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As a chronic autoimmune disease systemic lupus erythematosus (SLE) can also

affect the central and the peripheral nervous system causing symptoms which

are summed up as neuropsychiatric systemic lupus erythematosus (NPSLE).

These symptoms are heterogenous including cognitive impairment, seizures,

and fatigue, leading to morbidity or even mortality. At present, little is known

about the pathophysiological processes involved in NPSLE. This review focuses

on the current knowledge of the pathogenesis of NPSLE gained from the

investigation of animal models, autoantibodies, and neuroimaging techniques.

The antibodies investigated the most are anti-ribosomal P protein antibodies

(Anti-rib P) and anti-N-Methyl-D-Aspartic Acid Receptor 2 antibodies (Anti-NR2),

which represent a subpopulation of anti-dsDNA autoantibodies. Experimental

data demonstrates that Anti-rib P and Anti-NR2 cause different neurological

pathologies when applied intravenously (i.v.), intrathecally or intracerebrally in

mice. Moreover, the investigation of lupus-prone mice, such as the MRL/MpJ-

Faslpr/lpr strain (MRL/lpr) and the New Zealand black/New Zealand white mice

(NZB × NZW F1) showed that circulating systemic antibodies cause different

neuropsychiatric symptoms compared to intrathecally produced antibodies.

Furthermore, neuroimaging techniques including magnetic resonance imaging

(MRI) and positron emission tomography (PET) are commonly used tools to

investigate structural and functional abnormalities in NPSLE patients. Current

research suggests that the pathogenesis of NPSLE is heterogenous, complex and

not yet fully understood. However, it demonstrates that further investigation is

needed to develop individual therapy in NPSLE.
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Introduction

Systemic Lupus erythematosus (SLE) is a chronic autoimmune
disease, which attacks multiple organs and tissues, such as the renal
or the mucocutaneous system (1). It is characterized by antinuclear
antibodies and results in heterogeneous clinical manifestations (2).
There are various separate syndromes affecting the central and
the peripheral nervous system in SLE, which are all summed up
as neuropsychiatric systemic lupus erythematosus (NPSLE) (3).
Depending on the study design the prevalence of NPSLE ranges
from 6 to 91% (4–6).

According to the American College of Rheumatology (ACR),
NPSLE comprises 19 neuropsychiatric manifestations, that can
be focal or diffuse, and vary from subtle cognitive dysfunction
to severe acute diseases such as seizure disorders, demyelinating
syndromes, and psychosis (7). Among 12 syndromes of the central
nervous system (CNS) headache, anxiety disorder, seizure, and
cognitive disfunction represent the most common (8). Further,
the ACR named seven syndromes of the peripheral nervous
system (PNS), including poly- and mononeuropathy (7). These
neuropsychiatric symptoms represent one of the main reasons for a
decreased quality of life in SLE (9). Not treated sufficiently, NPSLE
can lead to severe morbidity or even mortality (10).

Up to now, little is known about the pathophysiological
processes causing different patterns of neuropsychiatric
involvement in SLE. However, several studies demonstrate an
important role of autoantibodies as well as the disruption of the
blood brain barrier (BBB) (11, 12). Moreover, established mouse
models and neuroimaging methods prove themselves as key tools
to investigate the pathomechanisms of NPSLE (13, 14).

This review highlights the current knowledge of the
pathogenesis of NPSLE gained from the investigation of animal
models, antibodies, and neuroimaging techniques.

Mouse models

MRL/MpJ-Faslpr/lpr

One of the most frequently used mouse models is the
MRL/MpJ-Faslpr/lpr strain (MRL/lpr), which spontaneously
develops an SLE phenotype, including serological markers and
behavioral dysfunction. The LPR gene leads to a loss of Fas
function resulting in a longer survival of autoreactive lymphocytes
and thus higher autoantibody titers (15). MRL/lpr mice develop
neuropsychiatric symptoms at an early stage of disease (approx.
8 weeks of age), even when yet no other organ is affected (16).

