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Computational psychiatry recently established itself as a new tool in the study of

mental disorders and problems. Integration of different levels of analysis is creating

computational phenotypes with clinical and research values, and constructing a way

to arrive at precision psychiatry are part of this new branch. It conceptualizes the

brain as a computational organ that receives from the environment parameters to

respond to challenges through calculations and algorithms in continuous feedback

and feedforward loops with a permanent degree of uncertainty. Through this

conception, one can seize an understanding of the cerebral and mental processes

in the form of theories or hypotheses based on data. Using these approximations, a

better understanding of the disorder and its different determinant factors facilitates

the diagnostics and treatment by having an individual, ecologic, and holistic

approach. It is a tool that can be used to homologate and integrate multiple

sources of information given by several theoretical models. In conclusion, it helps

psychiatry achieve precision and reproducibility, which can help the mental health

field achieve significant advancement. This article is a narrative review of the basis of

the functioning of computational psychiatry with a critical analysis of its concepts.

KEYWORDS
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Introduction

The brain has been conceptualized as a computer performing continuous calculations
about itself and its environment. Moreover, according to the theory of systems and Bayesian
approaches, the brain is conceived as a complex, non-linear computational device (1, 2). The
mentioned approaches could benefit a further comprehension of multiple levels of analyses that
subsume mental health and psychiatric diseases.

In the psychiatry field, various attempts have been made to understand mental health
and disease fundamentals. However, those intents have generated different explanations within
multiple theoretical models, which are often disconnected and lack of complex understanding
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of mental health and psychopathology integrating many levels and
systems. Thus, a point has been reached where a paradigm shift
is needed. Dimensional and transdiagnostic levels of understanding
are required to better comprehend. Some of the possible answers
have chosen the use of mathematical principles to reach a multilevel
analysis and generate hypotheses that can be validated. Such an
approach provides the possibility of achieving a unifying theory,
increasing accuracy, and reproducing what was found previously by
other authors. In this context, computational psychiatry is a tool for
precisely this purpose. It should be clarified that this probabilistic
view of the brain is open to controversies (3).

Psychiatry has always encountered multiple controversies during
its history. These, in turn, have generated multiple internal and
external crises that have questioned its validity as a science and its
management of mental illness (4–6). These criticisms have focused
primarily on the validity of their concepts and constructs (7), their
diagnostic capacity (8), the reliability between different observers,
and the lack of biomarkers to determine the diagnoses, treatments,
and prognosis of the condition (9, 10). Additionally, they have
focused on the variability of the course of different disorders, typically
heterogeneous in their presentation (11).

Psychiatry has used various approaches to overcome these
criticisms, such as nosological formulations. This strategy attempted
to elucidate their biological basis (12) by achieving greater reliability
in the diagnosis. Such systems have generated multiple syndromes
with significant heterogeneity in their course, clinical manifestations,
prognosis, and response to treatment but grouped under the same
diagnostic category (13). This has raised the possibility that they
also have a different neurobiological basis. It has also shown the
limits of these tools. However, a myriad of empirical data has
been obtained through such systems. Although, this data suffer
from poor integration of cellular, synaptic, neuronal circuitry, and
complex behavioral responses (14, 15). For example, there are strong
interactions between genes and environment at the genetic level,
but no clear paths to how these develop into a specific phenotype.
This also occurs in neuroimaging, where only indirect measurements
of the behavioral variables observed in clinical practice have been
achieved (15). In conclusion, a cohesive model capable of taking data
from different sources and giving adequate weight to each source of
information has yet to be reached.

Computational modeling of behavior was elaborated by
specializations of the neurosciences, which preceded computational
psychiatry. One of the first to do it was computational neuroscience.
It is responsible for studying the brain at a theoretical level,
determining the principles and mechanisms that guide the
development, organization, and process of information (16). This is
achieved using computational models (descriptions and explanations
of processes) that occur at different spatial and time scales and
with non-linear interactions. More specifically, computational
neuroscience makes hypotheses about the processes that operate in
the brain at different analysis levels and unites them to corroborate
them. The goal is to understand the functionality of complex
systems such as the brain, formulating quantitative hypotheses
(17). In this context, computational models give a practical tool to
address specific brain characteristics, such as its emerging functions.
Depending on the question type one wants to answer; one will opt for
a particular abstraction level to form a model. Here, the three levels
of analysis proposed by Marr and Poggio are relevant (18). These
are the computational level (the “why”), which is the most abstract
and deals with logical-mathematical reasoning; the algorithmic level
(the “what”), which evaluates the rules of the process; and, finally,

the level of implementation (the “how”) (19). For this author, brain
research was conceived as a problem of information processing (17).

Based on this, computational psychiatry has appeared as a
way to achieve this integration. Computational psychiatry uses
formal models of brain function to characterize the mechanisms of
different psychopathological manifestations by describing them in
computational or mathematical terms (20). This facilitates the study
and articulation of these data by incorporating knowledge from other
sciences such as cognitive science, computational neurosciences,
and “machine learning” (20–24), trying to translate knowledge
between different levels of analysis. This review aims to give a
comprehensive view of the foundations of computational psychiatry,
highlighting its interactions with different approaches like biophysics
and evolutionary psychiatry to arrive at precision psychiatry.

This field has become an essential tool for finding novel solutions,
encompassing both the context and the individual. In addition to
providing investigative and practical means to arrive at response to
specific needs in these contexts in a cost-effective way. Nevertheless,
it is necessary to understand its foundations and how it applies to
research and clinical purposes.

In this scoping review, we first describe the importance of
computation modeling in psychiatry to face limitations from a
system theory perspective. Then, we explain how computational
models are built, giving particular emphasis on their underlying
concepts. Moreover, we comprehensively explain the statistics
surrounding the computational models and their applications at
different levels of plausible explanations in psychiatric scenarios.
Finally, we reflect on model validation and the potential limitations
of computational psychiatry.

Methods

A narrative review of the literature was conducted, focusing
on computational psychiatry’s fundamental concepts and
applications. To this end, we searched PubMed, MEDLINE,
EMBASE, and EBSCOHost for both narrative and systematic
reviews of computational psychiatry using the terms “computational
psychiatry,” “biophysical psychiatry,” “computational modeling,”
“digital phenotyping,” “precision psychiatry,” and “computational
neuroscience.” After this search, essential studies were also reviewed
within the articles’ references. Articles written in English and Spanish
were selected. Articles based on their publication date were not
excluded. The last search was conducted on 30 December 2022.

Need for comprehensive models of
mental illness

A model is a heuristic way of understanding complex interactions
and their relationships by employing a simple rule (25). In the
case of mental health, modeling used have degenerated into a
diversity of disjointed data from various theories. Additionally,
modeling through the relation between brain activity and psychiatric
phenotypes has many pitfalls because they are focused and predict
complex profiles rather than unitary cognitive processes (7, 25).

Most explanatory models used in psychiatry and psychology
focus on narrative methods, with the problem of approaching human
behavior from only external behaviors or epiphenomena conducts
without ever finding a clear biological causal or mechanistic basis (7,
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25). This approach leads to difficulties in determining clear biological
and clinical processes (25) with implicit categorical errors (26). One
example is the measures based on self-reports with poorly defined
variables and poorly elucidated pathophysiological mechanisms (14).
On the other hand, by not knowing the mechanistic or robust
theoretical approaches to study mental disorders, some studies are
initiated to look for relationships with multiple variables in so-called
“fishing expeditions.” In turn, this can generate associations that do
not reflect the actual phenomenon (27).

Moreover, theoretical models have often been chosen for data-
driven approaches. However, this theoretical approach can exhibit
challenges when studying human behavior as they assume a priori
hierarchies assessing predictors of an outcome and can be restricted
to a partial understanding of a complex model (25). Finally, one can
obtain data replicated by others, assuming a certain degree of validity,
which could ultimately be wrong. In fact, replicability issues represent
one of the biggest current challenges in psychological studies (25).

