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Introduction: The study of brain function has been favored by scientists, but the

mechanism of short-term memory formation has yet to be precise.

Research problem: Since the formation of short-term memories depends on

neuronal activity, we try to explain the mechanism from the neuron level in this

paper.

Research contents and methods: Due to the modular structures of the brain,

we analyze the pattern properties of the FitzHugh-Nagumo model (FHN) on a

multilayer network (coupled by a random network). The conditions of short-term

memory formation in the multilayer FHNmodel are obtained. Then the time delay

is introduced to more closely match patterns of brain activity. The properties of

periodic solutions are obtained by the central manifold theorem.

Conclusion: When the di�usion coe�cient, noise intensity np, and network

connection probability p reach a specific range, the brain forms a relatively vague

memory. It is found that network and time delay can induce complex cluster

dynamics. And the synchrony increases with the increase of p. That is, short-term

memory becomes clearer.

KEYWORDS

FHN model, short-term memory, multilayer network, Turing pattern, delay, Hopf

bifurcation, noise

1. Introduction

In 1952, Alan Hodgkin and Andrew Huxley developed the famous Hodgkin-Huxley

(HH) model based on nerve stimulation potential data of squid. Due to the high dimension

and computational complexity of theHHmodel, Richard FitzHugh and J.Nagumo simplified

the HHmodel and established the FHNmodel. In the actual nerve conduction process, there

is a certain time delay in signal transmission, which caused a lot of research on the FHN

model with time delay. Wang et al. studied bifurcation and synchronization (1), bifurcation

structure (2), Fold-Hopf bifurcation (3), periodic oscillation (4), and global Hopf bifurcation

(5) of coupled FHNmodel with time delay. Yu et al. (6) found that the noise level can change

the signal transmission performance in the FHN network, and the delay can cause multiple

stochastic resonances. Gan et al. (7) also found that appropriate delay can induce stochastic

resonances in FHN scale-free networks and devoted themselves to extending the range of

stochastic resonance on complex neural networks. Zeng et al. (8) found that, unlike noise, the

system undergoes a phase transition as the time delay increases. Bashkirtseva and Ryashko

analyzed the excitability of the FHNmodel using the stochastic sensitivity function technique

and proposed a new method for analyzing attractors (9). In addition, it is found that there

are very complex dynamic phenomena in the FHNmodel. Rajagopal et al. (10) studied chaos

and periodic bifurcation diagrams under different excitation currents and found that the

dynamic behavior of the nodes alters dramatically after the introduction of Gaussian noise.
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Iqbal et al. (11) studied robust adaptive synchronization of

a ring-coupled uncertain chaotic FHN model and proposed

a scheme to synchronize the coupled neurons under external

electrical stimulation. Feng et al. studied the influence of external

electromagnetic radiation on the FHN model. And they found

that periodic, quasi-periodic, and chaotic motions would occur

in different frequency intervals when the external electromagnetic

radiation was in the form of a cosine function (12).

In the same year, the HH model was proposed, Turing

discovered that a stable uniform state would become unstable

under certain conditions in a reaction-diffusion system, which

attracted a lot of attention and was introduced into various fields.

Liu et al. found that cross-diffusion could lead to Turing instability

of periodic solutions (13, 14). Lin et al. analyzed the conditions of

Turing-Hopf bifurcation and the spatiotemporal dynamics near the

bifurcation point in diffusion neural networks with time delay (15).

Mondal et al. studied the dynamical behaviors near the Turing-

Hopf bifurcation points of the neural model. And they found that

collective behaviors may be related to the generation of some brain

pathologies (16). Qu and Zhang studied the conditions required for

various bifurcations in the FHN diffusion system under Neumann

boundary conditions and extended them to coupled FHN model

(17). With the boom of complex networks in recent years, many

scholars have begun to study the Turing pattern under the network

(18–22). Ren et al. extended these studies to multilayer networks

(23, 24). Moreover, Tian et al. investigated pattern and Hopf

bifurcation caused by time delay in the Small-World network,

Barabasi-Albert free-scale network, and Watts-Strogatz network

(25, 26). These studies take the pattern problem to a new level.

Researchers are keen to study some characteristic behaviors of

the brain from the perspective of the network because the brain is a

complex network system with hierarchical and modular structures

(27). Neurons generate complex cluster dynamic behaviors through

synaptic coupling to form brain function. Neurons with similar

connection patterns usually have the same functional attributes

(28). Experiments have shown that neurons far apart can fire

simultaneously when the brain is stimulated and that this

phenomenon persists when neurons are in the resting state. One

of the brain’s basic functions is remembering information, which

can be a sensory stimulus or a text (29). The principle of memory

formation is very complex and is still being explored. A classic view

is that the realization of short-term memory in the brain depends

on fixed point attractors (30, 31). Memory storage is maintained

by the continuous activity of neurons, which persists even after the

memory stimulus has been removed (32, 33). Goldman showed

the fundamental mechanisms that generate sustained neuronal

activity in feedforward and recurrent networks (33). Neurons

release neurotransmitters that direct human activity when the

brain receives the information. However, due to the noise and

the existence of inhibitory neurons, information processing cannot

always be synchronized in time, which leads to a certain delay in

the recovery time of action potentials (34). And Yu et al. found that

the delay will affect the transmission performance of sub-threshold

signal and induce various chaotic resonances in coupled neural

networks (35).

