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Background: As one of the most common diseases, major depressive disorder

(MDD) has a significant adverse impact on the li of patients. As a mild form of

depression, subclinical depression (SD) serves as an indicator of progression to

MDD. This study analyzed the degree centrality (DC) for MDD, SD, and healthy

control (HC) groups and identified the brain regions with DC alterations.

Methods: The experimental data were composed of resting-state functional

magnetic resonance imaging (rs-fMRI) from 40 HCs, 40 MDD subjects, and

34 SD subjects. After conducting a one-way analysis of variance, two-sample

t-tests were used for further analysis to explore the brain regions with changed

DC. Receiver operating characteristic (ROC) curve analysis of single index and

composite index features was performed to analyze the distinguishable ability of

important brain regions.

Results: For the comparison of MDD vs. HC, increased DC was found in the

right superior temporal gyrus (STG) and right inferior parietal lobule (IPL) in the

MDD group. For SD vs. HC, the SD group showed a higher DC in the right STG

and the right middle temporal gyrus (MTG), and a smaller DC in the left IPL. For

MDD vs. SD, increased DC in the right middle frontal gyrus (MFG), right IPL, and

left IPL, and decreased DC in the right STG and right MTG was found in the

MDD group. With an area under the ROC (AUC) of 0.779, the right STG could

differentiate MDD patients from HCs and, with an AUC of 0.704, the right MTG

could differentiate MDD patients from SD patients. The three composite indexes

had good discriminative ability in each pairwise comparison, with AUCs of 0.803,

0.751, and 0.814 for MDD vs. HC, SD vs. HC, and MDD vs. SD, respectively.

Conclusion: Altered DC in the STG, MTG, IPL, and MFG were identified

in depression groups. The DC values of these altered regions and their

combinations presented good discriminative ability between HC, SD, and MDD.

These findings could help to find effective biomarkers and reveal the potential

mechanisms of depression.
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1. Introduction

People with major depressive disorder (MDD) often feel
terrible or sad, and lose enjoyment in their daily lives. MDD can
cause suicidal thoughts in patients and put their lives at risk (1, 2).
Subclinical depression (SD) is regarded as the precursor of MDD
(3–5). Although the symptoms caused by SD are relatively mild, SD
remains a serious disease because it can also cause suicidal ideation
(4, 6). The differential diagnosis between MDD and SD is difficult
because there is a lack of accurate biomarkers; instead, diagnosis
continues to rely on doctors with extensive clinical experience (7).

At present, the pathogenesis of MDD and SD is unclear.
One study showed altered activation of the medial prefrontal
network regions in MDD (8). The brain regions are related to
the anterior cingulate cortex and ventromedial and orbitofrontal
cortex. Other studies have found that alterations in frontal-
subcortical connectivity in the neural circuits regulating emotion
perception (9) may explain the emotional and cognitive symptoms
in MDD subjects (10). It is not clear whether the brain regions that
are altered in response to MDD are also altered in SD. A study in SD
patients indicated that the amplitude of low-frequency fluctuation
was significantly increased in the right precuneus and left middle
frontal gyrus (MFG), but decreased in the left hippocampus and
superior frontal gyrus in SD patients compared to the healthy
control (HC) group (5). Another study in mice showed that the
lateral habenula is an important brain region that causes depressive
symptoms (11). Zhu et al. (4) analyzed the functional connectivity
of the lateral habenula in the brains of humans with SD and
reported abnormal brain connections related to the thalamus and
lateral habenula. The symptoms of SD patients are often relatively
mild, making them difficult to identify in time in the early stages
of depression. SD has a high probability of developing into MDD,
which has a great impact on the lives of patients. Effective measures
taken to treat SD patients at an early stage can greatly reduce
their suffering and save a lot of medical resources. Therefore, it
is important to study the differences between MDD and SD and
explore the pathogenesis.