Computational models applied in
neuroscience and psychiatry

Neuroscience and psychiatry lack methods for constructing,
assessing, and validating theoretical models, which should be more
extensive than describing relationships between different variables
(25). Against this issue, computational modeling of dynamic systems
becomes vital as it allows the generation of data-driven validations of
conceptual reference frameworks and biological measures, avoiding
issues due to spurious statistical associations and biases in building
models (25, 28).

Thus, computational models help simultaneously manage
massive information sources and articulate biological, psychological,
and contextual models for understanding human behavior. Different
approaches as machine learning, deep learning, and explanatory
modeling (13, 29), help to process information building in models
only determined by data avoiding theoretical and restriction biases.

An important method computational psychiatry uses is
differential equations, which express neurobiological systems’
functioning more closely. They represent changes as a function of
time codified by the interactions with other non-linear variables (25).
Consequently, they can join several equations that mathematically
specify relationships between symptoms, environmental factors,
and neurobiological substrates (28, 30, 31). This exemplifies the
possibility of reconciling different perspectives and empirical
data, providing cohesive, stratified models for understanding
complex phenomena.

A big group of mental disorders computational models
focuses on altered learning and decision-making processes as the
central components (15), highlighting the relevance of information
integration processing. These learning models have been used in
computational cognitive neuroscience, using tools like machine
learning to model a specific phenomenon. These cases are usually
divided into supervised, reinforcing, and unsupervised. Within these
models, it is assumed that the objective of learning is to form storages
of representations to be remembered and guide behavior, although
the mechanisms to perform it may differ according to the model
(29). In the case of supervised learning, specific feedback is received
after the experience.

In contrast, in reinforcement, this feedback is not explicit and
can be delayed and influenced by multiple factors. In addition, it can

be done in the form of punishments or reinforcements, which may
not be directly associated with the behavior. Finally, in unsupervised
learning, the subject is the one who must make sense of the experience
without any feedback.

Another use of the computational approach in psychiatry is
modeling a specific phenomenon. To achieve this, computational
models offer a tool to facilitate it via the generation of self-
generated models that synthesize data through the sampling of
inputs and achieve an approximation of specific outcomes, thus
integrating Bayesian probability (15, 32–34). Ultimately, they enable
us to make a probability distribution and hierarchization of the
best predictors of a neural, cognitive, or behavioral state among
massive interactions from different sources of variables (27). In
psychiatry, mentioned models would help us elucidate and better
understand psychopathological phenomena by relating them to
neuronal processes and their normal function (35).

This step can be performed at different levels of explanation, such
as at the molecular level, neural networks, cognitive processes, or
mental symptoms. Computational models now allow us to predict
symptoms and clinical presentation of neuropsychiatric disorders
by studying brain volume information and functional connectivity
networks via data-driven methods (machine learning procedures,
support vector machine methods, or deep learning approaches) (32–
34). Moreover, these approaches have been relevant for biophysical
psychiatry (14), where psychiatric phenomena of interest, such as
psychopathology, relate to alterations in the biophysical properties of,
for example, the membranes of neurons, as seen in other reviews (14).

Moreover, computational methods have helped to understand
the impact of different sources of information in neurodegenerative
disorders (36) or elucidating individual and contextual factors
determining complex behaviors such as violence (37).

Statistical foundations

Computational theories of the mind are based on probabilistic
perspectives. The brain processes are considered mimicking
computational functions of the system to infer the state of its
environment and decide which course of action to follow (35, 38).
The inputs will never be completely reliable, so there will always
be uncertainty that has to be considered when performing any
task. Therefore, Bayes’ theorem (the combination of the initial
expectation of the state of the environment and the probability
of the input determining a modified estimate of the state of the
environment) is used to describe these processes (15, 35). Describing
in such a way brain processes can be translated to computational
psychiatry approach. This contrasts with the statistical approach
used in psychiatry, which asks about the probability that the data
have resulted from the null hypothesis (25) and corresponds more
to discriminative models (35). By contrast, in the computational
psychiatry perspective it is possible to assess different layers of
biological, psychological, and social-contextual information and
use algorithmic approaches to assess multiple interactions between
layers, modeling data and testing those models with complex
validation processes of findings.

Different interactions can be found when computational
approaches are studied in neuroscience and psychiatry. First, some
computational models in neuroscience accept the metaphor of the
brain as a computer (20, 39). Mainly, the models who accept the
metaphor of the brain as a computer describe brain biological
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processes as part of a computer that primarily formulates predictions
on future states based on massive integration of past interoceptive
and exteroceptive information. In this perspective, the brain is an
entity that constantly builds and updates a model of reality through
sensory inputs named generative (40). The optimization of this
generative model must lead to the minimization of free energy
(the energy used by the brain) (2). Moreover, the brain tends to
formulate different predictions and minimize errors to curtail energy
expenditure, which can be done in two ways: either by adjusting the
cognitive scheme of the world or by changing the pattern of action
(15). The latter is essential since it can explain psychopathology,
including functional neurological symptoms (41).

Computational psychiatry is aligned with previously mentioned
notions, as it integrates different levels of information to formulate
appropriate models to describe and understand mechanistically
healthy and pathological behaviors. Moreover, computational
psychiatry performs predictions of potential states and biomarkers
and runs test and retest validations assuming complex heuristics
to predict psychiatric phenotypes (18, 35, 42). The goal is to
generate accurate and robust predictions with the minimization of
the workload to reach meaningful outcomes.

According to Breiman (43), two statistical models are used in
the mentioned approaches. The first is algorithmic or “data-driven”
models, aiming to predict results by having a specific group of data
(inputs) following complex statistical procedures leading to massive
interactions between variables. The second model is described as
“theory-based” modeling, where a pattern of outputs and initial data
is used to determine how the process is performed to generate this
data (35, 44).

Both types of statistical analysis proposed by Breiman share
statistical tools and can be associated with concepts from the learning
field through reinforcements. Thus, it offers different visualizations
as to how to conceptualize the computations or calculations made
by the brain (15). Also, it can give way to the use of methods like
machine learning in computational psychiatry (21). Learning is a
complex process since there is always uncertainty. A specific behavior
is selected according to the reinforcers and punishments values
during reinforcement learning to maximize a particular outcome. All
this is based on the prediction error measured utilizing the learning
rate. The impact of this error depends on its accuracy (inverse
uncertainty) (45).

There are two different ways in which experience is used to
estimate and predict future rewards and punishments. The first is a
model-based cognition, also called goal-directed, where experience is
compiled into a generative world model. This involves the inference
of future possibilities, generating an enormous computational cost.
This contrasts with model-free cognition, where no information
about the change suffered is stored but only encodes how much
reinforcement is obtained when the subject is in a state or
performs a specific action. In the latter, computational costs are
decreased, but at the cost that the system becomes slow and
inflexible, with no possibility of responding to changes in the
environment (46).

To abridge previous gaps, the predictive coding model is
important, where a unit at a specific hierarchical level sends messages
to one or more units of lower levels that predict its activity
(47, 48). The discrepancies generated between these predictions
and the actual input are then passed to higher levels of the
hierarchy as prediction errors. They are then reviewed to refine
the prediction (35). The uncertainty (inverse precision) of each

level determines the rate of learning at each level, determining the
size of adjustments that must be made to explain the data that
has been sensed. This approach is closer to the representation of
the nervous system, a dynamic and hierarchical system. However,
this hierarchical model has come into question with models such
as the heterarchical model (49, 50), where the components of
a system do not have a specific order. However, they can have
different connections depending on the function and the context that
is being analyzed.

Statistical models based on data could give important tools for
clinical practice. One is SpeechGraph, a computational tool that can
quantitatively assess a patient’s discourse structure through graph
theory (51, 52). This tool does not take the process of speech
formation (the syntax). However, it is possible to calculate the
attributes of the graph created from the discourse and, through
these, can differentiate a control from an affective and non-
affective psychosis (52–54). It can also determine the differences in
the development of the discourse longitudinally of children with
psychosis and controls (55) and in cases of dementia, these can be
correlated with other cognitive deficits (56). The importance of these
approaches has been taking force with Natural Language Processing
(NLP) associated with machine learning paradigms (57, 58). These
models can evaluate specific parts of a complex neurocognitive
process like language and then aid in comprehending the underlying
pathological mechanisms.