The state of neurons can be represented by patterns. The

pattern no longer looks so smooth when the brain stores short-

term memory. There is synchrony in the activity of neurons.

In pattern dynamics, synchronization can be induced by Turing

instability. Scholars have built various mathematical models and

analyzed neurons using Turing dynamic theory to understand the

mechanism of memory formation. Zheng et al. studied the effect

of noise on the bistable state of the FHN model and explained

the biological mechanism of short-term memory by the pattern

dynamics theory (36). They also studied the conditions of Turing

pattern generation in the Hindmarsh-Rose (HR) model and found

that collected current and outgoing current greatly influenced

neuronal activity and used this to explain the mechanism of

short-term memory generation (37). Wang and Shi proposed

the time-delay memristive HR neuron model, found multiple

modes and coherence resonance, and speculated that it might

be related to the memory effect of neurons (38). We study the

FHN model under a multilayer network to get closer to the

actual brain structure. The biological mechanism of short-term

memory generation is explained by the pattern characteristics

of the model. The article is structured as follows. In the next

section, firstly, the stability of the equilibrium point in the

FHN model is analyzed. Then the sufficient conditions for the

Turing instability of the FHN model on the Cartesian product

network are found using the comparison principle. Finally, the

properties of periodic solutions in FHN multilayer networks

are studied using the center manifold theorem. Explaining the

mechanism of short-term memory by numerical simulation

in Section 3.

2. Description of the FHN model

We consider the general FHN model

du

dt
= c(u− u3/3− av+ I),

dv

dt
= c(bu− v+ d), (1)

Where u is membrane potential, which is a fast variable, and

v is recovery variable, which is a slow variable. I is the external

input current. a, b represent respectively the intensity of action

from v to u and from u to v. And the parameters c 6= 0, d

are constants. The equilibrium point of the system (Equation 1)

satisfies u3 + 3(ab − 1)u + 3(ad − I) = 0. Therefore, we have the

following conclusion.

Lemma 1 Let ̟ = −1+ı
√
3

2 and ̺ = 3
2 (ad − I), in which ı is

the imaginary unit. The influence of parameters on the number of

equilibrium of the system (Equation 1) is as follows.

(i) When ab− 1 = ad− I = 0, the equation has triple zero roots

and the trace of the system (1) at that point is constant 0.

(ii) When1 = ̺2+ (ab− 1)3 > 0, the equation has only one real

root
3

√

−̺ +
√
1+ 3

√

−̺ −
√
1.

(iii) When 1 = 0, ab 6= 1 and ad 6= I, the equation has two real

roots −2 3
√
̺ and 3

√
̺, and the determinant at the second root

3
√
̺ of system (1) is always 0.

(iv) When 1 < 0, the equation has three unequal real

roots
3

√

−̺ +
√
1 + 3

√

−̺ −
√
1, ̟

3

√

−̺ +
√
1 +

̟ 2 3

√

−̺ −
√
1,̟ 2 3

√

−̺ +
√
1+̟ 3

√

−̺ −
√
1.
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Let U∗ = (u∗, v∗) be the equilibrium point of the system (1).

By coordinate transformation ū = u(t)− u∗, v̄ = v(t)− v∗, we get

the following equivalent system. For convenience, u(t), v(t) are still

used to denote ū, v̄,

du

dt
= a11u+ a12v+ f (u),

dv

dt
= a21u+ a22v, (2)

where a11 = c(1 − u∗
2
), a12 = −ac, a21 = bc, a22 = −c, f (u) =

−u∗u2− u3

3 . The corresponding determinant10 = c2(u∗
2+ab−1)

and the trace Tr0 = −cu∗
2
. By the Routh-Hurwitz criterion, the

equilibrium (0, 0) of the system (Equation 2) is stable if and only if

(H 1) holds,

cu∗
2
> 0 and u∗

2 + ab− 1 > 0. (H 1)

2.1. FHN model on Cartesian product
network

Now we discuss the effect of the Cartesian product networks on

the stability of the equilibrium point (0, 0). Two networks R and E

with nr and ne nodes are given, respectively. (L
R) = AR − (kiδij)

R

((LE) = AE − (kiδij)
E) is the Laplacian matrix of the network R

(E). A is the adjacency matrix of the network. And ki denotes the

degree of the ith node. δij satisfies, δij = 1 when node i has an edge

with node j; δij = 0 when there is no edge. By using the Kronecker

product, we can get the Cartesian product network R�E (� stands

for multilayer network), which has nrne nodes. Then the Laplacian

matrix of R�E is denoted as

LR�E = LR ⊗ Ine + Inr ⊗ LE,

and the eigenvalues of R�E are of form

3R�E
αβ = 3R

α +3E
β , α ∈ {1, · · ·, nr}, β ∈ {1, · · ·, ne}.