Resting-state functional magnetic resonance imaging (rs-fMRI)
is a relatively common means of medical check-up often used
in studies of depression. Images are obtained by collecting blood
oxygen level dependent images with patients in a resting state
during an MRI scan (12, 13). Rs-fMRI is one of the most effective
modalities used to detect brain abnormalities (14). Rs-fMRI–based
approaches, such as the analysis of the amplitude of low-frequency
fluctuations (15), have been widely applied in the examination and
study of the pathological mechanisms of various neuropsychiatric
diseases (16–19), including MDD and SD (20, 21).

Graph theory is another method to investigate the spontaneous
neural activity of the brain from the perspective of a network (22,
23). In the brain network, each brain region is defined as a node,

Abbreviations: ANOVA, analysis of variance; AUC, area under the curve;
BDI-II, Beck Depression Inventory-II; CI, confidence interval; FA, flip angle;
FC, functional connectivity; FOV, field of view; GRETNA, Graph Theoretical
Network Analysis; HAMD, Hamilton Depression; HC, healthy control; IPL,
inferior parietal lobule; LR, logistic regression; MDD, major depressive
disorder; MFG, middle frontal gyrus; MTG, middle temporal gyrus; ReHo,
regional homogeneity; rs-fMRI, resting-state functional magnetic resonance
imaging; ROC, receiver operating characteristic; SD, subclinical depression;
STG, superior temporal gyrus; TE, echo time; TR, repetition time.

while the functional connectivity (FC) between each pair of regions
is defined as an edge. The FC is usually determined by calculating
the Pearson correlation coefficient between the time series of rs-
fMRI signals of two brain regions. The combination of graph theory
and neuroscience can help us explore the mechanisms of our brains
further (24, 25). Graph theory has established a mathematical
framework to simulate pairwise communication between network
elements (26). Graph-based network analysis makes it possible to
gather more knowledge about the topological properties of brain
networks (24, 27, 28).

The degree centrality (DC) index is an important part of
graph theory and network analyses. The degree is a node property,
and centrality determines the importance of nodes in a network
(24, 29, 30). An investigation of DC can reveal the functional
connectivity between each brain region and the rest of the brain
in the whole brain (24). Moreover, it can calculate the number
of direct connections of a given brain region in the network and
reflect the FC of a region in the brain network without a prior
choice. The larger the DC value is, the more brain regions are
connected to the node of interest. DC has been considered the most
reliable indicator among several large-scale network indicators
(31), and significant changes in DC may indicate abnormal brain
regions (30). Therefore, the DC method has been used to research
many psychiatric diseases, including MDD (29, 30), schizophrenia
(32), and multiple sclerosis (33). However, few studies assessing
DC changes in SD and few studies comparing differences in DC
between MDD and SD patients exist. In summary, the above factors
motivated us to compare the DC values between the three groups
of MDD patients, SD patients, and HCs to reveal the neural basis of
MDD and SD and find biological markers of depression.

Alterations in functional brain networks have been proven to
exist in MDD and SD (34–36). A few studies reported lower small-
worldness of resting-state FC networks in patients with MDD in
their 30s as well as in patients with late-life depression undergoing
pharmacotherapy (36, 37). Small-world networks have smaller
path lengths because they have only a few long connecting edges,
which are related to the efficiency of information transfer between
regions (36, 37). Weaker small-worldness may indicate decreased
efficiency of information transfer between different regions (36). In
prior research, resting-state FC networks showed lower network
segregation in MDD patients (36–38). One study (36) revealed
weaker network segregation in MDD patients in functional
connectivity networks by analyzing the clustering coefficients (36–
38). Network segregation refers to connections within the brain’s
networks, and the clustering coefficient shows the extent to which
nodes in a network are clustered together. A large clustering
coefficient indicates that the neighbor nodes of this node are closely
connected. However, few studies have focused on SD, and whether
patients with SD have the same situation remains unknown (34, 39,
40). One study (34) reported that regions with abnormal DC values
in SD patients include the caudate nucleus (decreased values) and
the MFG (increased values).