In the statistical models used in theory-based models, the
parameters are surrogate variables of neural computations
(processes). In this case, the parameters do adapt to neurological
or behavioral data. Therefore, this model can be used to elucidate
possible dysfunctions underlying multiple mental disorders (59),
such as the search for pathophysiological processes underlying
transdiagnostic alterations. This theory-based approach can also
account for neurocognitive approaches like the Bayesian active
inference model of discourse. The person speaks, and this person
monitors internal and external signals in the search for errors (60)
and explains the way social cognition alterations could disrupt
language emission or reception.

To this end, several conditions must first be secured. The first
thing is that the model must be able to predict multiple experimental
data. To determine this, the effects of the parameters on the model’s
predictions must be independent, and there must be sufficient data.
These conditions are mainly used to compare different models to
determine which fits best to a particular phenomenon. One of the
ways to do this is to simulate data in each model one has and
determine the ability of each model to generate the “real” data
of the variable being studied. Remember that the empirical and
predicted data will not coincide perfectly (59). Then, these parameters
may be used as computational markers of psychiatric illnesses.
These markers associate psychiatric dysfunctions with failures in
neuronal computations (predictive coding, divisive normalization,
and contextual modulation). With these markers, what one is
trying to do is (59): (i) Distinguish between diagnoses with similar
symptom profiles: spectrum problem or symptom overlap. (ii) To
characterize heterogeneity within diagnostic categories concerning
alterations in computational mechanisms. (iii) Predict relapses or
responses to treatments.

Although brain processes result in great complexity, they present
a hierarchical organization that allows them to be broken down
into more basic operations and easily understood. In the same way,
phenomena studied by psychiatrists can be simplified and organized
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in hierarchical models through factor analysis (61) or network
theory (62).

Levels of analysis

Overall, this data processing method seeks to integrate
neurological, psychological, and social reference frameworks.
Indeed, it searches for a way of making bridges between different
levels of this hierarchical organization of the brain, which has
to consider its surroundings as described by the concept of the
phantastic organ (21).

It is then possible to make models that describe the molecular
basis of the individual neuron, describing its electrical properties and
the generation of the action potential. This is done by employing
a set of equations that describe its properties (14). To achieve this
level of characterization, previous studies of significant impact on this
understanding are taken as the description of the signal propagation
by neurites (63) and others (64).

Also, within the first level of analysis, one can opt for the genomic
analysis and description of the studied phenomena. Genomic
approaches attempt to determine the biological relevance of genetic
variants and predict their influence on the phenotype (65). This
review shows that computational models lend themselves precisely
to validating and confirming biological relevance. Currently, the
discovery of possible risk variants using GWAS (66–71) is much
faster than their validation. Nonetheless, computational approaches
have been developed for the prioritization of disease-gene candidates
(72). This advancement has enabled researchers to elucidate co-
expression patterns through network analysis (73).

Before continuing, some clarifications must be made regarding
the conceptions of circuits at the neurosciences and the clinical
level. The term circuit in neuroscience refers to microcircuits where
biophysical processes modulate a response. Meanwhile, in clinical
neurosciences, these are dynamic systems defined by control systems
(25). This latter definition describes better the networks which are
studied in psychiatry.

However, to discover circuits associated with a specific
phenomenon, a hybrid approach must be used where the discovery
of a circuit is based on observing the dynamics of its outcomes.
This is then put into a differential equation that describes the
system’s mechanistic structure. With this, a differential equation
that describes the system’s response can be generated starting from
the inputs and outputs. This is called the “transfer function.” At
this time, machine learning can be used to discover plausible or
related biological circuits. These circuits can be added according
to their interactions generating complex systems (25). This kind of
approach enabled researchers to develop theories of the function and
associations of specific brain regions like the hippocampus (74) and,
with this information, able to put forward hypotheses of different
pathologies (75).

At the level of circuits, an attempt is made to elucidate the
intrinsic neural activity evoked through different brain systems.
These models incorporate the properties of neurons and synaptic
connectivity. However, they are limited by the strategies used to
acquire information from these networks, based on imaging studies.
So, these models describe the brain as a network of interconnected
nodes (76). To achieve this, there is a necessity to describe
the structural connectivity matrix together with an equation that

determines the neural dynamics of each node. Direct connections
and the background activity of the area will influence these. Many
of these aspects require biophysical knowledge at the molecular and
cellular levels to achieve a more accurate approach to empirical
neural dynamics. Furthermore, they could integrate with data and
knowledge taken from the connectomics fields. In doing so, these
approaches are helpful in investigating alterations in the brain
connections in specific diseases (77) or arrive at transdiagnostic
alterations (78).

As for the psychopathological level, examples are scarce.
However, computational psychiatry can also be used to reach
its understanding and even form practical applications based
on psychopathological alterations of the computational level of
information processing (79), such as salience processes. This opens
the possibility of evaluating neurocognitive domains to evaluate a
patient, which is currently underused for patients with psychiatric
ailments. Within this part of the diagnostic and therapeutic process
in psychiatry, various problems previously highlighted in terms of
the validity of the psychopathological evaluation and nosological
classification can be tackled (4–6, 80–84). Within this panorama,
psychopathology can be considered a complex system (85), where
alterations in its balance generate a search for homeostasis through an
orientation toward the environment and a manipulation of its parts,
reaching emerging qualities, which can be expressed as symptoms
during a mental examination. Because of this, computational
processes are privileged to achieve new perspectives that allow the
clinician or researcher to overcome these obstacles.

Moreover, there is a possibility of considering constructs that
may not be psychopathological but do contribute to suffering, such
as domestic or gender violence. Nonetheless, different models have
been proposed to tackle this problem, like the Hierarchical Taxonomy
of Psychopathology (HiTOP) (86) and the network theory (81). This
is how different diagnostic approaches using computational methods
have been proposed (71).

However, to achieve this, different levels of analysis contribute
differently to a specific phenomenon. Nonetheless, their integration
is difficult to achieve, as well as the identification of a level more
essential to the phenomenon studied. So, depending on the question
to be answered, specific methods must be used to address it.
Consequently, certain analysis levels will also be used preferentially.
The problem lies in recognizing which level permits having a
bigger and better picture of the studied event, weighing each
component differentially. In other words, according to the question
to investigate, certain elements of the phenomenon will be more
important (essential) than others (87). In such a way, certain levels
of analysis will carry more information within this question.

Finally, this must also be complemented with a longitudinal
perspective (88–91), in which importance is given to how these
processes will shape neurodevelopment (92, 93), where both normal
and abnormal trajectories of such development must be studied for
the possible determination of useful biomarkers or the understanding
of the interactions that are at play and that can be associated with
both normal and abnormal development. All this is associated with
perspectives promoted by the RDoC initiative.

Considering the above, there are three types of perspectives
to approach the description of dynamic systems, such as mental
processes (25):

1. “Bottom-up” biophysical approaches: begin in individual
neuronal functioning and are extrapolated to other levels of
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hierarchical organization, such as networks. In this case, the
equations represent the properties of neurons, synapses, or ion
channels. These observations can then be transferred to the
functioning of neural circuits. However, the subsequent step
between circuits and behaviors is much more complicated to
surpass. There is an underlying problem: the whole can be
greater than the sum of its parts. So, understanding the basic
processes does not always arrive at a corresponding process in
the higher levels of the hierarchy.

2. “Top-down” approaches, where one starts with an emerging
phenomenon and tries to infer the set of neural mechanisms on
which they are based. In this part, connectionist models used
in cognitive and psychiatric neuroscience become essential.
These models study neural systems that are involved in various
cognitive processes. They attempt to arrive at the functioning
of neural networks on a large scale and thus be able to achieve
behavioral predictions (12). Models incorporating more than
neurobiological systems are included in this part of modeling,
such as social interactions or cultural influences.

