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Background: The incidence of sleep disorders in children with autism spectrum 
disorder (ASD) is very high. Sleep disorders can exacerbate the development 
of ASD and impose a heavy burden on families and society. The pathological 
mechanism of sleep disorders in autism is complex, but gene mutations and 
neural abnormalities may be involved.

Methods: In this review, we examined literature addressing the genetic and neural 
mechanisms of sleep disorders in children with ASD. The databases PubMed and 
Scopus were searched for eligible studies published between 2013 and 2023.

Results: Prolonged awakenings of children with ASD may be  caused by the 
following processes. Mutations in the MECP2, VGAT and SLC6A1 genes can 
decrease GABA inhibition on neurons in the locus coeruleus, leading to 
hyperactivity of noradrenergic neurons and prolonged awakenings in children 
with ASD. Mutations in the HRH1, HRH2, and HRH3 genes heighten the expression 
of histamine receptors in the posterior hypothalamus, potentially intensifying 
histamine’s ability to promote arousal. Mutations in the KCNQ3 and PCDH10 
genes cause atypical modulation of amygdala impact on orexinergic neurons, 
potentially causing hyperexcitability of the hypothalamic orexin system. Mutations 
in the AHI1, ARHGEF10, UBE3A, and SLC6A3 genes affect dopamine synthesis, 
catabolism, and reuptake processes, which can elevate dopamine concentrations 
in the midbrain. Secondly, non-rapid eye movement sleep disorder is closely 
related to the lack of butyric acid, iron deficiency and dysfunction of the thalamic 
reticular nucleus induced by PTCHD1 gene alterations. Thirdly, mutations in 
the HTR2A, SLC6A4, MAOA, MAOB, TPH2, VMATs, SHANK3, and CADPS2 genes 
induce structural and functional abnormalities of the dorsal raphe nucleus 
(DRN) and amygdala, which may disturb REM sleep. In addition, the decrease in 
melatonin levels caused by ASMT, MTNR1A, and MTNR1B gene mutations, along 
with functional abnormalities of basal forebrain cholinergic neurons, may lead to 
abnormal sleep–wake rhythm transitions.

Conclusion: Our review revealed that the functional and structural abnormalities 
of sleep–wake related neural circuits induced by gene mutations are strongly 
correlated with sleep disorders in children with ASD. Exploring the neural 
mechanisms of sleep disorders and the underlying genetic pathology in children 
with ASD is significant for further studies of therapy.
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1. Introduction

According to the fifth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5), autism spectrum disorder 
(ASD) is a neurodevelopmental disorder characterized by social 
communication deficits, restricted interests, and repetitive behaviors. 
Approximately 1/100 children are diagnosed with ASD around the 
world, and the prevalence has been increasing over time (1).

Sleep disorders are common clinical symptoms in children with 
ASD, with a rate of nearly 50% (2). Clinical evidence has shown that 
sleep disorders can exacerbate ASD symptomatology (3–6). Firstly, 
sleep disorders are closely related to the impairment of social ability 
in children with ASD. Children with ASD with sleep disorders have 
further diminished social functioning and lower quality of life than 
those without sleep disorders (7). Sleep problems in autistic 
adolescents may lead to difficulties regulating social interactions and 
cause disharmonious relationships with peers (8). Secondly, sleep 
disorders can aggravate repetitive behaviors in children with ASD. The 
parental questionnaire revealed a significant correlation between 
Children’s Sleep Habits Questionnaire scores and Repetitive 
Behavioral Questionnaire-2 scores (9). Children with ASD with poor 
sleep quality have more repetitive behaviors (10, 11). Thirdly, sleep 
disorders may be a mediator of cognitive function deficits in children 
with ASD. Sleep is important for many complex physiological 
processes, such as cognitive development, learning and memory 
processes (12, 13). Sleep disorders can exacerbate the impairment of 
memory consolidation in children with ASD (5). Children with ASD 
who slept longer performed better on working memory tests and had 
higher rates of correct hits in the attention task. There was a linear 
relationship between poor working memory and sleep disorders in 
children with ASD (14). Children with ASD showed worse narrative 
abilities than their healthy peers (15). In addition, sleep disorders can 
also affect the language function of children with ASD (4). At the same 
time, sleep disorders of children with ASD increase the difficulty and 
cost of care, placing a heavy burden on family and society (16).