The symptoms MRL/lpr display the most frequently are
depression (including lack of motivation, learned helplessness,
fatigue, and apathy) and impaired cognition (especially learning
and spatial memory) (14). It is shown, that the severity of
depression correlates with the presence and titers of autoantibodies
against nuclear antigens, N-Methyl-D-Aspartic Acid (NMDA-)
receptors, and ribosomal P proteins in MRL/lpr mice as well as in
human patients (16, 17). An adoptive transfer study performed by
Katzav et al. showed that intracerebroventricularly injected anti-
ribosomal P protein antibodies (anti-rib P) from patients with

SLE were capable of inducing autoimmune depression in healthy
mice (18).

There is evidence that a main reason for the development of
NPSLE in human is the presence of pathogenic autoantibodies
in the cerebrospinal fluid (CSF) and in the brain parenchyma,
respectively. But how do these cells and antibodies trespass the
BBB? Besides the fact that circulating systemic antibodies can enter
the CNS after the disruption of the BBB, experimental studies show
that MRL/lpr mice also produce antibodies intrathecally (19, 20).
Circulating antibodies and intrathecally produced antibodies cause
different neuropsychiatric symptoms. Experimental studies show
that intrathecally generated antibodies in MRL/lpr mice correlate
with increased depressive-like behavior while anxiety-like behavior
is rather associated with circulating antibodies (20, 21). Further,
complement activation plays a pivotal role in the development
of neuroinflammation and neurodegeneration in the brains of
MRL/lpr mice (14, 22). The effect of complement activation can be
apoptosis, the upregulation of proinflammatory cytokines as well as
an increased permeability of the BBB (19, 23).

Briefly, MRL/lpr mice have already unraveled possible
pathogenetic pathways in the development of NPSLE, such as the
involvement of autoantibodies, inflammation and cytokines, and
the pathologies of the BBB.

New Zealand black/New Zealand white

The New Zealand black/New Zealand white mice
(NZB × NZW F1) also spontaneously develop a lupus-like
autoimmune disease with high titers of anti-nuclear antibodies.
There are various complex genetic mutations, including MHC
class II polymorphisms that are found to be involved in the
development of SLE (24, 25). Besides, a dysregulation of T-helper
cell cytokines and complex intrinsic B-cell defects seem to play a
role in the pathogenesis of SLE in the NZB x NZW F1 strain (26).
NZB × NZW F1 mice develop a systemic disease and serological
markers resembling human SLE, such as high titers of anti-nuclear
and anti-double-stranded DNA (dsDNA) antibodies (27).

These autoimmune mice also exhibit neuropsychiatric behavior
but in comparison to MRL/lpr mice at an older age and different
phenotype (28). The neurobehavioral symptoms in NZB × NZW
F1 include decreased postural response and righting reflexes,
impaired learning and memory as well as increased anxiety (28, 29).

Other mouse models

There are numerous other mouse models that spontaneously
develop an autoimmune disease, such as the BXSB/Yaa, the 564Igi,
and the C57Bl/6-Faslpr/lpr strain (30–32). These models exhibit
different characteristics of SLE and are generally used to investigate
more specific questions.

Besides spontaneous SLE mice, there are also induced mouse
models, in which the mice develop autoimmune disease after
being exposed to specific agents. One example is the injection of
pristane or the immunization of mice with a peptide mimotope
of DNA (DWEYS) (33, 34). Whereas the spontaneous models of
SLE provide an important insight into the complex genetics of
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NSPLE, induced mouse models are used to evaluate the impact of
environmental factors triggering the disease in a genetically prone
individual (35).

Autoantibodies in NPSLE

A main characteristic of SLE is the presence of antibodies that
bind to self-antigens and thus initiate an autoimmune reaction. The
new SLE classification criteria, developed with the support by both
the European League Against Rheumatism (EULAR) and the ACR,
defined antinuclear antibodies (titer ≥ 1:80) as an entry criterion
for the diagnosis of SLE (2). The development of autoimmune
antibodies and the formation of immune complexes mediate the
pathogenesis of SLE by triggering the activation of both the innate
and the adaptive immune system. This results in complement
deposition and infiltration of immune cells causing inflammation
and damage in the affected organs (36).