In this study, we compared DC values in different groups
and aimed to find and analyze brain regions with abnormal
DC values. This study included preprocessing of MRI data,
brain network construction, DC calculation, statistical analysis, a
summary of DC alterations, and receiver operating characteristic
(ROC) curve comparisons.
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2. Materials and methods

2.1. Participants

The dataset included 40 patients with MDD (11 men, 29
women), 34 with SD (11 men, 23 women), and 40 HCs (21
men, 19 women) collected from the Guangzhou First People’s
Hospital of Guangzhou Medical University. The patients in the
MDD group were diagnosed by experienced psychiatrists referring
to the Structured Clinical Interview guided by the fifth version of
the Diagnostic and Statistical Manual of Mental Disorders (41). The
Hamilton Rating Scale for Depression (HAMD) (42) scores of each
patient were used as auxiliary criteria. The patients in the SD group
were also diagnosed by experienced psychiatrists; however, the
Beck Depression Inventory II (BDI-II) was used for SD diagnostic
criteria (43, 44), and clinical interviews confirmed that patients
in the SD group did not meet the criteria for MDD. Finally, HC
subjects were required to have no history of mental illness or
genetic history of familial psychological disorders, and they were
matched in terms of sex, age, and years of education with the patient
groups. Every subject was right-handed and had no neurological
or psychological disorders. In addition, they were not addicted to
alcohol or drugs and did not meet other special conditions.

Volunteer recruitment and image data collection were
completed under the supervision of the Medical Ethics Committee
of the affiliated Guangzhou First People’s Hospital of Guangzhou
Medical University. All subjects were fully aware of the whole
data-collection process, and all signed informed consent forms and
provided permission for their information to be used.

2.2. MRI acquisition

All data were collected using an MRI scanner (Siemens,
Germany, 3-Tesla). To reduce the impact of head movement on
data quality, foam pads were used to hold patients’ heads in place,
and headphones were used to reduce noise from the equipment.
All patients met the resting-state scanning conditions, i.e., closing
their eyes and staying relaxed and awake during imaging. An
experienced doctor reviewed the MRI results to make sure there
was no structural damage in the brain.

The scan parameters for the rs-fMRI images were as follows:
repetition time (TR), 2,500 ms; flip angle (FA), 90◦; echo time (TE),
21 ms; dimension of the matrix, 64 × 64; field of view (FOV),
200 mm × 200 mm; voxel size, 3.5 mm × 3.1 mm × 3.1 mm;
slices, 42 with no gap; and echo-planar imaging sequence. There
were 200 time points (or volumes) of rs-fMRI data for each subject.
Parameters of the T1-weighted images were as follows: FA, 7◦; TR,
2,530 ms; TE, 2.34 ms; slice thickness, 1.0 mm with no gap; FOV,
256 mm× 224 mm; and magnetization-prepared rapid acquisition
gradient-echo sequences.

2.3. Overview of the study procedure

The four main procedures of this study are presented in
Figure 1 and listed as follows. First, the rs-fMRI and T1-weighted

images were preprocessed before further analysis. Second, a brain
functional network was constructed for each subject, and the
functional connection matrix was obtained. Third, DC calculation
and statistical analysis were conducted for the MDD, SD, and HC
groups to identify brain regions with significantly different DC
values. Finally, ROC curves were analyzed to identify important
brain regions.

2.4. Preprocessing of rs-fMRI data

The preprocessing step was completed using the Data
Processing Assistant for Resting-state fMRI software (45).

1. DICOM images were converted to NIFIT format.
2. To ensure that the MRI equipment was in normal working

condition and the subjects had adapted to the scanning
process, the first 10 time points were abandoned.

3. The slice-timing step used the middle slice as the reference
to eliminate any difference between slices due to acquisition
times as much as possible.

4. Slight head movements caused by breathing, heartbeats, or
other factors are inevitable. Patients with total scan time
<3 min after scrubbing all time points with framewise
displacement (FD) >0.2 mm (46) or max head movement
with motion >2 mm and rotation >2◦ were excluded. FD is
calculated as the sum of the absolute values of the derivatives
of the six realignment parameters (46) and used as the
measure of the total absolute movement across the scan.