The main types of sleep disorders in children with ASD are 
difficulties in falling asleep and maintaining sleep, which manifest as 
long sleep latency, nighttime waking, and reduced sleep efficiency (17). 
Compared to healthy controls, children with ASD experience a 
30–45 min prolongation of sleep latency on weekdays, generally lower 
sleep efficiency, and an average nighttime waking time of 2–3 h (17). 
Healthy individuals’ sleep–wake cycle is divided into three parts based 
on the electroencephalogram (EEG) and behavioral characteristics: the 
awakening period, non-rapid eye movement (NREM) sleep, and rapid 
eye movement (REM) sleep (18). Characteristics of NREM sleep include 
sharp-wave ripples, cortical slow oscillations, delta waves, and spindles. 
REM sleep is associated with theta oscillations (19, 20). Excess synapses 
are removed during NREM sleep and hippocampal neural activity 
during REM sleep is critically involved in memory consolidation (19, 
20). Polysomnography analysis showed high rates of EEG abnormalities 
during sleep in children with ASD. Paroxysmal slowing and epileptiform 

abnormalities in EEG recordings were found in children with ASD with 
or without a history of seizures (21). Abnormalities of NREM sleep 
include a reduction in NREM sleep duration, K-complex density, and 
density of spindle activity. In addition, children with ASD also exhibit 
shorter REM sleep duration, prolonged REM latency, increased theta 
activity during REM sleep, and circadian rhythm sleep–wake disorders 
(22). The pathological mechanisms of sleep disorders in children with 
autism are still unclear. The lack of discussion on genetic and neural 
mechanisms has hindered the exploration of clinical treatment.

The purpose of this review is to summarize the genetic and neural 
mechanisms of sleep disorders in children with ASD from 2013 until 
now. We searched the databases of PubMed and Scopus for eligible 
studies and limited our search to publications between 2013 and 2023. 
We  included articles that were peer-reviewed, written in English, 
purposefully addressed genetic and neural mechanisms, focused on 
sleep disorders, and included autism. Articles were excluded if they 
were not written in English, were non-peer reviewed, did not primarily 
focus on individuals with both autism and sleep disorders, did not 
clearly address genetic and neural mechanisms, or were abstracts, 
dissertations, methodological papers, or conference papers. The 
search strategy identified 397 documents, which were reduced to 65 
included articles after applying exclusion criteria.

2. Genetic and neural mechanisms of 
the awakening time abnormalities in 
children with ASD

2.1. Locus Coeruleus and the 
noradrenergic system

The nucleus locus coeruleus (LC) is a brainstem nucleus located 
on the dorsal side of the pons (Figure  1), which maintains the 
desynchronization of brain electrical activity. LC is the main nucleus 
that releases norepinephrine (NE), which can improve arousal level. 
Locus coeruleus-norepinephrine (LC-NE) neurons project widely to 
the cortex, hippocampus, thalamus, cerebellum, pons and medulla. 
The firing frequency of LC is highest during wakefulness, decreases 
during slow-wave sleep, and almost stops during REM sleep (23). The 
excitation of LC neurons promotes wakefulness, while inhibition of 
LC neurons reduces wakening and promotes REM sleep (24, 25).

Clinical data showed an abnormally enhanced activity of the 
LC-NE system in children with ASD. Resting eye-tracking task 
confirmed that the resting pupil diameter of children with ASD was 
significantly increased, suggesting increased tonic activity of LC-NE 
(26). Moreover, the NE levels are increased in the cortex, cerebellum 
and pons of the valproic acid rat model of autism, suggesting abnormal 
activation of NE system in the brain (27). The hyperactivity of the 
LC-NE system in the brain may lead to increased arousal and reduced 
sleep time in children with ASD. However, conflicting data showed 
the blockage of norepinephrine synthetase and reduced urine 
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norepinephrine metabolites in children with ASD, which may suggest 
the reduced NE level in the blood (28). This implies that the NE level 
changes are complicated.