A general FHN model on Cartesian product network can be

expressed as

dure

dt
= a11ure + a12vre + f (ure)+ Luure,

dvre

dt
= a21ure + a22vre + Lvvre, (3)

Where r ∈ {1, · · ·, nr}, e ∈ {1, · · ·, ne}. The Laplacian operator

Lu is

Lu = DR
uL

R ⊗ Ine + DE
uInr ⊗ LE.

DR
u , D

R
v (DE

u , D
E
v ) are the diffusion coefficients of the network

R (E). Notice that (LR ⊗ Ine )(ure) = (LRuRr , u
E
e ) =

∑

r′ L
R
rr′ur′e, and

similarly, we can get Inr ⊗ LE. For Lvvre, we can get similar result.

Expanding ure and vre in Fourier space, we can obtain linearized

equation for equation (3),

dure

dt
= a11ure + a12vre + (DR

u3
R
α + DE

u3
E
β )ure,

dvre

dt
= a21ure + a22vre + (DR

v3
R
α + DE

v3
E
β )vre. (4)

Lemma 2 Comparison principles Consider the ODE

d2S
dt

+ P(t) dS
dt

+ Q(t)S = 0, (A 1)

and suppose that there exists some8(t) such that

Q(t) ≤ − 1
8

d28
dt

− 1
8

d8
dt
P(t), ∀t ∈ �. (A 2)

If (A 2) holds, then the fundamental solution S(t) of (A 1)

satisfies |S| ≥ 8(t) for all t ∈ �. In particular, S(t) has an

exponential growth rate on� if Q(t) < 0 for all t ∈ �.
The proof of the lemma is divided into two cases. Let’s discuss

it first at the boundary, and then prove it on the inside by using the

properties of the Riccati equation. The detailed proof can be seen in

Van Gorder (39).

Theorem 1 Assume that (H 1) holds.

10 +3E
β (a22D

E
u + a11D

E
v )+3R

α(a22D
R
u + a11D

R
v )

+ (3E
β )

2DE
uD

E
v +3E

β3
R
α(D

E
uD

R
v + DR

uD
E
v )+ (3R

α)
2DR

uD
R
v < 0.

(H 2)

If (H 2) holds, then (0, 0) for the system (Equation 3) is linearly

unstable.

Proof We consider the Equation (4). Separating vre from the first

equation of Equation (4), we can obtain

vre =
ure′ − a11ure − (DR

u3
R
α + DE

u3
E
β )ure

a12
.

Putting it into the second equation of Equation (4), we can

obtain a second-order ODE about ure,

ure′′ − [Tr0 +3E
β (D

E
u + DE

v )+3R
α(D

R
u + DR

v )]ure′

+ [10 +3E
β (a22D

E
u + a11D

E
v )+3R

α(a22D
R
u + a11D

R
v )

+ (3E
β )

2DE
uD

E
v +3E

β3
R
α(D

E
uD

R
v + DR

uD
E
v )

+ (3R
α)

2DR
uD

R
v ]ure = 0.

Similarly, we get a second-order ODE about vre.

According to Lemma 2, a sufficient condition (H 2) for Turing

instability caused by the Cartesian product network at (0, 0) is

obtained. Of course, networks do not always cause instability.

2.2. The Hopf bifurcation of FHN network
caused by delay

Suppose that (0, 0) in Equation (3) is stable, we next consider

the effect of time delay on (0, 0). Adding time delay to the FHN

network model (Equation 3), we have

dure

dt
= a11ure + a12vre(t − τ )+ f (ure)+ Luure,

dvre

dt
= a21ure + a22vre + Lvvre. (5)

The Jacobian matrix of each node becomes

Jre =
(

a11 + DR
u3

R
α + DE

u3
E
β 0

a21 a22 + DR
v3

R
α + DE

v3
E
β

)

+
(

0 a12
0 0

)

e−λreτ , J0 + J1e−λreτ .
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Then the transcendental equation of the system (Equation 5) at

(0, 0) is

λ2re + B1λre + B2 + B3e
−λreτ = 0,

where

B1 = −Tr0 − (DE
u + DE

v )3
E
β − (DR

u + DR
v )3

R
α ,

B2 = (DE
v3

E
β + DR

v3
R
α + a22)(D

E
u3

E
β + DR

u3
R
α + a11),

B3 = −a12a21.