5. To make the brain images of different subjects
more standardized, echo-planar imaging images were
registered with T1 images.

6. The brain of each patient was segmented using the “New
Segment + DARTEL” method.

7. Covariables (e.g., Friston 24-parameter model and gray matter
signal) were removed to reduce the impact on analysis results.

8. Spatial normalization is necessary and it resampled each voxel
in the brain to 3 mm× 3 mm× 3 mm.

9. A temporal bandpass filter was applied (0.01–0.08 Hz).
10. Gaussian smoothing was conducted for further noise

reduction; the kernel parameter was full width at half-
maximum with a size of 6 mm× 6 mm× 6 mm.

2.5. Brain network construction

The Graph Theoretical Network Analysis (GRETNA) toolbox
(47) was used to complete the functional network constructions
based on the data that had been processed. The Human
Brainnetome Atlas (48) is one of the most important atlases
available to describe the distribution of different brain regions. It
divides the brain into 48 brain regions, which are further divided
into 246 subregions (nos. 1–246). Using this atlas, the brain can
be reconstructed as a network with 246 nodes based on the graph
theory method (49). Compared to the Anatomical Automatic
Labeling Atlas of 116 brain regions, the Human Brainnetome Atlas
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FIGURE 1

The study design and main procedures included preprocessing, functional brain network construction, statistical analysis of DC values, and ROC
curve analysis. DC, degree centrality; ROC, receiver operating characteristic.

was proposed based on connectional architecture and can parcellate
the brain on a fine scale. After extracting the time series for
any pair of nodes, Pearson correlation coefficients were calculated
for these two sequences. This Pearson correlation coefficient can
be thought of as an FC between two brain regions. The FC is
defined as an edge—an important attribute in graph networks.
Finally, brain networks with 246 × 246 matrices for all subjects
could be constructed.

2.6. DC calculation

There is a lack of a clear standard to select a specific sparsity
threshold (47), whereas a principle of determining the threshold is
to ensure the integrity and small-worldness (low global efficiency
and high local efficiency) of the network. In the current study,
a total of 36 binary undirected networks and 36 matrices were
obtained using the sparsity threshold of the matrix ranging from
0.05 to 0.4 in increments of 0.01. Here, we empirically chose
a threshold of 0.30 for the presentation of the results, as done
in previous studies (50, 51). The DC value of a single node is
equivalent to the sum of direct connections to other nodes. In an
undirected network, the DC value of one node can be measured as:

CD (Ni) =

g∑
i = 1

dij,
(
i6=j
)

(1)

where CD (Ni) is the DC value of the node Ni, g represents how
many nodes the graph network has, dij represents how many edges
the network has between Ni and other g-1 nodes and i6=j exclude
the connection of Ni with itself.

2.7. Statistical analysis

For all subjects, demographic data were analyzed using the
relevant statistical module of the Statistical Product and Service
Solutions software (SPSS), software program (IBM Corporation,
Armonk, NY, USA). When comparing the differences in age and
education time, a one-way analysis of variance (ANOVA) was
carried out, while the sex differences were obtained by a Chi-
squared test. A two-sample t-test was performed to analyze the
BDI-II scores in the comparison of SD patients and HC subjects.

Statistical analysis was conducted using the GRETNA toolbox.
To identify brain regions with significant DC values in the
three groups, a one-way ANOVA analysis [Bonferroni corrected,
p < 0.05, (52)] was performed. Based on the ANOVA results, post-
hoc t-tests (two-sample t-tests) were carried out for the pairwise
comparison with a Bonferroni correction (p < 0.05). To ensure
the quality and accuracy of the statistical analysis for DC, the
age, gender, educational level, and head motion were taken as the
covariate in the statistical analysis during the ANOVA analysis
and the pairwise two-sample t-test (MDD vs. HC, SD vs. HC, and
MDD vs. SD, respectively). Finally, brain regions with aberrant DC
were identified.