3. Theoretical-informative approaches, where structural strategies
are investigated where the brain can optimize the efficiency of
information propagation based on graphs or network theory
considerations.

Now, this complements modeling levels suggested by
computational neuroscience (35), described in the introduction.

Model’s validity

Validation requires integration of multiple sets of data involving
different biological, psychological, social, and contextual levels of
analysis. Computational modeling in psychiatry maximizes the
amount of information predicted using data-driven hypotheses and
testing processes a priori assumptions using a small pool of data (25).
Another advantage of computational psychiatry is the capacity to
generate, test, and validate available models or those generated in the
research process (25).

Modeling validation can be tested using statistical parameters,
including accuracy, sensitivity, specificity, and power measurements.
The accuracy of a model is critical to take into account as it
allows a certain degree of confidence in the results obtained. This is
determined by the degree of error between the prediction it makes
and the empirical data obtained. Meanwhile, the model’s power is
evaluated by the diversity of inputs (different perspectives) and the
time during which the predictions are valid (25).

Thinking of the brain as a machine that solves inferential
problems can be an excellent way to generate testable computational
hypotheses about psychiatric disorders (35) or even mental issues.
Moreover, this is especially important because each measurement
can have multiple explanations (multi-causality). The problem lies
in finding which description is the one that best fits the data taken
and enables a better prediction of future problems. For this step,
the researcher can determine the model parameters that maximize
the likelihood of the data given the model in a process known as
model fitting. This likelihood is then used to calculate a quality-of-
fit criterion (94). There will also be a degree of uncertainty, and there
will always be room to improve the models. Then, a balance must be
made between the complexity of the model and the model’s accuracy.

A highly complex model leads to greater difficulty in achieving
the understanding one wants to have of the phenomenon studied
(95). But mental processes are highly complex, and some complexity
of the model is inescapable. Alternatively, simple models can lead
to poor prediction, in other words, lower accuracy and thus low
usefulness. In addition to this, it must be considered that psychiatric
disorders are characterized by their heterogeneity, so there may be
several mechanisms at play in the same patient despite having the
same phenomenological or nosological representation, which must
be considered within the validation process (15).

As this computational modeling field grows, there is also the
need to be able to compare different models. One such way to do
so is using Occam’s law (94). Similarly, as the free energy principle
governs the brain, one could select a model according to its predictive
performance (its ability to predict observed data). Nonetheless, this
approach is not enough for selecting theories. In this scenario, the
model’s generative performance becomes a better way of selecting
the model by falsifying it (94). The latter requires the simulation of
candidate models in a denominated model recovery process. These
two selection models are complementary an allow researchers to
reach the most accurate modeling to explain a dataset (94).

Finally, the greater complexity and computing power put forward
another issue: reproducibility. For an article to be reproducible needs
that researchers share its data and coding, and in executing the code
with the data given, one arrives at the same results. The ability to
analyze more complex interactions between non-linear factors and
their dynamic interplay could bring the researcher closer to data
with a low signal-to-noise ratio, with a possibility of identifying
false associations (96). It is essential to point out that this is not
unique to computational approaches. However, it is partly facilitated
by multidimensional datasets which go through rapid, flexible, and
automated analysis (97, 98), as in Big data approaches. To tackle this
problem, sophisticated analyses are required. However, there is a lack
of infrastructure and knowledge to support this task.

Nonetheless, initiatives have taken place to tackle these
limitations, and various articles have been written to describe steps to
take to achieve the goal of more reproducible research, like improving
methodological knowledge and independent methodological support
with the encouragement of collaboration initiatives and open science
(97) and to develop a way of accountability (99). It is also important
to bear in mind the bias-variance trade-off (100). There is a conflict
between bias error and variance error which must be minimized while
constructing a computational model. A bias error generates when the
model is not capturing relevant associations, while a variance error
occurs when the model is overfitting.

Precision psychiatry

When talking about precision psychiatry, we seek to achieve
a computational phenotype. This means achieving a model that
best suits the empirical data of the subject or phenomenon.
This allows for generating inferences at the individual level about
the underlying computational mechanisms that govern what is
observed in the patient, thus overcoming the opposition between
the dimensional and categorical perspectives (12). This is of utmost
importance in ethnopsychiatry since it allows to the generation of
specific modeling of behavioral alterations, which can be outside
the nosological categories. Equally important, they acknowledge the
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impact of specific environments in a person’s life. In doing so, a
better understanding of the person and their contextis reached; and
one is capable of offering the best possible therapeutic approach
(individualized and person-centered).

However, the traditional form of research in psychiatry has
allowed predictions of the average functioning and mechanisms of
pathophysiology to be achieved in a defined group of patients, such
as that presented in nosological systems. Nevertheless, the problem
of proposing differential diagnoses arises. When a differential or
comorbid diagnosis is suggested, the clinician must determine from
the findings in the patient what is the specific pathophysiological
mechanism or of more significant predominance in the individual
(15), which is currently impossible. This would determine the
best therapeutic intervention for the patient and their prognosis
(101). This possibility of differentiation between diagnoses and
spectra within the same diagnosis has been made possible through
“generative embedding” (102), although only in research.

Another problem is to consider phenomena outside nosological
systems, which also have a high impact on society. A clear example
in the Colombian case is that of violence, from which multiple
phenomena and complex social processes have been generated that
have contributed to the mental health of a population (103). Still, they
should be given more importance in the research on mental health,
especially from the medical perspective (104).

Clinical applications

Transferring all the previously described concepts to the clinical
and practical field has been costly and time-consuming (105).
It is one of the most critical efforts to test the usefulness of
these approaches (87). This has multiple reasons, which could
be summarized as that mental health depends on normal brain
function and how it is related to modification and is influenced
by the individual’s context. It is a form of circular causality. These
models or tools must describe dynamic, hierarchical, and non-
linear systems. This means that it is challenging to have a clear
and concise understanding and comprehend these phenomena or
disorders. However, approaches are trying to address this problem
by creating a bridge between neuroscience and computational
psychiatry with cognitive neuroscience. It is essential to highlight that
computational psychiatry can be a valuable tool in searching for these
basic computations and how they modulate and emerge innovative
functions from an evolutionary perspective (38).

Currently, psychiatry is primarily based on nosology contingent
on classification systems such as the DSM or the ICD. However, this
approach can be complemented by a dimensional vision, where they
are added to the psychopathological manifestations and dimensions
given a value within a continuum in models like HiTOP (86).
However, this value can be non-linear or interact or correlate
with other dimensions by modifying the syndrome and making it
extremely difficult to quantify the weight of a specific factor.

A clear example is the determination of suicide risk (106, 107).
The risk factors are determined through previous studies, but the
quantification of these is carried out at the level of the clinician’s
judgment, and the scales have poor operational characteristics
(106–108). In addition, all this is done from population data
without considering the differential influence of these factors on
the individual. Machine learning has been used to predict suicide

attempts and deaths from clinical records (102). For this reason, a
way is required in to integrate dimensional and categorial visions,
which often escapes the possibility of the clinician within their daily
practice (44). The difficulties in diagnosing, prognosis, and treatment
of this type of patient are highlighted. To have a complete picture of
these applications, the reader can refer to the review made by Huys
et al. (44).

These first approaches are still only applicable to research, but
they give glimpses of the utilities of this tool. On the other hand, one
can have clear examples where the first steps have already been taken
to achieve a translation of this knowledge. Some of these examples are
available below.

Data-driven approaches

1. Diagnostic classification: In this aspect, elements of “machine
learning” can be used. With this, neuroimaging data can
be analyzed by distinguishing clusters of specific symptoms
with specific neurobiological substrates, as seen by Costafreda
et al. (109) or Mota et al. (54, 110). However, problems
such as determining comorbidity as completely different
disorders continue without the possibility that they have defined
diagnostic limits (111). Because of this, the usefulness of these
tools requires testing their properties in ambiguous cases, where
there are more significant difficulties in differentiating.