LC-NE hyperactivity in ASD patients may be related to decreased 
inhibition of γ-aminobutyric acid (GABA). LC neuronal activity is 
regulated by GABAergic interneurons. Animal experiments showed 
that presynaptic GABA release of LC neurons in ASD model mice was 
reduced, leading to hyperactivity of LC neurons (29). Changes in 
several genes participating in the synthesis, storage, and release of 
GABA may lead to a decrease in GABAergic inhibition. Mutations in 
the MECP2 gene, which encodes the transcriptional regulator methyl-
CpG-binding protein 2 (MECP2), cause autism-like stereotypies and 
Rett syndrome (30). MECP2-deficient GABAergic neurons show a 
reduction of presynaptic glutamic acid decarboxylase (GAD) levels, 
indicating a decrease in GABA synthesis (31). Experiments on 

Epac2−/− mice, a model of ASD, showed an alteration of vesicular 
GABA transporter (VGAT) expression, which may affect the release of 
GABA (32). Additionally, a recent study showed that mutations in 
solute carrier family 6 member 1 (SLC6A1) are associated with autism. 
The GABA transporter1 (GAT-1) encoded by SLC6A1 is responsible 
for GABA reuptake into presynaptic neurons and glial cells to regulate 
neurotransmission (33). Thus, mutations in the SLC6A1 gene in 
certain types of ASD patients may affect the reuptake of GABA.

2.2. Histamine system in the posterior 
hypothalamus

The posterior hypothalamus is one of the brain regions involved 
in arousal (Figure  1), in which the excitability of histaminergic 

FIGURE 1

Sleep disorder-related nucleus and brain regions in children with ASD.
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neurons can promote and maintain the state of arousal. 
Histaminergic neurons are active during wakefulness and inactive 
during NREM and REM sleep. Histamine receptor agonists induce 
arousal, while antagonists promote sleep (34, 35). Wright et  al. 
compared histamine receptor-related genes in the brains of ASD 
patients with healthy controls, including histidine decarboxylase 
gene (HDC), histamine N-methyltransferase (HNMT), histamine 
receptor H1 (HRH1), histamine receptor H2 (HRH2), histamine 
receptor H3 (HRH3), histamine receptor H4 (HRH4). They found 
that the expression of HRH1, HRH2, and HRH3 genes in ASD 
patients was higher than in healthy controls (36). The changes of 
gene encoding histamine receptor lead to the increase of histamine 
receptors in sleep-related nuclei in the brain, which amplifies the 
effect of histamine on promoting arousal, and this may be  the 
reason for the prolongation of the arousal period in children 
with ASD.

2.3. The Posterolateral hypothalamic 
orexin system

The posterolateral hypothalamus is a brain region that promotes 
and maintains arousal, which is rich in orexinergic neurons (Figure 1). 
Orexinergic neurons are necessary for maintaining waking and 
behavioral arousal and widely project to sleep-related brain regions, 
including the LC basal forebrain (BF), tuberomammillary nucleus 
(TMN), and dorsal raphe nuclei (DRN) (18). These projections can 
significantly improve the excitability of arousal-related neurons, 
shorten sleep duration, and maintain the arousal state. Clinical data 
have shown that children with ASD have higher plasma orexin levels 
than healthy controls (control = 6, ASD = 18) (37). The increased 
activity of the orexinergic system is thought to be involved in insomnia 
in ASD (38).