Anti-N-Methyl-D-Aspartic Acid Receptor
2 (Anti-NR2), a subpopulation of
anti-dsDNA autoantibodies

The NMDA-receptor is a ionotropic glutamate receptor in the
CNS, which is indispensable for synaptic plasticity and memory
(37). NMDA-receptors are hetero-oligomers which encompass two
NR1 (or GluN1) subunits and two out of four existing NR2
(or GluN2) (A–D) subunits (38). The receptor is physiologically
activated by the binding of glutamate to the NR2 subunit and
glycine to the NR1 subunit, which results in a voltage-dependent
excitatory influx of Na+-ions and Ca2+-ions into the cell (39).

Antibodies against the NR2 subunit (Anti-NR2) can be
found in patients suffering from SLE, epilepsy, encephalitis,
schizophrenia, mania, stroke, or Sjögren syndrome (40). In NPSLE,
there are antibodies directed against NR2A and NR2B, which
are a subpopulation of anti-dsDNA autoantibodies cross-reacting
with the respective NMDAR subunits (40). Anti-NR2 antibodies
bind to the N-terminal domains of the NR2A and NR2B subunit
of the NMDA-receptor containing the Asp/Glu-Trp-Asp/Glu-Tyr-
Ser/Gly (DWEYS) pentapeptide sequence (41). The consensus
sequence is present in dsDNA as well as the extracellular domain of
the NR2A and NR2B subunits. Anti-NR2 act as positive allosteric
modulators with a much higher sensitivity to NR2A than to NR2B
(42). Figure 1 schematically shows the pathomechanism of Anti-
NR2.

In NPSLE, autoantibodies in the serum do not automatically
reflect their presence in the CSF (43). The exact percentage of SLE
patients having Anti-NR2 varies in different studies from 14 to 35%
(44, 45). When found in the CSF, Anti-NR2 are closely related to
diffuse NPSLE, causing symptoms such as depression and cognitive
dysfunction (46). Schwarting et al. analyzed a large SLE cohort and
revealed that the Anti-NR2 concentration in the serum correlated
with the severity and the incidence of fatigue in these patients (47).
Whereas the group’s in vitro studies showed a (maybe reversible)
reduced ATP metabolism in astrocytes, other experimental studies
claim neuronal excitotoxicity as a main pathomechanism of Anti-
NR2. It is believed that death of neurons is primarily due to

FIGURE 1

Effect of Anti-NR2 on NMDA receptors. NMDA receptors are
tetramers which are composed of two NR1 subunits and two out of
four NR2 (A–D) subunits (38). The receptor is physiologically
activated by the binding of glutamate (Glu) to the NR2 subunit and
glycine to the NR1 subunit, which results in a voltage-dependent
excitatory influx of Na+-ions and Ca2+-ions into the cell (39).
(1) Pathologically, Anti-NR2 antibodies (Anti-NR2) bind to the
extracellular domains of the NR2A and/or NR2B subunit of the
NMDA receptor (40). (2) These antibodies act as positive allosteric
modulators with a much higher sensitivity to the NR2A subunit
leading to an excessive activation of the NMDA receptor (42).
(3) The presence of Anti-NR2 is associated with the diseases such as
NPSLE, epilepsy, encephalitis, schizophrenia, mania, or Sjögren
syndrome (40).

increased calcium influx which results in the induction of apoptosis
(41, 48). These different results indicate that both the concentration
of antibodies and the duration of exposure may play a role
in antibody pathogenicity and might lead to different clinical
neuropsychiatric manifestations caused by the same antibody.

The NR2A and NR2B subunits are expressed the highest
in the hippocampus, the amygdala, and the hypothalamus (40).
A decreased hippocampal volume can be found in patients with
fatigue and circulating Anti-NR2 over a time period of 2 years,
suggesting a structural effect of a long-time exposure to these
autoantibodies (47).

When Anti-NR2 is applied to mice in vivo, neuropathological
changes were only observed when injected into brains or after
pharmacological disruption of the BBB (41, 49, 50). Up to now, it
remains uncertain whether the transfer of systemic Anti-NR2 to the
CNS is obligatory or if these autoantibodies can also be produced
intrathecally. However, there are studies implicating further
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pathogenic effects of Anti-NR2 involving microglia, cytokines, and
T-cells (51, 52).