Suppose ıω (ω > 0) be a root of the transcendental equation.

And substituting ıω into the above equation, we can obtain

−ω2 + B2 + B3cos(ωτ )+ ı
(

B1ω − B3sin(ωτ )
)

= 0.

Comparing the coefficients, we have

{

B3cos(ωτ ) = ω2 − B2,

B3sin(ωτ ) = B1ω,

then we obtain

ω4 + (B21 − 2B2)ω
2 + B22 − B23 = 0.

Let x = ω2, p = B21−2B2, q = B22−B23, then the equation becomes

x2 + px+ q = 0. (6)

Lemma 3 Assume that (0, 0) in Equation (3) is stable. If 4q < 0 ≤
p2 and p > 0, then the real parts of all roots of the transcendental

equation are less than 0 for τ ∈ [0, τ0) and
dReλre(τ0)

dτ
6= 0.

Proof The Equation (6) has only one positive root when 4q < 0 ≤
p2 and p > 0, denoted by x0. Hence, ıω0 = ı

√
x0 is a purely

imaginary root of the transcendental equation. Let

τ
j
0(3

R
α ,3

E
β ) =

1

ω0
arccos

ω2
0 − B2

B3
+ 2π j, j = 0, 1, 2, · · ·.

Define

τ0 = minj≥1 τ
j
0(3

R
α ,3

E
β ). (7)

Then again, τ0 is theminimum value of τ
j
0, so the real parts of all

roots of the transcendental equation are less than 0 for τ ∈ [0, τ0).

Next we prove the transversal condition. Let

λre(τ ) = η(τ )+ ıω(τ )

be the root of transcendental equation, then η(τ0) = 0, ω(τ0) = ω0.

By taking the derivative with respect to τ in the transcendental

equation, we can get

dλre(τ )

dτ
=

B3λree
−λreτ

2λre + B1 − B3τe−λreτ
.

Substituting ω0, τ0 into the above equation, we can obtain

dReλre(τ0)

dτ
=
ω2
0

2
(2ω2

0 + p),

where

2 = (−ω2
0τ0 + B2τ0 + B1)

2 + (B1ω0τ0 + 2ω0)
2.

So

dReλre(τ0)

dτ
6= 0.

According to the above analysis, the system (Equation 5) will

occur Hopf bifurcation at τ = τ0 when Lemma 3 holds. Next,

we discuss the properties of periodic solutions. The idea is: firstly,

the system is written in the form of abstract ODE by using the

infinitesimal generators theorem; then, A two-dimensional ODE

that is the restriction to its center manifold is obtained by using the

spectral decomposition theorem and the central manifold theorem

of infinite dimensional systems; finally, the Hassard method is

applied to determine the bifurcation attributes’ parameters. The

delay τ is taken as the control parameter, and let τ = τ0 + ò,

t = τς . For convenience, we’ll still use t to stand for ς . Setting

ℵ(t) = (ure(t), vre(t))
T be the solution of system (Equation 5) and

define ℵt(θ) = ℵ(t + θ), θ ∈ [−1, 0].

The system (Equation 5) is transformed into the following

functional equation,

ℵ̇t = AEòℵt + Fò(ℵt), (8)

where linear operator AEó :C([−1, 0],R2) , C → R
2,

AEóφ = (τ0 + ò)J0φ(0)+ (τ0 + ò)J1φ(−1);

nonlinear operator Fò :C → R
2,

Fò(φ) = (τ0 + ò)

(

−u∗φ1(0)2 − φ1(0)
3

3

0

)

,

where φ(θ) = (φ1(θ),φ2(θ))
T .

From Riesz representation theorem, there exists matrix η(θ , ò)

of bounded variation functions satisfying

AEóφ =
∫ 0

−1
φ(θ)dη(θ , ò), where φ ∈ C.

Let

η(θ , ò) = (τ0 + ò)J0δ(θ)+ (τ0 + ò)J1δ(θ + 1),

where δ(·) denotes Dirac function. According to the infinitesimal

generators theorem, the abstract differential equation can be

obtained from Equation (8)

ℵ̇t = Aòℵt + Rò(ℵt), (9)

where

Aòφ(θ) =
{

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫ 0
−1 dση(ò, σ )φ(σ ), θ = 0;

Rò(φ(θ)) =
{

0, θ ∈ [−1, 0),

Fò(φ), θ = 0.
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FIGURE 1

Nullcline, phase portraits with di�erent initial value and time series when a = 1, b = 1, c = 2, d = 1, I = 0.7.

FIGURE 2

The range of Turing instability in the general di�usion system about

Du and Dv .

In the following, we will discuss ODE (Equation 9) by using

formal adjoint theorem, center manifold theorem and normal

form theory.