The activity of orexinergic neurons is regulated by the amygdala, 
and abnormal amygdala function can cause hyper excitation of 
orexinergic neurons. Some ASD patients have structural and 
functional abnormalities in the bilateral amygdala, including an 
increase in volume and cell density in the amygdala (39), as well as 
inhibition of amygdala neuron synchronization activity (38). The 
functional magnetic resonance imaging (fMRI) results showed that 
the functional connectivity between the amygdala and other brain 
regions was reduced (40), leading to a weakening of its regulatory role 
in various physiological functions (41). Some gene mutations may 
lead to structural and functional abnormalities of the amygdala in the 
brain of patients with ASD. Missense variants at R230 and R227 in the 
potassium voltage-gated channel subfamily Q Member 3 (KCNQ3) have 
been reported in some autistic patients. Further patch clamp analysis 
in amygdala neurons showed that variants of the KCNQ3 gene resulted 
in abnormal function of voltage-gated potassium channels (42), which 
may disturb the modulating effects of amygdala neurons on orexin 
neurons and prolong waking time (43). In addition, the deletion of the 
protocadherin 10 (PCDH10) gene has also been reported in ASD 
patients (44). PCDH10 is an activity-regulated gene that is expressed 
at high levels in olfactory and limbic regions, including the basolateral 
amygdala. It is implicated in social and emotional behavior phenotypes 
in ASD (45). Mice lacking one copy of PCDH10 (PCDH10+/−) show 
reduced levels of N-methyl-D-aspartate receptor subunits in the 
amygdala (45), which wakens the regulatory effects of the amygdala 

on orexinergic neurons. Thus, orexinergic neurons show 
hyperexcitation, leading to prolonged awakenings in ASD patients.

2.4. Dopamine system and the Substantia 
Nigra pars Compacta in midbrain

The substantia nigra pars compacta and ventral tegmental areas 
are arousal-related nuclei, where most human dopaminergic neurons 
are located, and the dopamine secreted by them can effectively 
promote and maintain arousal (Figure  1). It was found that the 
increase of dopamine concentrations in substantia nigra pars 
compacta in midbrain significantly prolonged wakening time and 
shortened REM sleep. The treatment of dopamine receptor agonists 
significantly increased wakefulness, while antagonists augmented 
REM sleep (46).

Mutations of several genes participating in dopamine synthesis, 
catabolism and reuptake were found in ASD patients. The Abelson-
helper integration site 1 (AHI1) gene is a candidate gene of ASD (47). 
Down-regulation of the expression of the rate-limiting enzyme in 
dopamine biosynthesis, tyrosine hydroxylase (TH), in AHI1-knockout 
(KO) mice is responsible for AHI1-deficiency-mediated autism 
symptoms. The AHI1-knockout autism mouse model showed low 
expression of TH and a decrease in dopamine synthesis (48). In 
addition, the deficiency of the Rho Guanine Nucleotide Exchange 
Factor 10 (ARHGEF10) gene decreased the expression of Monoamine 
oxidase A (MAOA), one of the enzymes in the catabolism of dopamine, 
and increased the level of dopamine in ASD model mice (49). The 
Ubiquitin protein ligase E3A (UBE3A) gene is another candidate gene 
of ASD (47). The deletion of the UBE3A gene is the cause of the 
disease in certain children with ASD, which reduces dopamine 
transporter (DAT) function and thus affects dopamine reuptake, 
increasing dopamine levels and wakefulness (50). Both clinical 
evidence and animal model experiments have shown that certain 
types of syndromic autism are associated with mutations in genes 
encoding DAT (50–53). Apart from that, mutations in the solute 
carrier family 6 member 3 (SLC6A3) gene also occur in clinical ASD 
patients (52). Mutation in the SLC6A3 gene causes abnormal DAT 
function and continuous outflow of dopamine from cells, leading to 
an abnormal increase in extracellular dopamine concentrations (53). 
Therefore, in ASD patients with mutations in the AHI1, UBE3A and 
SLC6A3 genes, abnormal dopamine synthesis, catabolism and 
reuptake result in increased dopamine concentrations in the brain, 
which may lead to a prolonged wakening period.