Anti-ribosomal P protein antibodies
(Anti-rib P)

Anti-rib P are directed against the carboxy-terminal regions of
three ribosomal P proteins: P1, P2, and P0 (53). There are different
pathomechanisms hypothesized concerning the involvement of
anti-rib P in NPSLE. One states that these antibodies cross-react
with the neuronal surface P antigen, which is especially found in
the membrane of neurons of the hippocampus and thus impair its
function, which clinically manifests as depression (54, 55). It is also
known, that Anti-rib P cross-react with NMDA-receptors causing
diffuse neuropsychiatric symptoms, such as psychosis, in NPSLE
(18, 56).

There are indications, that the neuropathological impact of
Anti-rib P antibodies is caused by neuron cell death and impaired
synaptic plasticity (57).

Other antibodies

Anti-phospholipid antibodies (aPL). The most frequently
investigated aPL in SLE are anticardiolipin, anti-β2-glycoprotein 1
antibodies, and lupus anticoagulant. They bind to phospholipids
and associated proteins in the plasma membrane and
activate endothelial cells, platelets, and monocytes causing a
hypercoagulable state (58). Presence of aPL antibodies primarily
results in thrombosis and cerebral infarction, thereby leading
to neuropsychatric symptoms in SLE (59). Moreover, there are
symptoms in patients with aPL, including seizures, chorea, and
cognitive dysfunction, suggesting, that these manifestations are
not due to thrombotic events, but underlie a different pathogenic
mechanism (60).

Anti-endothelial cell antibodies are found more often in SLE
patients with neuropsychiatric symptoms than without (61). They
have a proinflammatory effect on endothelial cells, which results in
an enhanced expression of adhesion molecules and in the secretion
of cytokines. This promotes rolling and adhesion of leucocytes to
the endothelium of the BBB and finally the diapedesis into the brain
parenchyma (62). These antibodies primarily seem to be involved
in the disruption of the BBB.

Anti-microtubule-associated protein 2 antibodies represent
one of the brain-specific antibodies. This protein is expressed in
neurons and is involved in the stabilization of microtubules and is
associated with psychosis and seizure in NPSLE (63, 64).

Neuroimmune interfaces and the
cerebrospinal fluid

The brain contains four fluid compartments including the
cerebrospinal fluid (CSF), interstitial fluid, intracellular fluid, and
the blood vasculature (65). There are four neuroimmune interfaces
that keep the blood separate from the brain parenchyma: the brain

blood barrier (BBB), the arachnoid epithelium (meningeal barrier),
the choroid plexus (blood–CSF barrier), and the glymphatic
circulatory system. These interfaces regulate the movement of
ions, molecules, and cells between the brain and the blood
(66). The disruption of these barriers is associated with various
neurological disorders, including Alzheimer’s disease, amyotrophic
lateral sclerosis, and multiple sclerosis (67). In NPSLE, the leakage
of the BBB is reported to causes diffuse neuropsychiatric symptoms,
such as memory deficits and depression (50, 57, 67). A surrogate
marker for a loss of integrity of the BBB is the presence of
serum albumin in the CSF (68, 69). A study by Hirohata et al.
demonstrated a correlation between the damage of the BBB
(elevated CSF serum albumin quotient + elevated CFS anti-
NR2) and the presence of NPSLE compared to healthy controls
(69). Although seropositivity for autoantibodies such as anti-
NMDA receptor antibodies is not consistently correlated with
NPSLE activity, titers of these antibodies in the CSF are higher
in patients with active diffuse NPSLE than in those with focal
NPSLE or non-inflammatory CNS disease (45, 46). Up to now, it
seems that the intravenous application of antibodies only leads to
neuropsychiatric symptoms after the disruption of the BBB (50, 70).
Experimental studies indicate that an event, such as the injection of
LPS, by which autoantibodies can trespass the BBB and enter the
CNS is necessary to induce pathology (41, 49, 70). Another possible
mechanism for how autoantibodies are produced intrathecally is
a (transient) BBB dysfunction, which may enable plasma cells to
access the cerebrospinal fluid and the cerebrum (71). Antibodies
themselves can contribute to the leakage of the BBB. Anti-NR2
activate endothelial cells and induce the expression of adhesion
molecules and cytokines (72). Anti-rib P might be also involved
in the disturbance of the BBB by activating monocytes and thus
promoting the production of TNF-α and IL-6 (73).

There is pre-clinical evidence that the intracerebral injection
of purified NPSLE-associated antibodies in mice results in specific
macroscopic as well as microscopic changes of certain brain areas
(41, 57).