2. Prediction of clinical status: This type of application focuses on
identifying markers to determine the stage where a particular
patient is to describe prognostic or treatment features. This has
been used in early psychosis to predict social outcomes in a
high-clinical risk sample (112). In other examples, NLP can be
applied to clinical records like psychotherapy notes to enhance
prediction models for different clinically relevant outcomes like
suicide risk (113).

3. Prediction of treatment response: This aspect corresponds
to the need to improve the prognosis and the ability to
identify the best therapeutic alternative with an individualized
approach. In the specific case of depressive disorder, where
it is evident that only two-thirds of patients have a response
after multiple pharmacological attempts (114–116), identifying
the characteristics that could collaborate in the treatment
choice is required. It may be that the cases referred to as
resistant are not but require differential therapeutic responses.
However, it has been attempted to achieve different ways
to characterize and predict treatment responses, such as
quantitative electroencephalogram markers (qEEG) (117, 118)
which were validated by other studies (119). In addition,
methods based on neuroimaging results have also been used
(120), which be associated with computational approaches for
pattern classification. All these approaches have been shown in
their early experiences to improve responsiveness.

4. Choice of treatment: As mentioned in previous section, not
all patients respond in the same way to treatments, even if
they are first line. But as made explicit above, there are no
variables or individual characteristics of the patient to determine
it, even though multiple pharmacogenetic studies have been
done in some specific situations. At this point, numerous binary
classifications can be used simultaneously to achieve this task.
However, to be feasible, a specific group of paraclinical must be
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used (121, 122). It can be used, for example, in electroconvulsive
therapy, where simulations of electric fields can be integrated
with the current knowledge of neurocircuitry to individualized
electrode configurations (123, 124) and in the Deep Brain
Stimulation (DBS) field (125).

5. Clustering of clinically relevant data: In this approach,
unsupervised methods are used to cluster together
characteristics of the sample giving rise to dimensional factors
that can inform the patient’s clinical status. An advantage of
this approach is that it facilitates the interpretability of the
results (100). This approach has been used to identify brain
fingerprints in different disorders from neuroimaging data
(126, 127).

In these different applications, the researcher can take various
sources of information to give a more accurate picture of the
patient (128). This complementarity exemplifies the possibility of
the constructing of mechanism-driven knowledge from data-driven
approaches (100). These applications could then be articulated with
network theory to understand mental disorders revised elsewhere
(62, 129).

Theory-driven approaches

These are initially “fed” by multiple data found at various
levels of research, exploring the relationships between them.
At the level of psychopathology based on Bayesian theory, the
psychopathologic symptoms can be structured in three different
ways: solving an inappropriate problem correctly, solving a suitable
problem incorrectly, or solving a relevant problem correctly but
in the wrong context (130). Moreover, from this conception, an
analysis and a possible union of knowledge of brain structure and
functioning can be generated together with behavioral variables seen
in clinical practice.

1. The course of the disorder: In this section, Goldbeter’s article
can be an example (131). The author gives a model of mutual
inhibition between two processes (depression and mania) to
explain the cyclicity seen in the disorder. In this example,
the model does not contemplate neurobiological processes at
neurocircuits, synaptic, neuronal, or biophysical levels. Still,
it achieves a conceptualization of a phenomenon of extreme
importance, such as the cyclicity in bipolar disorder.

2. Predicting risk of recurrence: There are other examples where the
researcher could take a specific marker like effort and reward
tasks to determine the clinical status of a specific disorder. And
later, decide on the treatment according to the information this
marker gives the practitioner, like the risk of recurrence (132).

3. Neurocognitive functions: The models can be used to describe
the function of neurocognitive functions and domains, like
working memory (133). And it enables researchers to put
forward theories and models of pathological alterations of these
processes (75). These models can also be used directly in
conceptualizing a disorder like obsessive-compulsive disorder
(OCD) and linking it to neurodevelopmental processes (134).

4. Pathophysiological processes: This type of model can give
insightful perspectives that integrate different levels of analysis
giving rise to a comprehensive and integrative knowledge of the

disease processes. There are multiple examples across multiple
disorders like schizophrenia (135–137). This, in turn, could
give information about possible therapeutic targets. Researchers
could also create models for explaining and understanding
mechanisms associated with the therapeutic response, like
neuromodulation strategies such as ECT (138).

In addition, an integration of these two approaches can also
be achieved. This is because theoretical models must be fed from
previously collected data to construct a good model. But also,
a mechanistic model can generate available data for constructing
pragmatic tools that can be used in clinical practice. To show how
this applies to a specific pathology (schizophrenia), refer to the article
by Valton et al. (139). In Table 1, there is a list of the examples used
throughout this review with a description of the approach used and
implications and contributions for the field.

Finally, it is essential to highlight that these applications
go beyond the nosology provided by the DSM and allows the
visualization of phenomena that can impact the course and prognosis
of these disorders or the mental health of individuals in general. An
example of this is creativity, which can be understood as the ability
to create unique products such as artists (Creativity with a capital
C); or as a cognitive function that helps the individual adapt to his
environment and give answers to his environment (creativity with
c) (140). The latter, in turn, depends on divergent and convergent
thinking (141). In the review carried out by Mekern et al. (142), it
can be evidenced how the same phenomenon can be studied from
different levels and segmented into other processes even going so far
as to predict or determine how these processes would be affected by
specific alterations or disruptions. With the help of computational
modeling, it improves its understanding.

RDoC: Possible response to the
constraints of nosological systems

The nosological systems encountered in the clinical and
research practice delineate highly heterogeneous phenotypes that lack
reliability and validity, which has restrained advancements in the field
as the computational tools rely on the input one puts in them (82,
143). In this way, if one takes invalid or erroneous input to a model,
which can be valid, the data that results from this process is also
invalid and could deviate the researcher to a categorical error. The
necessity for a system of categorizing these problems and disorders
in a way that conceptualizes them as a mixture of interacting and
dimensionally varying processes is at the front and center of the
problem (87). This, in turn, could give us a way of representing these
problems in a more ecologically valid way.

Different approaches have been made by researchers in
order to arrive at solutions to these limitations. One of them
is RDoC. The Research Domain Criteria Project was initiated
by the NIH (National Institute of Health) to address the
different problems that research has encountered in mental health,
specifically mental health disorders (144–146). This project was
conceptualized as a research framework, so it has no applications
in clinical nosology, nor does it pretend to be a replacement
for it. Although, one of the potential impacts is to achieve
a classification system with a more significant neurobiological
basis without leaving a biological reductionist vision of these
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TABLE 1 Clinical applications of computational approaches.

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

First symptoms and
neurocognitive correlates of
behavioral variant frontotemporal
dementia.

Santamaría-García
et al. (32)

Analyze neurocognitive correlates of patients with
bvFTD who debuted with apathy or disinhibition.

Data from a group of patients and
controls involving
neuropsychological, clinical, and
neuroanatomical data.

Data-driven approach using
machine learning associated with
a multivariate analyzes.

This study gives an example of the possibility of
integrating different levels of analysis of data with a
longitudinal perspective. The latter is achieved by the
longitudinal approach to the study and the description
of correlations of first symptoms and their evolution.
This study assessed multiple levels of analyses by
implementing support vector machine approaches.

Robust automated computational
approach for classifying
frontotemporal
neurodegeneration:
multimodal/multicenter
neuroimaging.

Donnelly-Kehoe
et al. (33)

Determine if by using atrophy and resting-state
functional connectivity one could differentiate
between patients with bvFTD and controls.

Datasets from participants in
different regions of the world.

Automatic, cross-center,
multimodal data-driven
computational approach using
machine learning.

The multimodal approach explored in this study
enhances the system’s performance in a multicenter
protocol. This underscores the possibility of clinical
applications in real-world conditions. This study
implemented different machine learning models to
abridge different levels of neurocognitive and clinical
information in dementia.

At the heart of neurological
dimensionality: cross-nosological
and multimodal cardiac
interoceptive deficits.

Abrevaya et al.
(34)

Examine the impact of neural relative to
autonomic disturbances of cardiac interoception
across neurological conditions.