2.8. ROC curve analysis

For each comparison, the brain regions highlighted by
statistical analysis (p < 0.05) were extracted for ROC analysis (53)
using MedCalc (MedCalc Software, Ostend, Belgium) software. For
the comparison of MDD vs. HC, we first analyzed ROC curves
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for each brain region with abnormal DC values as a single index.
Then, all single indexes were combined as a composite index using
the logistic regression (LR) method, and the composite index was
named LR. Subsequently, the logistic regression (54) process was
performed as follows.

In the dichotomous task of distinguishing MDD from HC,
we defined Y as the category label: Y = 0 indicates the HC
group and Y = 1 corresponds to the MDD group. We defined a
total of N independent variables X1, X2, . . . , XN . The conditional
probability of MDD was P = P(Y = 1|X1, X2, . . . , XN). The
logistic regression model is obtained by the following equation:

zi = a0 + a1Xi1 + a2Xi2 + ...+ anXiN (2)

Pi =
1

1+ e−zi
(3)

where zi is the intermediate variable parameter (i is the number
of samples, i = 1, 2, . . . , M), a0 is the regression constant, ai is
the regression coefficient of the j-th variable (j = 1, 2, . . . , N),
Xij is the i-th value of the j-th variable vector, and Pi is regression
prediction probability of disease probability in the i-th sample.

Finally, the ROC curves of the composite index were analyzed.
ROC curves were compared to analyze distinguishability. Similarly,
we compared the ROC curves of every single index with abnormal
DC values and the composite index for SD vs. HC and MDD
vs. SD using the same method. For the ROC curve analysis, we
mainly used the area under the curve (AUC) to analyze the ability
to differentiate. In addition, other important measures, such as
sensitivity, specificity, and cut-off values, were calculated. Youden’s
index represents the ability to distinguish two groups and was used
to determine cut-off values.

3. Results

3.1. Demographic and clinical
characteristics

With the standard of scrubbing (scan time <3 min after
removing all time points with FD >0.2 mm) and max head
movement removal (translation >2 mm and rotation >2◦), we
ruled out two MDD, eight SD, and seven HC subjects before further
data analysis. Table 1 summarizes the demographic and clinical
data for all subjects who participated in the data analysis. The
statistical analysis of sex, age, and educational level showed that no
significant difference (p > 0.05) was found. The symptom scores
(on the HAMD scale) of the MDD group were significantly different
from those of the HC group (p < 0.001).

3.2. Statistical analysis of DC

According to one-way ANOVA analysis, brain regions with
obvious changes in DC included the right MFG, right superior
temporal gyrus (STG), right middle temporal gyrus (MTG), and
the left and right inferior parietal lobules (IPLs). Figure 2 shows
the regions in the brain with altered DC values.

TABLE 1 Demographic and clinical characteristics.

Category HC
(n = 33)

SD
(n = 26)

MDD
(n = 38)

p-
Value

Gender
(female/male)

16/17 16/10 27/11 0.150a

Age (years) 19.24± 0.94 19.65± 1.77 21.13± 6.17 0.120b

Education
(years)

13.18± 0.87 13.36± 0.92 12.94± 2.60 0.492b

BDI-II score 1.55± 1.44 22.46± 7.73 – <0.001c

HAMD score – – 21.51± 4.58 –

aChi-squared test.
bOne-way analysis of variance.
cTwo-sample t-test.

Figure 3A shows DC differences between the MDD and HC
groups; notably, the right STG and right IPL possessed increased
DC in the MDD group. Higher DC in the right STG and right MTG
were found in the SD group compared with the HC group. On the
contrary, the left IPL was weaker in the SD group (Figure 3B).
Figure 3C shows the regions that differ between MDD and SD
groups. Considering the changes in DC in the MDD group, the
right MFG, right IPL, and left IPL all possessed a trend toward
increased values, while the right STG and right MTG showed
decreased DC values, respectively.

According to the comparison results, the alteration tendency
of DC in three different stages for each important brain region is
summarized in Figure 4. In each comparison, the STG particularly
showed significant differences.