Additionally, various cytokines have been identified as
inflammatory mediators that may play a pathogenic role and might
contribute to the disruption of the BBB including IL-6, IL-8, INFα,
and the TNF-like weak inducer of apoptosis (TWEAK) (74, 75).
In cell culture, TWEAK signaling induced increased expression
of cytokines, including IL-6 and IL-8, as well as ICAM-1 and
E-selectin leading to an increased brain permeability (43, 76–79).

Peripheral nervous system disease in
SLE

In order to present an overall picture of NPSLE, we briefly
summarize the involvement of the peripheral nervous system in
SLE. Syndromes of the peripheral nervous system (PNS) account
for less than 10% of the neurological diseases in SLE patients (80,
81). Predominant events are mono- and polyneuropathies (81).

There are various concepts for the pathogenetic mechanisms
of the involvement of the PNS in SLE including neurogenic
inflammation (activation of nociceptors by chemokines followed
by the release of different neuropeptides such as calcitonin
gene-related protein and substance P resulting in vasodilatation
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and increased vascular permeability) and antibody-mediated
neuropathy (80, 82, 83).

Bechter hypothesized the interaction of the CFS with peripheral
nerves via the “peripheral cerebrospinal fluid outflow pathway
(PCOP),” which is already known in mammals. PCOP describes
the outflow of CFS along cranial nerves and spinal nerves into the
periphery (84). This might be another possible pathomechanism
how CNS antigens are transported to peripheral nerves.

Neuroimaging

Magnetic resonance imaging (MRI) and positron emission
tomography (PET) represent the most commonly used tools to
investigate the structure and function abnormalities in NPSLE
(74, 75).

Some studies using conventional brain MRI showed white
matter hyperintense lesions as well as brain atrophy in patients
with SLE (76, 77). Interestingly, there were no differences between
patients with or without neuropsychiatric symptoms and the
number of white matter lesions did not correlate with the clinical
manifestations (78).

Margo-Checa et al. investigated brain abnormalities in
325 patients with active NPSLE and showed that none of
the autoantibodies measured in the serum (antiphospholipid
autoantibodies, anti-dsDNA, anti-SSA, anti-SSB, anti-RNP, and
anti-Sm) correlated with the presence of inflammatory-type lesions
or white matter lesions. Of note, that there was a low prevalence of
inflammatory-like lesions (5.8%) among all patients (85).

Taken together, conventional MRI is a good imaging method
to show pathologies of the CNS, but up to now it is not an
appropriate tool to differentiate between SLE with and without
overt neuropsychiatric symptoms, as pathologies do not correlate
with clinical manifestations nor with SLE-specific antibodies.

Diffusion tensor MRI (DTI) makes it possible to detect
altered white matter microstructure, even if it appeared normal in
conventional MRI. Mackay et al. studied 37 SLE patients without
neuropsychiatric symptoms and could prove a correlation between
decreased microstructural integrity in the white matter and
increased serum levels of anti-NR2-antibody (86). Interestingly,
Nystedt et al. found alterations in the white matter structure of
the rostral cingulum and parts of the corpus callosum in 64 female
SLE patients in comparison to healthy controls, but could not find
any differences between patients with and without neuropsychiatric
symptoms (87). Kozora et al. performed a longitudinal study of DTI
in SLE, showing that after 18 months increased microstructural
changes can be detected, but, however, these changes were not
accompanied by a cognitive decline (88). In conclusion, DTI
is a valid method to identify microstructural changes and to
locate brain structures affected by SLE, but is not appropriate
to detect NPSLE.

Moreover, the utilization of MRI makes it is possible to
measure regional changes in brain metabolism in a resting as
well as in a task-induced active state, which is called functional
MRI. There are different methods to measure brain activity
among which measuring changes in blood oxygen (blood oxygen
level dependent-contrast imaging) is the most common one (89).
Studies using a resting-state MRI, showed diverse abnormalities in

functional connectivity of some brain regions in patients with SLE
in comparison to a healthy control group (90, 91). Studies using
active-state MRI demonstrated that regardless of the disease activity
SLE patients are able to recruit additional pathways, suggesting a
form of compensation to execute goal-directed tasks (92, 93).

