changes in
the limbic reward pathways of the midbrain (106). This change is
the basis for the formation and consolidation of addictive behaviors.
After exercise, the GDNF levels in the striatum improve (107),

and 1FosB (108) and delta-opioid receptor (DOR) expression is
enhanced. 1FosB, which is a molecule involved in addiction to
repeated stimuli, is an important transcription factor. The activation
of this factor after exercise induces habituation in IA patients
and causes changes in the transcription of genes in their reward
circuit. Activation of DOR promotes the release of DA in NAcc
(109) and the ability to synthesize DA. This condition may help
in enhancing the dopamine neurotransmission in NAcc (106)
because the striatal adenosine and dopaminergic systems are targets
of exercise-generated neuroplasticity. Meanwhile, adenosine is the
primary regulator of striatal activity. Exercise can affect the striatal
and dopaminergic systems by influencing the activity of adenosine
and DA. A moderate increase in mRNA for dopamine in striatal
subregions was found after exercise via radioactive or double-labeled
fluorescence in situ hybridization assays. By contrast, the mRNA
levels of adenosine receptors and receptors in the striatum were
reduced (110). Clinical studies suggested that the reduction in mRNA
levels of adenosine receptors after exercise may be associated with
a reduction in addictive properties. The link between exercise to
improve IA and striatal adenosine receptor mRNA needs to be
further explored. Additional studies have shown that the interaction
between BDNF and dopamine signaling in the limbic circuits of the
midbrain is critical in rewarding behavior (111, 112). After exercise,
an increased availability of dopamine D2 receptors was observed
in the posterior shell nucleus (113), and the upregulation of BDNF
molecules stimulated the neuronal growth, thus effectively improving
the reward system. After habitual exercise, the neuroplasticity
in the reward pathway may contribute to the continuation of
exercise, which is associated with the neurotransmission of DA.
This neurological enhancement would inevitably improve the brain
structure and function, especially an increase in PFC volume
associated with reward (114). Such a condition may be effective in
improving the brain function in IA patients. This fact is evidenced
by a reduction in the incidence and severity of IA and by promoting
successful withdrawal from IA.

6.2.2. Execution system
Patients with IA have severely impaired the executive function,

resulting in an unquenchable desire for cyber behavior (43). By
contrast, exercise triggers or enhances complex neurobiological
processes to improve the executive function in the brain. Current
researchers can observe changes in the hippocampus, anterior
cingulate cortex, and dorsolateral prefrontal cortex structures
accompanied by alternations in the cognitive and executive functions
by sMRI. After exercise, the subjects demonstrated an increase in the
hippocampal volume, and a larger hippocampal volume mediated
the association between adaptation and spatial working memory
(115). The volume of the subjects’ anterior cingulate gyrus also
increases with movement, thereby enhancing selection on effort (47).
They also had a significantly improved structure in the dorsolateral
prefrontal cortex. The larger gray matter volume in the dorsolateral
prefrontal cortex mediates the association between the level of
aerobic adaptation and executive function in humans (116). The
structural improvements in the brain regions can effectively promote
executive function. A lower concentration of oxyhemoglobin in the
dorsolateral prefrontal lobe during the recovery period was observed
by fNIRS after moderate and high-intensity intermittent exercise.
This phenomenon contributes to enhanced oxygen utilization and
executive function in the brain. However, the executive function
performance did not immediately improve after exercise but was
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enhanced after 10 min (117). This condition is due to the gradual
metabolic recovery after exercise, and high levels of arousal during
this time may contribute to cognition. In brain energy supply studies,
the subjects’ improved executive function could be maintained for
40 min after a single high-intensity intermittent exercise session
(118). Given that the brain’s uptake of glucose gradually decreases as
the subject’s exercise intensity increases, lactate needs to be used to
compensate for the increased energy required to maintain neuronal
activity during high-intensity exercise. Blood lactate concentration
is positively correlated with executive function in the brain (119).
However, the link between blood lactate concentration and brain
structure has not been fully discussed. On the psychological side,
the chronic stress caused by the continuous involvement in online
games in IA patients causes lower catecholamine levels in the resting
state compared with healthy individuals. Psychological chronic stress
induced by continuous engagement in online games causes lower
levels of catecholamines in IA patients than in healthy individuals
at rest. This condition also causes a sustained downregulation
of receptors for adaptive responses, which results in cognitive
impairment and impaired executive function (120). Although
exercise can improve the catecholamine levels in humans, excessively
high concentrations can instead inhibit the executive function (121).
Therefore, interventions should be based on moderate-intensity
aerobic exercise.