3. Genetic and neural mechanisms of 
NREM sleep abnormalities

3.1. Thalamic reticular nucleus

Studies showed that the functional connection between the cortex 
and thalamus is important for sleep regulation, which is regulated by 
nerves and exhibits dynamic changes (54, 55). The data from fMRI 
showed that the thalamocortical functional connectivity of healthy 
adults decreased during NREM sleep, and the information from the 
thalamic afferent cortex was reduced. This ensures that people enter 
NREM sleep from an arousal state (54). However, fMRI data showed 
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a lack of regulation of thalamo-cortical functional connectivity in the 
brain of children with ASD, resulting in an abnormal increase in 
thalamo-cortical functional connectivity, which led to an inability to 
transition smoothly from wakefulness to NREM sleep (55). The 
thalamic reticular nucleus (TRN) is specifically excited by the 
thalamus cortex system and then inhibits the activity of the whole 
dorsal thalamus through its GABAergic neuron fiber projection, 
which makes TRN become the inhibitory gate to control the thalamo-
cortical circuit. TRN can effectively control the thalamo-cortical 
functional connection and plays a sedative and sleep-promoting 
effect (56).

TRN is mainly composed of GABAergic neurons. The slow 
synchronous oscillation generated by TRN neurons can block the 
processing of sensory information in the cerebral cortex and limbic 
system, thus promoting sleep. After photogenetic activation of TRN 
neurons, the NREM sleep period of mice was prolonged, and the 
frequency and amplitude of δ waves were also increased, while 
muscular tension and activity in the mice decreased (57). Moreover, 
TRN neuronal activity is important in regulating the formation of 
spindle oscillations during NREM sleep. Spindle oscillation is a 
characteristic brainwave during the NREM sleep period, which can 
reduce the influence of external stimulation on the brain during sleep 
and stabilize sleep. Spindle oscillation is caused by the low-threshold 
Ca2+ current induced by the periodic firing of TRN cells. Therefore, 
spindle oscillation disappears after cutting off the connection between 
cortical-thalamic circuit cells and TRN neurons (58).

Patched domain containing protein 1 (PTCHD1) gene maps to 
chromosome Xp22.11 and encodes PTCHD1, which is closely related 
to TRN neuronal activity (59). During early development in mice, 
PTCHD1 is selectively expressed in the TRN and continues to 
be highly expressed into adulthood (60). The firing activity of TRN 
neurons in PTCHD1 knockout mice was reduced during sleep, leading 
to a reduction in NREM sleep spindle waves (60). In clinical practice, 
about 1% of ASD patients have PTCHD1 gene mutations, which cause 
a significant reduction in gene transcription activity (61). Furthermore, 
the volume of TRN neurons in ASD model mice is larger than that in 
wild-type mice (62). These results suggest that the abnormal structure 
and function of TRN neurons may be responsible for the shortened 
sleep duration and reduced spindle wave in NREM sleep in some 
children with ASD.

3.2. Short-chain fatty acids

Short-chain fatty acids are important metabolites produced by 
human colonic flora, including acetate, propionate, butyrate and so on 
(63). Butyrate can prolong the time of NREM sleep through 
hepatoportal butyrate-sensitive mechanisms (64). A gut flora 
metabolism study found that many patients with ASD have intestinal 
microbiota disorders, and the level of short-chain fatty acids such as 
butyric acid in the brain is generally lower than that of healthy controls 
(65). The level of butyric acid may be associated with complex changes 
of butyric acid-producing bacteria. A study on butyric acid-producing 
bacteria showed that the abundance of butyric acid-producing 
bacteria Faecalibacterium and Agathobacter were significantly 
reduced in children with ASD who have sleep disorders (65). However, 
Roseburia intestinalis, another butyrate-producing bacterium, has a 
significantly higher abundance in children with ASD compared to 

control groups (66). Furthermore, it was reported that the abundance 
of genes related to butyric acid production decreased in the 
metagenome of ASD patients (67). Therefore, the complex changes of 
butyric acid-producing bacteria and the decreased abundance of genes 
associated with butyrate production may result in the decrease of 
butyric acid, which subsequently shortens NREM sleep.

3.3. Iron

Iron is important for sleep maintenance and the synthesis of 
neurotransmitters, such as serotonin, noradrenaline, dopamine, 
glutamate and γ-aminobutyric acid (GABA) (68). Iron deficiency can 
lead to abnormal metabolism of sleep-related neurotransmitters and 
worse sleep quality (69). Children with ASD had significantly lower 
serum ferritin levels compared to healthy controls (70). The analysis 
results of a retrospective chart review also showed that the serum iron 
level of ASD patients was lower than that of the control group (70). 
The above evidence suggests that iron deficiency in ASD patients can 
lead to abnormal metabolism of sleep-related transmitters and 
abnormal formation of sleep spindles, which may contribute to NREM 
sleep abnormalities in ASD patients.