LetA∗
ò be the conjugate operator ofAò. According to the formal

adjoint theorem, there is

A∗
òψ(s) =

{

− dψ(s)
ds

, s ∈ (0, 1],
∫ 0
−1 dη

T(σ , 0)ψ(−σ ), s = 0.

Define product

〈ψ(s),φ(θ)〉 = ψ̄T(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0
ψ̄T(ξ − θ)dη(θ)φ(ξ )dξ ,

which satisfies 〈ψ ,Aòφ〉 = 〈A∗
òψ ,φ〉 and η(θ) = η(θ , 0). From the

previous discussion, we can obtain that±ıω0τ0 are the eigenvalues

of A0, A
∗
0 .

Lemma 4 Let q(θ) = (1, q2)
Teıω0τ0θ be the eigenvector of A0

corresponding to ıω0τ0, and q∗(s) = κ(q∗1 , 1)
Teıω0τ0s be the

eigenvector of A∗
0 corresponding to−ıω0τ0. And let 〈q∗(s), q(θ)〉 =

1, then we can choose

q2 =
a21

ıω0 − a22
, q∗1 =

−a21

ıω0 + a11
,

κ =
1

q∗1 + q̄2 + τ0a12q∗1 q̄2eıω0τ0
.

Proof From the hypothesis, we have

A0

(

1

q2

)

= ıω0τ0

(

1

q2

)

, A∗
0

(

q∗1
1

)

= −ıω0τ0

(

q∗1
1

)

.

Then

q2 =
a21

ıω0 − a22
, q∗1 =

−a21

ıω0 + a11
.

Next, we calculate the expression of κ . According to the bilinear

inner product formula, we have

〈

q∗(s), q(θ)
〉

= q̄∗
T
(0)q(0)−

∫ 0

−1

∫ θ

0
q̄∗

T
(ξ − θ)dη(θ)q(ξ )dξ

= κ̄(q̄∗1 , 1)(1, q2)
T

−
∫ 0

−1

∫ θ

0
κ̄(q̄∗1 , 1)e

−ıω0τ0(ξ−θ)dη(θ)(1, q2)
Teıω0τ0ξdξ

= κ̄
[

q̄∗1 + q2 − (q̄∗1 , 1)

∫ 0

−1
θeıω0τ0θdη(θ)(1, q2)

T
]

= κ̄
[

q̄∗1 + q2 + (q̄∗1 , 1)τ0J
1e−ıω0τ0 (1, q2)

T
]

= κ̄
[

q̄∗1 + q2 + τ0a12q̄∗1q2e
−ıω0τ0

]

.
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To make
〈

q∗(s), q(θ)
〉

= 1, we take

κ̄ =
1

q̄∗1 + q2 + τ0a12q̄∗1q2e−ıω0τ0
.

The center manifold �0 of Equation (8) is locally invariant

when ò = 0. To achieve spectral decomposition, we build the local

coordinates z and z̄ on the center manifold �0. Let Ut = Ut(θ) be

the solution of the system (Equation 8) when ò = 0, then

z(t) = 〈q∗,Ut〉.

And let

W(t, θ) = Ut(θ)− z(t)q(θ)− z̄(t)q̄(θ). (10)

W(t, θ) = W(z, z̄, θ) on the center manifold �0, so W(z, z̄, θ) can

be expanded as

W(z, z̄, θ) = W20(θ)
z2

2 +W11(θ)zz̄ +W02(θ)
z̄2

2 + · · ·. (11)

W is real whenUt is real. Therefore, in this case, let’s just look at the

real solution. Obviously, there is

〈q∗,W〉 = 0.

Because of the existence of the center manifold, it is possible to

transform the functional differential equation (Equation 8) into

simple complex variable ODE on�. When ò = 0, there is

ż(t) = 〈q∗, U̇t〉

= ıω0τ0z(t)+ q̄∗
T
(0)F0

(

W(z, z̄, θ)+ zq(θ)+ z̄q̄(θ)
)

, ıω0τ0z(t)+ g(z, z̄)(t).

(12)

And since Fò(φ) is at least quadratic with respect to φ, we can write

g(z, z̄) = g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · ·. (13)

By combining Equations (10), (11), we can obtain

Ut(θ) = W(t, θ)+ z(t)q(θ)+ z̄(t)q̄(θ)

= (1, q2)
Teıω0τ0θ z + (1, q̄2)

Te−ıω0τ0θ z̄ +W20(θ)
z2

2

+W11(θ)zz̄ +W02(θ)
z̄2

2
+ · · ·.

Substituting the above equation into (13), it can be obtained

g(z, z̄) = q̄∗
T
(0)F0(Ut) = τ0κ̄(q̄

∗
1 , 1)

(

−u∗φ1(0)2 − φ1(0)
3

3

0

)

= −τ0κ̄ q̄∗1
[

u∗(z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · ·)2

+
1

3
(z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · ·)3

]

= −τ0κ̄ q̄∗1
[

u∗z̄2 + 2u∗zz̄ + u∗z2

+ (2u∗W(1)
11 (0)+ u∗W(1)

20 (0)+ 1)z2z̄ + · · ·
]

.