6.2.3. Decision-making system
Decision-making is critical, and the quality of decisions

determines the outcome, which depends on the level of rewards
and execution systems. Patients with IA have impairments in the
reward and executive systems that cause them to choose immediate
rewards for small rewards for gratification over delayed rewards for

large rewards when making decisions. Exercise appears to alter the
efficiency and flexible regulation of neural circuits of cognitive control
(122), thereby improving the decision-making system. Moreover,
exercise can reduce or abstain from IA by improving the functional
connections between networks of brain regions. Functional brain
network connectivity was enhanced in subjects after the exercise
intervention, and a significant correlation was observed between this
functional brain network and the indicators of cognitive performance
(123). However, the varying intensities of exercise have different
effects on decision-making functions. The oxygenation function of
the PFC was found to increase at low, medium, and high-intensity
exercise, and the decision-making function also increased. However,
this function decreases near or above the maximum intensity, with a
consequent decrease in the decision-making function (124). Recent
studies have shown that the insula and superior frontal gyrus cortical
thickness are thinner in exercisers than in sedentary individuals.
These regions are involved in autonomous brain control, stress
response, and negative emotions (125), thus influencing decision-
making functions. By contrast, exercise plays a positive role in
voluntary activity, stress reduction, mood, and sensation (126, 127),
thereby enhancing the insula and superior frontal gyrus cortices. The
next pressing challenge is to explore the link between this positive
effect and the thinner insula and superior frontal gyrus of exercisers.

7. Discussion

In summary, physical exercise can promote neurogenesis and
angiogenesis in the brain by stimulating the specific cortical areas
that induce the release of neurotransmitters and trophic factors.

FIGURE 2

Exercise improves internet addiction and promotes physical health.
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The behavioral and cognitive function in patients with IA must be
improved. This work synthesizes that IA causes abnormal changes
in the brain structure and function, thereby reducing the activity
of the dopaminergic system and limiting oxygen utilization and
functional connectivity of the brain. After we implemented the
exercise intervention, the IA patients could increase the level of
neurotrophic factors and neurotransmitters to a certain extent,
stimulating the growth of neurons and cerebral blood vessels,
which effectively improved the structure and function of the brain
(Figure 2). The functioning of the three systems of reward, execution,
and decision making was enhanced, the amount of time spent online
was reduced, and the severity of IA was mitigated, thus improving
the overall quality of life. Currently, the scientific field of exercise
prescription interventions for IA and other addiction treatments is
rapidly evolving. Exercise interventions do not have the side effects
of pharmacological and other interventions, are easy to implement,
and do not impose a financial burden on families and the society.
However, several areas need to be addressed. (1) At the microscopic
level, exercise directly or indirectly improves the impairment of
brain function in IA patients by promoting the expression of
neurotransmitters, such as DA and GDNF and their receptors.
However, the complex structure of the neural network between IA
and brain function impairment, whether more neurotransmitters are
involved, and adaptive changes in the molecular structure during
exercise intervention need to be explored and confirmed in depth.
(2) To extensively explore the synergistic relationship between the
reward circuit formed by IA and abnormal brain function. To
observe the synergistic changes in exercise intervention and the
adaptive changes in the psychological and physiological behaviors
induced and reveal the changes in the reward system of IA patients
restored by exercise and to improve abnormal brain function. (3)
Exercise improves the executive and decision-making abilities of
people with IA by promoting the brain structure, function (mainly
the PFC system), and levels of various neurotransmitters. However,
are there other associated brain regions or neural molecules? Is there
a synergistic relationship between the corresponding brain regions?
The deeper mechanisms behind the structural and functional patterns
of the exercise facilitated brain remain to be explored. (4) In the
future, we should organically integrate the macroscopic physiological
behavioral manifestations with microscopic biomolecules. Together,
they examine the fit pattern between neurotransmitters and brain

function and behavior in IA patients and deeply explore the
molecular adaptive changes brought about by motor behavior. In
conclusion, with the increasing number of patients with IA, research
on exercise interventions for IA should be continuously improved to
provide a theoretical basis for future treatment and prevention.
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