3.3. Analysis of ROC curves

We compared the ROC curves of brain regions with aberrant
DC using the single index and the composite index regressed
by the single index, separately. For the aberrant brain regions in
each comparison, the AUC value, cut-off point, sensitivity, and
specificity of ROC analysis are given in Table 2. AUCs >0.7 indicate
a good discriminative ability, and a larger AUC value suggests a
greater classification capability.

The ROC results of the right STG, right IPL, and the composite
index of the right STG and right IPL for MDD vs. HC are shown
in Figure 5A. When distinguishing patients with MDD from
HCs, the right STG performed well with an AUC of 0.779 [95%
confidence interval (CI), 0.671–0.865; p < 0.0001]. Conversely, the
distinguishing ability of the right IPL was not good, with an AUC
of 0.615 (95% CI, 0.499–0.723; p = 0.0752), while the AUC of the
composite index was 0.803 (95% CI, 0.698–0.884; p < 0.0001).
Thus, according to the AUC >0.7 rule, the right STG and the
composite index showed good discriminative ability.

For the comparison between the SD and HC groups, the ROC
results of the right STG, right MTG, and left IPL and the composite
index of these regions combined are shown in Figure 5B. When
distinguishing patients with SD from HCs, the right STG presented
an AUC of 0.636 (95% CI, 0.516–0.745; p = 0.0396), the right MTG
presented an AUC of 0.669 (95% CI, 0.550–0.774; p = 0.0071),
and the left IPL presented an AUC of 0.688 (95% CI, 0.570–0.791;
p = 0.0027), while the AUC of the composite index was 0.751 (95%
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FIGURE 2

Brain regions with significantly different DC values among the HC, SD, and MDD groups. L, left; R, right; IPL, inferior parietal lobule; MFG, middle
frontal gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus.

FIGURE 3

Brain regions with significantly different DC values in inter-group comparisons. (A) Brain regions with significant differences in DC between the MDD
and HC groups; (B) brain regions with significant differences in DC between the SD and HC groups; (C) brain regions with significant differences in
DC between the MDD and SD groups.

CI, 0.637–0.844; p < 0.0001). The DC value of the composite index
had a good discriminative ability.

For the comparison between the MDD and SD patient groups,
the ROC results of the right MFG, right STG, right MTG, left IPL,
and right IPL and the composite index of these regions combined
are shown in Figure 5C. When distinguishing patients with MDD
from patients with SD, the AUCs of the right MFG, right STG, right
MTG, and left IPL was 0.679 (95% CI, 0.560–0.783; p = 0.0050),
0.681 (95% CI, 0.562–0.785; p = 0.0051), 0.704 (95% CI, 0.587–
0.805; p = 0.0008), 0.695 (95% CI, 0.577–0.797; p = 0.0015), and

0.651 (95% CI, 0.531–0.758; p = 0.0208), respectively. Additionally,
the AUC of the composite index was 0.814 (95% CI, 0.707–0.895;
p < 0.0001). As such, the right MTG and the composite index
showed good discriminative ability.

4. Discussion

We identified aberrant DC and summarized a tendency for
DC alteration by comparing three groups (MDD, SD, and HC)
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FIGURE 4

The alteration tendency in DC between HCs, SD, and MDD for five important brain regions. “∗” indicates significantly different DC values between
the two groups.

TABLE 2 Analyses of ROC curves for brain regions with altered DC.

Categories Brain
regions

AUC 95% CI Cut-off
point

Sensitivity
(%)

Specificity
(%)