Data from 149 participants
divided between two pathological
groups (neurological and cardiac)
and controls.

Data-driven approach to evaluate
the relevance of the cardiac
interoceptive dimensions in the
discrimination of neurological
and cardiac pathologies.
A classification pipeline was used
with the input from behavioral
dimension and different levels of
analysis.

This study demonstrates the possibility of
computational models to integrate different systems
(cardiac and neurologic) to find relevant variables for
the discrimination of disorders. This study reached to
mentioned conclusions by implementing different
automatized analyses including support vector
machines and machine learning procedures.

Thought disorder measured as
random speech structure classifies
negative symptoms and
schizophrenia diagnosis 6 months
in advance.

Mota et al. (54) Determine if early markers of speech
disorganization during recent-onset psychosis
measured using SpeechGraph could correctly
classify the severity of negative symptoms as well
as the schizophrenia diagnosis.

Graph measures of different
memory reports.

Data-driven software to measure
graph attributes of connected
speech.

This study has a different approach to the use and
application of computational models. It takes a
software made through a data-driven approach to
arrive at quantitative measurements of formal thought
disorder. This could in turn help to delimitate better
these alterations to make a more precise diagnosis.
There are other applications of this software (53, 55, 56,
110, 155, 156).

A computational framework for
the prioritization of disease-gene
candidates.

Browne et al. (72) Evaluate the performance of a method for gene
prioritization applied to Alzheimer’s disease.

Gene Expression Omnibus
(GEO) database.

Model-based approach based on
network theory for the creation of
Protein–Protein Interaction
Networks (PPIN). Integration of
multiple datasets for the
construction of PPIN.

A framework that integrates diverse heterogeneous
data including gene expression and network
topological features to prioritize and analyze
disease-gene candidates applied to AD as a Case Study.
Demonstration that the integration of PPINs along
with disease datasets and contextual information is an
important tool in unraveling the molecular basis of
diseases.
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Integrated co-expression network
analysis uncovers novel
tissue-specific genes in major
depressive disorder and bipolar
disorder.

Han et al. (73) Explore the expression specific characteristics of
different areas by systematic analysis of larger
samples of brain tissues and determine gene
expression patterns and tissue-specific expression
profiles between major depressive disorder and
bipolar disorder.

Transcriptomic datasets retrieved
from the Gene Expression
Omnibus (GEO).

Data-guided approach with a
weighted gene co-expression
network analysis to construct
gene co-expression networks for
large scale gene expression
profiling from various regions of
the brain.

Give insights in the tissue-specific functions of various
brain regions in the context of psychiatric disorders
(MDD and BD). It is a report on functional similarities
and specificities between tissues of two psychiatric
disorders.

Dissecting psychiatric spectrum
disorders by generative
embedding.

Brodersen et al.
(102)

Examine the feasibility of defining subgroups in
psychiatric spectrum disorders by generative
embedding.

Functional MRI dataset
performing a working memory
task.

Theory-driven approach through
the use of generative embedding.
The researchers used parameter
estimates from a dynamic causal
model (DCM) of a
visual-parietal-prefrontal
network to define a model-based
feature space for the subsequent
application of supervised and
unsupervised learning
techniques.

This is a proof-of-concept study to examine how
model-based clustering could be used to dissect
psychiatric spectrum diseases into physiologically
defined subgroups, giving foundation to possible
implications in the delivery of precision psychiatry. It
gives insight into the constraints of a model-guided
approach according to its assumptions.

Uncovering social-contextual and
individual mental health factors
associated with violence via
computational inference.

Santamaría-García
et al. (103)

Evaluate individual mental health and
sociocontextual determinant of violence
simultaneously and explore their association to
different domains of violence.

Data was taken from a sample of
26,349 ex-members of Colombian
illegal armed groups who entered
programs of transitional justice
for reincorporation into civilian
life. They responded to a
semi-structured interview
designed by the Agency for
Reintegration and Normalization.

Combination of theory- and
data-driven approaches of
examination and analysis of
historical records of ex-members
of illegal armed groups in
Colombia, using deep learning
and machine learning methods to
identify the most relevant factors
associated with domains of
violence.

This study investigates the interaction of contextual
and individual factors associated with violence in the
Colombian context with novel methodologies to take
into account historical assessments. Another important
aspect of this study is the usage of a combination of
theory- and data-driven approaches. This study is not
focused in a mental disorder, however it has been
weighed the importance of social and individual
mental health variables like violence.

Predicting suicide attempts and
suicide deaths following
outpatient visits using electronic
health records.

Simon et al. (157) Develop and validate models using electronic
health records to predict suicide attempt and
suicide death following an outpatient visit.

Health care records from seven
health systems of 2,960,929
patients.

Data-driven approach to develop
prediction models, which were
separated between mental health
specialty and primary care visits.

This study describes an analysis of a great amount of
data across different health care systems. Within the
supplementary material, there is a public repository
including specifications and code for defining predictor
and outcome variables alongside a data dictionary and
descriptive statistics for analytic data sets, which
impact the reproducibility of the study.

Speech structure links the neural
and socio-behavioural correlates
of psychotic disorders.

Palaniyappan et al.
(53)

Investigate the neural basis and the functional
relevance of the structural connectedness of speech
samples of subjects with schizophrenia and bipolar
disorder.

Clinical assessments of 34
patients with schizophrenia and
22 with bipolar disorder.

Data-driven software to measure
graph attributes of connected
speech.

This study exemplifies the possibility of establishing a
relationship between pathological phenomenology and
biological markers. This opens up the possibility of
integrating this tool with other computational
approaches to achieve a multilevel analysis.
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Pattern of neural responses to
verbal fluency shows diagnostic
specificity for schizophrenia and
bipolar disorder.

Costafreda et al.
(109)

Through the usage of the verbal fluency task, the
researchers investigated the functional
neuroanatomy of executive function in
schizophrenia and bipolar disorder. The
hypothesis was that the pattern of regional brain
responses would correctly identify the diagnosis
for each participant at the individual level.

Patients with schizophrenia and
bipolar disorder in remission.
They were subjected to a clinical
assessment and were taken fMRI.

Data-guided approach with the
use of machine learning to
conduct a pattern classification
analysis.

The study highlights the possibility of being able to
integrate data from a neurocognitive task and reveal its
neurobiological basis to determine precisely diagnostic
differences between different clinical entities. It also
highlights that the difference between diagnosis comes
from degrees of functionality and the limitation of
discriminating between them.

Prediction models of functional
outcomes for individuals in the
clinical high-risk state for
psychosis or with recent-onset
depression: a multimodal,
multisite machine learning
analysis.

Koutsouleris et al.
(112)

Determine whether predictors associated with
social and role functioning can be identified in
patients in clinical high-risk states (CHR) for
psychosis or with recent-onset depression (ROD)
using clinical and imaging-based determinant with
machine learning analysis. Assess the geographic,
transdiagnostic and prognostic generalizability of
machine learning and compare it with human
prognostication. Explore sequential prognosis
encompassing clinical and combined machine
learning.

116 patients in CHR states and
120 patients with ROD.

Data-driven approach using
machine learning. Three models
of prediction were used (one with
clinical variables, one with
neuroimaging variables and one
integrating the other two).

This study not only explore the predictive model from
a data driven approach, but it was also geographically
validated. The researchers tested the transferability of
the model to other outcomes. It also takes into account
the reliability of the inputs which were feeding the
model. This study inquires about social factors that
drive the personal and socioeconomic burden of
psychotic and mood disorders integrating clinical and
brain structural data.

Natural language processing of
clinical mental health notes may
add predictive value to existing
suicide risk models.

Levis et al. (113) Determine if the use of natural language
processing (NLP) in psychotherapy note text can
provide additional accuracy over currently used
suicide prediction models (REACH VET).

Data from the Department of
Veterans Affairs (VA) of patients
newly diagnosed with PTSD
between 2004 and 2013.

Data-driven approach which uses
NLP to evaluate unstructured
electronic medical records of a
sample from de VHA PTSD
treatment population.