Obviously, there are

g02 = g11 = g20 = −2τ0κ̄ q̄
∗
1u

∗,

g21 = −2τ0κ̄ q̄
∗
1

(

2u∗W(1)
11 (0)+ u∗W(1)

20 (0)+ 1
)

. (14)

Observing the above equation, we can see that if we want to

calculate g21, we must first calculate W20(θ) and W11(θ). Next, we

determine the exact expression forW20(θ),W11(θ).

According to Equations (9), (10), and (12), we have

Ẇ = U̇t − żq− ˙̄zq̄

=
{

A0W − gq(θ)− ḡq̄(θ), −1 ≤ θ < 0

A0W − gq(θ)− ḡq̄(θ)+ F0, θ = 0

, A0W +M(z, z̄, θ),

(15)

where

M(z, z̄, θ) = M20(θ)
z2

2 +M11(θ)zz̄ +M02(θ)
z̄2

2 + · · ·. (16)

FIGURE 3

The relationship between 3R
α +3E

β and y and the corresponding pattern when a = 1, b = 1, c = 2, d = 1, I = 0.7, Du = 0.01, Dv = 8, p = 0.01. The

red dots are the eigenvalues of the network Laplacian matrix.
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Combining Equations (11), (15), and (16), Ẇ can be expressed as

Ẇ = A0

[

W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · ·

]

+M20(θ)
z2

2
+M11(θ)zz̄ +M02(θ)

z̄2

2
+ · · ·

=
[

A0W20(θ)+M20(θ)
] z2

2
+
[

A0W11(θ)+M11(θ)
]

zz̄

+
[

A0W02(θ)+M02(θ)
] z̄2

2
+ · · ·.

(17)

On the other hand, combining Equations (11), (12), we know

that on the center manifold �0 near the origin, Ẇ can also be

expressed as

Ẇ = (W20z +W11z̄ + · · ·)
[

ıω0τ0z + g(z, z̄)
]

+ (W11z +W02z̄ + · · ·)
[

−ıω0τ0z̄ + ḡ(z, z̄)
]

= 2ıω0τ0(W20
z2

2
+W02

z̄2

2
+ · · ·).

(18)

Comparing the coefficients of z2 and zz̄ in Equations (17), (18), the

relationship betweenWij(θ) andMij(θ) can be obtained

(2ıω0τ0I− A0)W20(θ) = M20(θ), −A0W11(θ) = M11(θ).

(19)

Next, we will determine W11(θ) and W20(θ) according to the

relationship between g(z, z̄) andM(z, z̄, θ).

When −1 ≤ θ < 0, combining Equations (15), (16), it is

clear that

M20(θ) = −g20q(θ)− ḡ02q̄(θ),

M11(θ) = −g11q(θ)− ḡ11q̄(θ).
(20)

Combining Equations (19), (20) and the definition of Aò, we get

dW20
dθ

= 2ıω0τ0W20(θ)+ g20q(θ)+ ḡ02q̄(θ),
dW11
dθ

= g11q(θ)+ ḡ11q̄(θ).
(21)

FIGURE 4

The relationship between 3R
α +3E

β and y when a = 1, b = 1, c = 2, d = 1, I = 0.7, Du = 0.01. (A) Dv = 9, p = 0.001. (B) Dv = 10, p = 0.006. (C)

Dv = 10, p = 0.01. (D) Dv = 10, p = 0.1.
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By substituting q(θ) = (1, q2)
Teıω0τ0θ into the above equation, it

can be obtained by the constant variation method

W20(θ) = ıg20
ω0τ0

q(0)eıω0τ0θ + ı ḡ02
3ω0τ0

q̄(0)e−ıω0τ0θ + ℓ1e2ıω0τ0θ ,

W11(θ) = − ıg11
ω0τ0

q(0)eıω0τ0θ + ı ḡ11
ω0τ0

q̄(0)e−ıω0τ0θ + ℓ2,
(22)

Where ℓ1 = (ℓ11, ℓ
2
1)

T , ℓ2 = (ℓ12, ℓ
2
2)

T are two dimensional constant

vectors. Next, let’s figure out what the values of ℓ1 and ℓ2 are.

According to Equation (19) and the definition of A0, when

θ = 0, there is

∫ 0
−1 dη(θ)W20(θ) = 2ıω0τ0W20(0)−M20(0),
∫ 0
−1 dη(θ)W11(θ) = −M11(0).

(23)

When θ = 0, combining Equations (15), (16), it is clear that

M20(0) = −g20q(0)− ḡ02q̄(0)+ 2τ0

(

−u∗

0

)

,

M11(0) = −g11q(0)− ḡ11q̄(0)+ 2τ0

(

−u∗

0

)

.