p-Value

MDD vs. HC STG.R 0.779 0.671–0.865 64.72 72.50 82.05 <0.0001

IPL.R 0.615 0.499–0.723 53.17 92.50 33.33 0.0752

LR 0.803 0.698–0.884 – 55.00 94.87 <0.0001

SD vs. HC STG.R 0.636 0.516–0.745 77.56 41.18 85.00 0.0396

MTG.R 0.669 0.550–0.774 73.03 82.35 47.50 0.0071

IPL.L 0.688 0.570–0.791 48.31 70.59 67.50 0.0027

LR 0.751 0.637–0.844 – 91.18 50.00 <0.0001

MDD vs. SD MFG.R 0.679 0.560–0.783 41.42 65.00 70.59 0.0050

STG.R 0.681 0.562–0.785 75.00 75.00 67.65 0.0051

MTG.R 0.704 0.587–0.805 77.72 60.00 76.47 0.0008

IPL.L 0.695 0.577–0.797 48.30 65.00 70.59 0.0015

IPL.R 0.651 0.531–0.758 53.19 92.50 38.24 0.0208

LR 0.814 0.707–0.895 – 70.00 79.41 <0.0001

for the first time in the existing study. Notably, the MFG, STG,
MTG, and IPL are important areas of the brain that displayed
changed DC values. The ROC curve analysis showed that the
right STG performs well for the differentiation between MDD
and HC groups, and the right MTG could effectively distinguish
the MDD and SD groups. All three composite indexes had
a good discriminative ability when distinguishing two groups
in each pairwise comparison. These findings have implications

for the study of depression and will be further discussed
and analyzed below.

4.1. The STG as an important region in
MDD and SD

In each group of comparison experiments, the DC value of the
right STG was significantly changed. For both the MDD group and
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FIGURE 5

Receiver operating characteristic curves for the three comparisons. (A) MDD vs. HC; (B) SD vs. HC; (C) MDD vs. SD. AUC, area under the curve;
STG.R, right superior temporal gyrus; IPL.R, right inferior parietal lobule; LR, logistic regression; MTG.R, right middle temporal gyrus; IPL.L, left inferior
parietal lobule; MFG.R, right middle frontal gyrus.

the SD group, the right STG presented an increased DC trend. For
the comparison of DC in the MDD and SD groups, the right STG
showed a decreased tendency in the MDD group.

As one of the important brain regions, the STG plays a key
role in dealing with tasks related to social cognition, emotional
processing, and language expression (55, 56). MDD is the main
risk factor for suicide. Some studies (57–63) suggest that STG is
also associated with depressive symptoms (57) and suicide (58,
59). In a study of depressed patients with suicidal tendencies, the
volume of the right STG was reduced (58, 59). In other studies
investigating reward-based learning processes, the STG volume was
also found to be reduced (60) and the STG was activated (61)
in patients with depression. It is reasonable to speculate that the
STG’s constant activation may cause volume reduction and trigger
depressive symptoms associated with suicide. We speculate that the
observed decrease in DC may be related to the reduced volume
of the right STG.

In our study, the right STG in the MDD and SD groups
presented a higher DC. Zhang et al. (64) observed greater regional
homogeneity (ReHo) in the left STG in MDD patients than that
in HCs, which also suggests the existence of abnormalities in
the STG. ReHo is a reliable measure for reflecting spontaneous
neural activity. Under this method, it is assumed that the blood
oxygen level dependent signal in a voxel is temporally similar to its
neighbors, and Kendall’s coefficient concordance is used to measure
the similarity between them. As the prodrome of MDD, SD is likely
to develop into MDD (4, 5). We hypothesized that STG changes
would be greater in the MDD group because MDD patients had
lower DC values than SD patients in the right STG in this analysis.

4.2. MTG in MDD and SD

The right MTG in the SD subjects showed higher DC values
in the three groups. In our previous studies, the FCs based on the
region of interest of the posterior parietal thalamus (PPtha) were
investigated because PPtha is an important brain region associated
with depression (11, 65). The brain connections between PPtha
and the right MTG showed a decreased trend in the MDD group
(66). Some studies (58) have indicated that the thalamic-temporal

lobe FC was altered in patients with depression. Zhang et al. (64)
found that the ReHo of the left MTG in the MDD and SD groups
was significantly increased compared with the HC group, and the
increasing trend was more obvious in the SD group (64).

In SD patients, the FC, ReHo, and DC all showed decreasing
tendencies in the MTG in the MDD group. Therefore, the function
of the MTG might be further damaged in more severe stages of
depression. As one of the most important areas in the temporal
cortex, the MTG is usually associated with the neural response to
negative stimuli (64, 67). In addition, the function of the temporal
cortex is also related to emotional processing and social cognition
(66–68).