The method presented in this paper introduces to a
dynamic model that helps identify and monitor
predictor variables and how they change over time.
This gets closer to an ecologically valid tool to asses an
individual. This type of approaches on NLP have been
used in other pathologies like delirium (158),
Alzheimer’s disease (159, 160), schizophrenia and
others (161, 162).

A machine learning approach
using EEG data to predict
response to SSRI treatment for
major depressive disorder.

Khodayari-
Rostamabad et al.
(163)

Evaluate the performance of a machine learning
methodology based on the pre-treatment
electroencephalogram for prediction of response to
treatment with SSRI in patients with MDD.

Subjects with MDD derived from
a tertiary Mood Disorders Clinic.
They were all considered
treatment resistant.

Data-driven approach using
machine learning to select the
most discriminating features
from EEG. Then, these features
are fed into a classifier based on a
mixture factor analysis to give a
likelihood value.

This study exemplifies a possible approach to improve
treatment in a personalized manner in line with
precision psychiatry.

Cross-trial prediction of
treatment outcome in depression:
a machine learning approach.

Chekroud et al.
(119)

Develop an algorithm to assess whether patients
will achieve symptomatic remission from a
12-week course of citalopram.

Data was collected from a
STAR-D sample.

Data-driven approach using
machine learning to identify
which variables were most
predictive of treatment outcome.

This study determines the possibility of using
computational approaches to mine existing clinical
trial data to improve on accuracy of risk or treatment
response prediction. However, this model only predicts
response to specific drugs. There has to be a
contextualization of the applicability of the model.
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Gyri-precise head model of
transcranial direct current
stimulation: improved spatial
focality using a ring electrode
versus conventional rectangular
pad.

Datta et al. (123) Compare the focality of conventional
rectangular-pad stimulation with ring electrode
configuration using a MRI-derived head model.

Models of two electrode
configurations.

Use of a head model to predict
relative spatial focality and the
influence of tissue
geometry/conductivity.

This study demonstrates a way of translate
computational models of variables associated with
treatments such as direct current stimulation to clinical
applications through the design and optimization of
treatment variables.

Effects of modifying the electrode
placement and pulse width on
cognitive side effects with
unilateral ECT: a pilot
randomized controlled study with
computational modelling.

Martin et al. (124) Determine if the frontoparietal placement of
electrodes improves retrograde memory outcomes
compared to temporoparietal placement.

Patients recruited from a single
hospital in Sydney.

Computational model (164) was
used in a subset of participants to
determine if higher levels of
stimulation in regions of interest
would be related to worse or
better cognitive outcomes.

This study gives an example of how data from
computational models could be integrated to results
from clinical investigations to individualize treatment
options such as DCS.

Patient-specific analysis of the
volume of tissue activated during
deep brain stimulation.

Butson et al. (125) Develop and test a methodology that would enable
prediction and visualization of the volume of
axonal tissue activated during DBS.

One patient with Parkinson’s
disease.

Patient-specific model of STN
DBS for PD and the VTAs. This
model was constructed from 3D
brain atlas that was warped to the
patient MRI using a non-linear
warping algorithm. The electrical
and biophysical models rely on
finite element models.

This model integrates anatomical, electrical, and
biophysical representation of DBS. It also integrates
simulation data with clinical data from subject. The
limitation of this model is the evaluation of only one
patient.

Functional connectome
fingerprinting: identifying
individuals using patterns of
brain connectivity.

Finn et al. (126) Determine if functional connectivity profiles can
act as an identifying fingerprint capable of
identifying an individual from a set of connectivity
profiles.

Data collected from the Human
Connectome Project.

Data-driven approach using a
group-wise spectral clustering
algorithm for the definition of
networks capable of being
compared to each other. This
correlation was made through the
use of whole-brain connectivity
matrix.

This study gives the foundation for novel test
inferences about functional brain organization can
relate to distinct behavioral phenotypes. The
discriminating power evidenced in this study is partly
the result of the relatively long period of time of
follow-up. This can be integrated in frameworks like
RDoC. It also gives the base for neuroimaging studies
which rely on single subjects, beyond population-level
studies.

Linked dimensions of
psychopathology and
connectivity in functional brain
networks.

Xia et al. (127) Identify brain-based dimensions of
psychopathology.

Datasets taken from the
Philadelphia
Neurodevelopmental Cohort
(PNC).

Data-driven approach based on
sparse canonical correlation
analysis.

This study uses network theory to construct patterns of
functional connectivity, which could be linked to
transdiagnostic dimensions of psychopathology. In this
study, these patterns displayed developmental and sex
differences. This in turn tackles the problems of
comorbidity and heterogeneity previously discussed in
this article.
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Origin of cyclicity in bipolar
disorders: a computational
approach.

Goldbeter (131) Evaluate a model for bipolar disorders based on
mutual inhibition of two putative neural circuits
governing the affective syndromes.

Mathematical model based on
reciprocal inhibition.

Theory-driven approach of a
mathematical model to predict
the cyclicity of bipolar disorders.
This model is based on a
phenomenological model.

This article gives an example of translating a
phenomenological level to mathematical terms in order
to explain and predict a characteristic of a
phenomenon (cyclicity of bipolar disorders).

Computational mechanism of
effort and reward decisions in
patients with depression and their
association with relapse after
antidepressant discontinuation.

Berwian et al.
(132)

Establish whether the decision to invest effort for
rewards represents a persistent depression process
after remission.

Sample of patients in a Swiss and
German university setting.

Theory-driven approach where a
generative computational model
was used to represent the putative
computations of the behavioral
pattern.

This study explores a computational model for effortful
behavior applied in a sample of patients with
depression. This gives a straightforward manner to
assess this behavioral feature and find associations that
are important form a prognosis and treatment
perspective. Nonetheless, this study has limitations
from a replicability perspective.

Making working memory work: a
computational model of learning
in the prefrontal cortex and basal
ganglia.

O’reilly and Frank
(133)

Presentation of a computational model of working
memory based on the prefrontal cortex and basal
ganglia.

The 1-2-AX task. Theory-driven approach which
uses a reinforcement learning
mechanism.

This paper describes how a theory-driven model is
constructed from data previously acquired which is
integrated to elucidate a specific process.

Towards a computational
psychiatry of juvenile
obsessive-compulsive disorder.

Loosen and
Hauser (134)

Review computational, neuropsychological and
neural alterations in juvenile OCD. Link these
findings to adult OCD. Establish a
neurocomputational framework that illustrates the
development of symptoms in the context of
juvenile OCD.

Narrative review. Theory-driven approach based on
a narrative review of
computational,
neuropsychological and neural
alterations in juvenile OCD. The
framework proposed is based on a
meta-controller with different
rates of maturation of complex
systems.

This study describes a proposition of a theory-driven
model for the development of obsessive symptoms.
However, this model is only speculative and requires
further investigation to be validated. It highlights the
importance of the a priori knowledge to construct the
model and the dependance on inputs to determine the
strength of the model.

Adaptive current-flow models of
ECT: explaining individual static
impedance, dynamic impedance,
and brain current density.

Unal et al. (138) Examine the relations between the physical
properties of the ECT stimulus, patient head
anatomy, and patient-specific impedance to the
passage of current.

Clinical data from a trial series. Theory-driven approach. The
researchers develop an
individualize (MRI-derived) finite
element method (FEM) to model
transcranial electrical stimulation
with dynamical changes in tissue
conductivity.