(24)

Since q(0) is the eigenvector of A0 corresponding to ıω0τ0, we can

obtain

(

ıω0τ0I−
∫ 0

−1
eıω0τ0θdη(θ)

)

q(0) = 0,

(

−ıω0τ0I−
∫ 0

−1
e−ıω0τ0θdη(θ)

)

q̄(0) = 0. (25)

Substituting Equations (22), (24), and (25) into Equation (23), we

obtain

(

2ıω0τ0I−
∫ 0
−1 e

2ıω0τ0θdη(θ)
)

ℓ1 = 2τ0

(

−u∗

0

)

,

∫ 0
−1 dη(θ)ℓ2 = −2τ0

(

−u∗

0

)

.

(26)

When ò = 0, there are

(

2ıω0 − a11 − DR
u3

R
α − DE

u3
E
β −a12e

−2ıω0τ0

−a21 2ıω0 − a22 − DR
v3

R
α − DE

v3
E
β

)

ℓ1

= 2

(

−u∗

0

)

,
(

−a11 − DR
u3

R
α − DE

u3
E
β −a12

−a21 −a22 − DR
v3

R
α − DE

v3
E
β

)

ℓ2 = 2

(

−u∗

0

)

,

FIGURE 5

The corresponding Turing pattern in Figure 4. (A) Dv = 9, p = 0.001. (B) Dv = 10, p = 0.006. (C) Dv = 10, p = 0.01. (D) Dv = 10, p = 0.1.
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that is,

ℓ1 = −2

(

2ıω0 − a11 − DR
u3

R
α − DE

u3
E
β −a12e

−2ıω0τ0

−a21 2ıω0 − a22 − DR
v3

R
α − DE

v3
E
β

)−1

×
(

u∗

0

)

,

ℓ2 = −2

(

−a11 − DR
u3

R
α − DE

u3
E
β −a12

−a21 −a22 − DR
v3

R
α − DE

v3
E
β

)−1
(

u∗

0

)

.

Substituting ℓ1, ℓ2 into Equation (22), we can find W20

and W11. To date, g20, g21, g11 and g02 are now all

found, and the normal form Equation (12) that is the

restriction to its center manifold is obtained. The key

parameters µ2, T2 and Floquet exponent β2 that determine

the properties of periodic solutions can be calculated by

Hassard’s method,































c1(0) = ı
2ω0τ0

(

g11g20 − 2|g11|2 − 1
3 |g02|

2
)

+ 1
2 g21,

µ2 = − Re
[

c1(0)
]

Re
[

λ′(τ0)
] ,

β2 = 2Re
[

c1(0)
]

,

T2 = − Im
[

c1(0)
]

+µ2Im
[

λ′(τ0)
]

ω0
.

(27)

Theorem 2 Suppose that the conditions of Lemma 3 are

satisfied, then

(i) If µ2 > 0(< 0), the periodic solution is a supercritical

(subcritical) Hopf bifurcation.

(ii) If T2 > 0(< 0), the period of the periodic solution increases

(decreases) as τ moves away from τ0.

(iii) If β2 > 0(< 0), the periodic solutions restricted

on the center manifold are orbitally asymptotically

unstable (stable).

FIGURE 6

Pattern with a = 1, b = 1, c = 2, d = 1, I = 0.7, Du = 0.01, Dv = 9, p = 0.001. (A) np = O(10−7). (B) np = O(10−6). (C) np = O(10−4). (D)

np = O(10−3).
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3. Simulation

We perform simple simulations to verify the above theoretical

results in this section. The topological properties of neural networks

are very important to the dynamic behavior of neuronal clusters.

In both R and E, we pick random networks with connection

probability p and DR
u = DE

u = Du, D
R
v = DE

v = Dv. And setting the

parameters as a = 1, b = 1, c = 2, d = 1, I = 0.7, nr = ne = 20.

Neurons still return to the resting state after receiving different

stimuli (Figure 1).

In this case, condition (H 2) becomes

y = 10 + (a22Du + a11Dv)(3
R
α +3E

β )+ DuDv(3
R
α +3E

β )
2 < 0.