4. Neural mechanisms of REM sleep 
abnormalities

4.1. Dorsal raphe nucleus

The 5-hydroxytryptamine-ergic (5-HT-ergic) neurons in the 
dorsal raphe nucleus (DRN) have the function of promoting 
wakefulness and reducing REM sleep, which are known as REM-off 
neurons (Figure 1). The firing frequency of DRN 5-HTergic neurons 
during REM sleep was significantly lower than that during 
wakefulness. What’s more, SEP-363856, an agonist of 5-HT, could 
suppress REM sleep with very large effect sizes (71).

Elevated blood 5-HT levels are a biomarker of ASD. Thirty percent 
of ASD patients had significantly higher blood 5-HT levels compared 
to healthy controls (72). However, it is reported that levels of whole 
blood 5-HT were lower in some ASD patients compared to healthy 
controls (73). Mutations of multiple 5-HT related genes, such as 
5-Hydroxytryptamine Receptor 2A (HTR2A), Solute Carrier Family 6 
Member 4 (SLC6A4), Monoamine Oxidase A (MAOA), Monoamine 
Oxidase B (MAOB), Tryptophan Hydroxylase 2 (TPH2), and Vesicular 
Monoamine Transporters (VMATs), were found in certain types of 
ASD patients. These mutations result in an abnormal synthesis, 
transport, or inactivation of 5-HT and sleep disorders in children with 
ASD (74–78).

In addition to 5-HT-ergic neurons, there are also a large number 
of GABAergic neurons in the DRN that can regulate their activity. 
GABAergic cells projecting to the DRN are mainly located in the 
hypothalamus, ventral tegmental area (VTA), and locally within the 
DRN (79). Studies have shown that SH3 and multiple Ankyrin repeat 
domains 3 (SHANK3) -deficient mice, a model of autism, had 
significantly lower levels of GABA synthesis in the hypothalamus and 
VTA compared to controls (80). This may lead to reduced inhibition 
of DRN 5-HT-ergic neurons and increased activity in the DRN of 
ASD patients. Therefore, it is speculated that the enhanced REM-off 
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function resulting from increased 5-HT-ergic neuron activity in the 
DRN may be why some children with ASD experience shorter REM 
sleep duration.

4.2. Amygdala

An article recently published in Science reported that the 
initiation of REM sleep is modulated by the amygdala (Figure 1) 
(81). When the dopamine level in the amygdala was 
instantaneously increased through photogenetic activation, 
NREM sleep in mice was terminated immediately, and REM sleep 
began simultaneously. The study confirmed that dopamine 
induces a transition from NREM sleep to REM sleep by binding 
to dopamine type II receptors on amygdala neurons (81), while 
inhibiting amygdala activity results in a decrease in REM sleep 
duration (82).

The structure and function of the amygdala in ASD patients can 
undergo complex changes. Abnormal changes in dopamine 
concentrations in the brain of ASD patients were described in section 
2.4. Calcium-dependent secretion activator 2 (CADPS2) gene encodes 
a calcium binding protein that regulates the exocytosis of synaptic 
secretory granules, including monoamines and neuropeptides (83). 
Some ASD patients have a missense variant of the CADPS2 gene in 
the amygdala, which can block the release of dopamine (84, 85). 
Additionally, as described in section 2.3, amygdala neurons in ASD 
have abnormal structure and function. Therefore, the complex 
changes in the amygdala and the dopamine system in ASD may result 
in abnormal binding of dopamine to type II dopamine receptors in 
amygdala neurons, which could be responsible for abnormal REM 
sleep in some children with ASD.