This model gives the opportunity of studying
parameters that have been proposed as important
factors in the therapeutic response (165), but they are
difficult to study under a “normal” clinical study.
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FIGURE 1

Computational psychiatry aids the clinician and the researcher in integrating data from different sources of information, which could be taken from the
omics perspective. This integration is made possible by complementing the data modeling culture using the algorithmic modeling culture proposed by
Breiman (43). This permits the validation of models or data that can be measured by predictive accuracy. By taking these inputs and processing them
through a computational system (algorithm), one could present data-driven or theory-driven responses to clinical and research questions. This enables
us to bring forward an integrative and cohesive framework associated with others. The network theory can integrate the different units of analysis (scale
level) of a phenomenon or give a cohesive picture of the interaction between different domains. And in turn, this could give us a more precise phenotype
to arrive at a dimensional conception (HiTOP). These computational approaches to understanding psychiatry represent the brain’s functioning
[phantastic organ (20)]. In other words, using computational approaches to comprehend psychiatry mimics the normal functioning of the statistical
machine we call the brain.

disorders. It recognizes that mental disorders are multicausal,
mediated by biology (brain). In addition, the RDoC is structured
as a matrix with different units of analysis, which are grouped
into research domains. These domains are viewed longitudinally,
influenced by neurodevelopment and the context in which they
are imbued. Computational psychiatry, then, introduces itself
as a great tool in this type of initiative, aligning with its
principles, since it allows to appreciate of shared mechanisms
between cognitive alterations, psychopathological domains, and
disorders (59), achieving integration between the different levels of
analysis (units of analysis and domains). It does this by finding
objective, observable, and measurable characteristics organized into
taxonomies outside current nosology (25), achieving a more solid
basis for neurobiological research.

With this initiative, it has been possible to see that in most
mental disorders, there is an overlap between neural circuits in which
the processing of threats (amygdala, hippocampus, orbitofrontal
cortex, and ventromedial prefrontal cortex), rewards (amygdala,
ventral tegmental area, locus coeruleus, and nucleus accumbens) and
perception of stimuli (thalamus, sensory cortex, and inferior frontal
gyrus) are counted (25). This suggests that mental disorders may be
due to different modes of dysregulation of control processes. That is a

different dynamic system. These altered processes can occur from the
cellular and molecular level to the level of circuits. And this generates
a greater difficulty since the alterations will only vary qualitatively
but quantitatively. This, at a practical level, limits the possibility of
using only clinical judgment to determine these nuances. Again, the
problem with these ambiguous cases, which are the rule and not the
exception in psychiatry, is highlighted by the lack of persistence in
diagnosis given to a person over time and the problem of comorbidity
and heterogeneity (147).

However, it does present guidelines that can be a response to the
criticism previously mentioned of nosology and psychiatric research
based on it, as well as a bridge for using computational models to
the approach of multidimensional and hierarchical organization of
mental functions, the non-linear dynamic interaction between the
components of the system and its heterogeneity. Thus, computational
psychiatry aligns with one of the objectives of the RDoC, which
is to improve the accuracy of the phenotypes and their alignment
with highly plausible biological and cognitive models based on
experimental settings used in neuroscience research applied to
psychiatry (87).

Nonetheless, this is one of many models which have risen
to deal with the limitations and constraints previously described.
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The HiTOP is a data-driven, hierarchically based organization of
psychopathology (86). It conceptualizes psychopathology as a set
of dimensions organized into increasingly broad, transdiagnostic
spectra. This is made by using factor analysis between different
symptoms to generate a taxonomy of mental disorders. In these
scenarios, the computational models would aid in determining these
psychopathologic patterns using path analyses in clinical datasets.
Lastly, they would also be helpful in establishing psychopathologic
patterns taking into account their context (social influences and
contextual factors).

Another alternative is the network theory based on pattern
analysis, similar to computational psychiatry. To construct these
networks, one has to analyze a significant amount of data that can
capture cohesion, coherence, and patterns of synchrony (148). In this
sense, computational psychiatry dialogues with the network approach
both require massive data processing to formulate theoric models.

As previously discussed, HiTOP is another proposed model for
this endeavor. It was constructed through factor analysis and latent
class analysis to organize psychopathology according to the natural
covariance structure between symptoms, maladaptive behaviors,
and traits (61, 86). This model focuses on the psychopathological
level remaining agnostic to the underlying phenotypes encountered.
Moreover, it can be a tool to aid RDoC-informed research
by providing psychometrically valid data to reach more robust
psychiatric phenotypes (149), and in doing so, it can ameliorate the
computational models used in clinical and research fields.

General limitations

One of the limitations that must be considered in the explanatory
models is that the data previously collected empirically may contain
significant biases that prevent distinguishing between different
hypotheses of the mechanisms that generate psychiatric dysfunctions.
For this reason, it is of the utmost importance to recognize
parameters that allow discriminating between models (59). On the
other hand, for data-driven approaches, the clinical datasets from
which one can take the information are limited in data quality,
organization and accessibility, making it difficult to get the data for
the machine learning algorithms (100, 150).

Another limitation is inherent to mental disorders since they
usually present dysfunctions or deficits that are generalized, shared
by many disorders, and only differentiated at a quantitative level
(59), so a large enough sample must identify these differences. This
limitation can be overcome by the formation of consortiums like the
ones developed for genomics studies and others (151).

Still, another limitation is that, in most cases of mental disorders,
the brain regions or alterations underlying a particular dysfunction
have not been accurately determined. However, reverse-engineering
strategies can overcome this automatically, seeking to identify
physical and biological laws through data (25). However, this raises
another problem because these structures can be purely mathematical
entities that do not have a basis in biological structures.

In addition to this, neurobiological models describe data as
unreliable, meaning that the probability of error in the model
must be quantified (25). These errors are critical in these models,
where many interrelated variables spread that error to different
parts of the system. Typically, this type of error is controlled by
increasing the sample size; however, in this case, it would worsen the

problem because it could result in inaccurate models with statistical
significance (25). Moreover, brain processing is non-linear, having
complex interrelationships, amplifying, or decreasing the noise of
the inputs. This causes linear regressions to lose their significance.
In neurobiological responses, various processes like serial signaling
processes, thresholds, filters, saturation, feedback, etc. All of these are
non-linear and, therefore, more difficult to describe.

Also, using Bayes’ theorem to choose the best model will often
lead to models that do not describe the best generative model.
Therefore, one should always validate the model (35) and always keep
in mind the possibility of finding better models.

Conclusion

Computational psychiatry can be a tool for understanding mental
health. This involves a great effort, which requires the articulation
of multiple disciplines and different levels of analysis. Therefore
computational psychiatry could become a high point and central to
attempts such as RDoC or ROAMER (Roadmap for Mental Health
Research in Europe) (152) to achieve a better conception of both
mental disorders and mental health, with the articulation with other
models like HiTOP.

To achieve this, it is necessary to overcome previously evidenced
obstacles such as heterogeneity and comorbidity, together with the
acceptance and use of the complexity of these systems with non-linear
dynamics, making use of tools that allow us to understand it in a
way in both biological and psychological reductionist perspectives
are not given. In addition, the opportunity opens up to begin the
study, articulation, and integration with factors that modulate the
presentation and prognosis of mental disorders but that are left
to the context and have been covered only tangentially, as are
social processes such as violence, abuse or forced displacement. The
development of research capacity achieves a better assessment of the
needs for the care of the population, increasing knowledge about
the effectiveness of different interventions and creating a critical
mass that is essential for the development of the scientific debate on
various topics in mental health (153). In addition, this theoretical
framework model how the subject acquires and transforms their
internal cognitive processes to give rise to their behavioral responses,
which are observed in clinical practice (15).

However, to accomplish all these promises, several limitations
must be considered. The necessity for not only replicating the results
of different investigations arises with the need for reproducible
investigations to tackle the falsifiability problem. In this same
direction, with the growth of analytic power, the possibility of finding
associations that are not significant or valid also increases. So, the
validation of these models is yet another fundamental aspect that
must be tackled by researchers.

Finally, computational psychiatry would allow us to provide
better care for mental health problems in primary care. This considers
that the burden of patients increases with poor support for the
number of professionals in mental health. Then, the models given
by computational psychiatry would allow the specialist to have
better visualization and contextualization of each patient’s specific
case considering multiple factors that often cannot be given enough
weight due to restrictions. Also, data-based computational models
allow predictions or diagnostics, and these responses can be better
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adjusted to the context of each country and can be free or require
low investments.

The promises are manifold, but their success depends on
their applicability and the possibility of generating translational
knowledge (154), Figure 1 proposes a framework to arrive at this
result.
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