Hence, Turing instability occurs in the general diffusion system

when a22Du + a11Dv > 0 and (a22Du + a11Dv)
2 − 410DuDv >

0. And the critical value is Dv = 8.3923 when Du = 0.01

(Figure 2). Different dynamic behaviors [such as Hopf bifurcation

(40) and chaos (41)] and various spatiotemporal patterns [such

as irregular waves, target waves, traveling waves, and spiral waves

(42, 43)] will appear when the system is subjected to different

kinds and degrees of external stimulus. In the neural system,

these spatiotemporal patterns are closely related to brain learning,

memory, and information transmission. When the brain stores

memory, the continuous firing rate of individual neurons shows

a hierarchical change and the neurons show a strong temporal

dynamic pattern and heterogeneity (33). Many factors contribute

to the formation of short-term memory. Short-term memory

does not form when the external stimulus is not sufficiently

large (Figure 3). It is worth noting that neuronal activity is not

only affected by external stimuli but also closely related to the

interaction between nodes. The pattern remains flat when the

external stimulus is large enough and the correlation degree of

neurons is small. That is, short-term memory will not form

(Figures 4A, B, 5A, B). When p increased to 0.01, neurons in

the memory function areas fired, and the brain formed more

vague memories (Figures 4C, D, 5C, D). Zheng et al. (37)

found that neurons exhibit different pattern dynamics with the

change of network connection probability p in the study of the

HR model. This conclusion is also confirmed in the study of

multilayer networks. Under the same degree of stimulation, if

the number of neurons with the same functional attributes is

different, the state of the neural network varies greatly (Figures 4B–

D).

The physiological environment in which neurons work is

always full of noise. From the above analysis, we can see that when

Dv = 9, p = 0.001 is taken, the neurons are always in resting

state (Figure 5A). To investigate the robustness of noise to the

current results, we add Gaussian white noise to the multilayer FHN

networkmodel. The noise intensity np about u is used as the control

FIGURE 8

The relationship between τ0 and eigenvalues of R�E.

FIGURE 7

Du = Dv = 0. (A) Bifurcation diagram about τ . The bifurcation point is τ = 0.5227. (B) The time series diagram with τ = 0.6.
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FIGURE 9

Pattern with Du = 0.01, Dv = 8. (A) τ = 0.3, p = 0.01. (B) τ = 1, p = 0.01. (C) τ = 1, p = 0.1. (D) τ = 1, p = 0.3.

parameter. We find that the system is robust when np < O(10−5);

when np > O(10−5), the neurons are excited and the short-term

memory is vague (Figure 6).

In the neural system, synapses can regulate the release of

excitatory neurotransmitters of membrane potential or mediators

through delayed feedback, so the response and transmission of

signals will be delayed. Time delay affects the generation of

bifurcation and phase synchronization between neurons, which

affects the brain’s memory function (27). Next, we explore the effect

of time delay on neuronal activity. The transition of neurons from

resting state to firing state is always accompanied by bifurcation

behavior. Action potential exceeds the threshold when the time

delay is greater than τ0 = 0.5227, regardless of the influence of the

network (Figure 7). c1(0) = 0.021 − 0.2729ı , µ2 = −0.021, β2 =
0.042, T2 = 0.162 can be found in Equation (27). Namely, the

system generates subcritical Hopf bifurcation (similarly, we can get

the supercritical Hopf bifurcation). From Figure 8, the network will

affect the value of τ0. In the study of the delayed neural network

model, Zhao et al. (44) also found that the regulation of delay

time can effectively control the formation of the pattern. Under

the fixed network topology, the transmembrane current changes

the membrane potential of neurons to different degrees with the

increase of time delay. To more intuitively observe the collective

behavior of neurons, we sorted 400 neuron nodes. When the delay

time reaches 1, multiple neurons fire synchronously and participate

in memory simultaneously (Figures 9A, B). It is found that the

larger p is, the more obvious the synchronization phenomenon is

(Figures 9B–D). Namely, short-term memory is relatively clear.

4. Conclusion

The brain is the most important organ in the human body,

and its structure is very complex, so we have to simplify it when

modeling. In this paper, we use the FHNmodel, which is simple but

can describe the neuronal activity to explain the principle of short-

term memory generation. The brain is a functional network that

requiresmultiple neurons to work together for short-termmemory.

The brain regions responsible for specific tasks change their activity

when the brain is storing memory (45). And pattern formation

and selection can effectively detect collective behavior in excitable

neural networks (27). Firstly, we establish the FHN model on the

Cartesian product network and analyze the conditions of Turing

instability. In the simulation, we found that short-term memory

Frontiers in Psychiatry 11 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1083015
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Wang and Shen 10.3389/fpsyt.2023.1083015

does not form when the probability of external stimulation and

network connection is small. We test the robustness of the current

results with Gaussian white noise and find that the system is robust

when np < O(10−5). Short-term memory is formed when external

stimuli, network connection probability, and noise reach a certain

range. Because the pattern is not regular at this time, the short-

term memory is blurred. Then we study the effect of time delay on

short-term memory formation and find that short-term memory

is formed when the delay time exceeds τ0. Of course, neuronal

activity is not only related to external stimuli but the topology of the

network itself. When p and delay time reach a certain degree, the

cluster dynamic behavior appear, and the pattern shows periodic

phenomenon. At this time, the brain forms a relatively clear short-

term memory. These results provide a new way to explain the

principle of memory formation.
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