As shown in Figure 4, DC values do not necessarily show a
strict linear correlation with disease severity. The right STG and
right MTG have larger DC values in the SD group than both the
HC and MDD groups, while the left IPL has smaller DC values
in the SD group than that in the HC group or MDD group. This
hypothesis of linear correlation may be too partial or simple in
many diseases, considering the complexity of both the disease
and brain structures. First, increased or decreased DC values can
occur in different impaired brain regions. One previous study
(34) showed that SD patients have lower DC values in the right
parahippocampal gyrus and left amygdala but higher DC values in
the right posterior parietal lobule. Li et al. (69) reported that the
DC value is lower in the left triangular part of the inferior frontal
gyrus but higher in the left hippocampus in patients with MDD.
This discrepancy is not unique to depression-related disorders;
patients with diabetic nephropathy and retinopathy have lower DC
values in the right inferior temporal gyrus and left subcallosal gyrus
regions and higher DC values in the bilateral precuneus (70). In
this study, a similar pattern was observed for different indexes in
the comparison of the three groups. A higher ReHo was present
in the right MTG in the SD group than in either the MDD or
HC group, while the ReHo was higher in both the SD and MDD
groups than that in the HC group (64). In another study, the right
superior frontal gyrus had a lower amplitude of low-frequency
fluctuation value in the mild cognitive impairment group than
that in the Alzheimer’s disease and HC groups (18). Second, some
studies indicate there no significant correlation exists between DC
values and disease severity; for example, Gao et al. (34) found that
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DC values do not correlate with BDI scores in the brain regions
with altered DC values in SD subjects. Another study (56) showed
that DC values of Parkinson’s disease patients with freezing of the
gait did not significantly correlate with the freezing of the gait
questionnaire scores for the nine regions with significantly different
DC values (p > 0.05).

4.3. The composite index had a better
discriminative ability

The DC in the right STG could be used to differentiate MDD
from HC (AUC = 0.779). These results indicated that DC changes
in the right STG can be considered an indicator of depression. The
importance of DC in the STG has been emphasized because of its
good discriminative ability. Similarly, the DC in the right MTG
could be used to distinguish MDD from SD (AUC = 0.704). This
indicates that changes in DC in the right MTG could be imaging
biomarkers for distinguishing MDD from SD.

Logistic regression was used to regress the brain regions with
significant differences in each comparison as one composite index
and the three composite indexes had a good discriminative ability.
This suggests that depression may not be caused by dysfunction or
changes in a single brain region; instead, multiple brain regions and
their interactions contribute to depressive symptoms. The diverse
features can be used to take multiple aspects of the disease into
account to estimate and classify MDD and SD. We can use machine
learning models to conduct a comprehensive analysis of multiple
features to obtain higher classification accuracy.

4.4. Limitations and future works

This work still has shortcomings. First, the accuracy of the
statistical results was limited because the sample size was small.
Second, we could not study the developmental trajectories of
the same patients at different stages of depression because the
multistage data for the same group of subjects was unavailable. In
future work, data from the Strategic Research Program for Brain
Sciences dataset (71) and the REST-meta-MDD Project (72) could
be included. Furthermore, machine learning models can be used for
more intelligent classification tasks of depression using DC or other
graph theory features. After expanding sample sizes, deep learning
models, such as graph neural networks (73), could also be used
for classification.

5. Conclusion

This study analyzed the alterations in DC for patients with
MDD and SD compared to HCs based on rs-fMRI data. Brain
regions with altered DC values included the MFG, STG, MTG,
and IPL. In the DC analysis, the right STG showed significant
changes in the three pairwise comparisons. The alteration tendency
for DC alteration of five important brain regions was identified.
The DC of the right STG showed a good differentiation ability in
the comparison between MDD patients and HCs, while the DC of
the right MTG showed a good differentiation ability to distinguish

MDD patients from SD patients. The three composite indexes
showed good discriminative ability. These findings may help to
explore patterns of functional brain networks in depressed people
or identify biological markers of depression.
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