5. Genetic and neural mechanisms of 
abnormal sleep–wake rhythm 
transition

5.1. Melatonin

Melatonin is an important hormone involved in the regulation of 
the sleep–wake cycle and the circadian rhythm, which is synthesized 
by the pineal gland at night (Figure 1). After binding to melatonin 
receptors in the suprachiasmatic nucleus, melatonin can promote 
sleep initiation and attenuate the arousal of the circadian clock. Studies 
have shown a sharp increase in nighttime sleep tendency in the hours 
after endogenous melatonin production (86).

Melatonin has been shown to be  released at lower levels in 
individuals with ASD compared to healthy individuals (87). However, 
other research shows no significant difference in melatonin levels 
between 40% of ASD individuals and healthy controls (88). Melatonin 
treatment can increase sleep duration in ASD patients (89), suggesting 
that their sleep disorders are related to pineal dysfunction and lack of 
melatonin. Mutations in the Acetylserotonin O-Methyltransferas 
(ASMT), Melatonin Receptor 1A (MTNR1A), and Melatonin Receptor 
1B (MTNR1B) genes can induce sleep disorders in ASD patients by 
affecting melatonin production and utilization (90–92). ASMT is an 
enzyme gene involved in melatonin synthesis, while MTNR1A and 
MTNR1B are melatonin receptor genes. Therefore, decreased 

melatonin levels due to pineal gland dysfunction may contribute to 
circadian rhythm sleep–wake disorders in children with ASD.

5.2. Basal forebrain

Acetylcholine is an important neurotransmitter associated with 
arousal. There are two groups of acetylcholinergic neurons in the 
human body: one is in the brainstem, while the other is in the basal 
forebrain (BF) (Figure 1). Cholinergic neurons in the basal forebrain 
play a role in cortical activation during the sleep–wake cycle, 
promoting the transition from NREM sleep to the waking state or to 
REM sleep. The level of acetylcholine in the basal forebrain is high 
during the arousal period and REM sleep, and low during slow wave-
sleep (93).

Neuroanatomical analysis revealed that autistic patients show 
smaller neurons and increased cell density in the BF as compared to 
age-matched healthy individuals (94). Moreover, diminished activity 
of cholinergic neurons in the basal forebrain was reported in mice 
(95). Therefore, BF lesions in children with ASD may cause abnormal 
function of BF cholinergic neurons, resulting in their abnormal 
regulation of phase conversion during sleep. This may be one of the 
neural mechanisms causing circadian rhythm sleep–wake disorders 
in children with ASD.

6. Limitations

In the present review, we limited our search to articles published 
in English. Thus, we may have missed related articles published in 
other languages. In addition, terminology related to genetic and 
neurological abnormalities varies, which may result in missing related 
articles due to variability in keyword use. Moreover, we did not restrict 
our review to studies with human subjects. Therefore, further 
investigation in ASD patients is required to replicate some of the 
reported findings in animal models of ASD. Finally, we  did not 
consider sex differences in sleep disorders in children with ASD.

7. Conclusion

There is an established relationship between genetic mutations/
neurological abnormalities and sleep disorders in children with 
ASD. As shown in Figures 1, 2, mutations in the MECP2, VGAT, 
SLC6A1, SLC6A3, HRH1-3, KCNQ3, PCDH10, AHI1, UBE3A and 
ARHGEF10 genes can cause atypical activity of wake-related neural 
circuits, which may lead to sleep problems such as prolonged sleep 
latency, short total sleep duration, and waking up at night. 
Additionally, butyric acid, iron deficiency, and TRN dysfunction are 
also linked to NREM sleep disorder in children with ASD. Mutations 
in the HTR2A, SLC6A4, MAOA, MAOB, TPH2, VMATs, SHANK3, 
and CADPS2 genes induce abnormal reactions of REM-off and 
REM-on neurons, which may lead to NREM disorder. Mutations in 
the ASMT, MTNR1A and MTNR1B genes induce the decreased 
synthesis and secretion of melatonin, which may cause abnormal 
sleep–wake rhythm transition. However, more research is needed on 
the clinical intervention of sleep disorders in children with ASD, as 
there are few intervention studies available. Overall, the genetic and 
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neural mechanisms of sleep disorders in children with ASD warrant 
further investigation.
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