Another method to evaluate regional brain metabolism
is to perform fluorine-18-fluorodeoxyglucose-positron emission
tomographies (FDG-PET). Most of the studies using FDG-
PET imaging in SLE report a regional hypometabolism in the
frontal, temporal, parietal, and parietal-occipital regions (94–96).
Mackay et al. investigated the correlation between the results
from FDG-PET, DTI and cognitive testing in patients with
stable SLE. They revealed a resting hypermetabolism in the
hippocampus, orbitofrontal cortex and posterior putamen/globus
pallidus/thalamus, occipital lobe, temporal lobe, and sensorimotor
cortex. Moreover, they showed, that the hypermetabolism in some
of these regions is accompanied by impaired performance in
cognitive testing as well as microstructural abnormalities in gray
and white matter (86). In contrast to longitudinal DTI-data by
Kozora et al. the FDG-PET analysis of a subgroup of 13 showed
no change in the resting hypermetabolism in follow- scans (after
15 months) (86, 88). At the moment there are different findings in
FDG-PET of SLE patients, suggesting different metabolism patterns
that may depend on various factors including medication as well as
activity and duration of the disease.

Taking everything into consideration, neuroimaging represents
a non-invasive method to investigate neuroanatomical and
functional abnormalities in the vivid brain of SLE patients.
However, findings are not homogeneous and up to know specific
syndromes cannot be associated with specific imaging results,
which might be attributed to heterogeneous study groups.

Conclusion and future perspectives

In this review we have highlighted mouse models, antibodies,
and neuroimaging techniques as commonly used tools to
investigate the pathogenesis of NSPLE. At the moment, most
of the research results addressing this question are promising
but nonetheless inhomogeneous and incomplete, which might be
partially due to reasons attributable to the selection of the study
group. While some studies investigated neurological abnormalities
in SLE without neuropsychiatric symptoms, others focused on
patients with NPSLE or even sought for pathologies in patients with
specific neuropsychiatric symptoms (89–94, 96).

Neuropsychiatric systemic lupus erythematosus represents
a challenge in terms of diagnosis and treatment. The EULAR
recommends that treatment should depend on whether the
assumed underlying pathophysiologic mechanism is either
inflammatory or embolic/thrombotic/ischemic. While the
use of immunosuppressants should be favored in the former,
anticoagulation therapy should be chosen in the latter (97).
However, the distinction between the two may not only be difficult
but also insufficient as the pathophysiology of NPSLE is yet not
fully understood.

One of the key pathologies found in SLE are antibodies
(2). Therefore, therapy targeting B-cells is commonly used and
further evolving. Besides Rituximab, Belimumab is a human
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monoclonal antibody which is used to decrease B-cell activity.
Belimumab inhibits the biologic activity of an immunomodulatory
cytokine called soluble B-lymphocyte stimulator (BLyS) (98).
Schwarting et al. were able to confirm that treatment with
belimumab results in a reduction of serum Anti-NR2, accompanied
by an amelioration of fatigue in SLE. Interestingly, anti-
dsDNA, erythrocyte sedimentation rate, complement factors, and
C-reactive protein did not show significant differences (47). These
findings indicate that as different antibodies/cytokine profiles are
involved in the pathogenesis of specific symptoms in NPSLE,
research should aim to develop targeted therapies.

In the case of Anti-NR2, we certainly think of NMDA-receptor
antagonists, such as Memantine, an approved non-competitive
NMDA receptor antagonist, used in the therapy of Alzheimer’s
disease (99). Whereas in vitro studies showed that NDMA-receptor
antagonists prevented neuronal damage (47, 100), a randomized,
double-blind placebo-controlled trial could not detect a significant
improvement in cognitive performance compared to the placebo
group (101). Of note, Anti-NR2 was very infrequent in the
study population.

The diagnosis of NPSLE is challenging. There is no simple
test that confirms the disease. Therefore, serological testing and
neuroimaging must be combined to aid in the diagnosis of
neuropsychiatric involvement in SLE. It should be noted here
that not every patient with serological markers or imaging
abnormalities, such as white matter lesions or brain atrophy,
presents clinical symptoms of NPSLE (87, 88, 44). In this context,
it should be noted that none of the MRI-visible lesions is
pathognomonic for SLE.

Mouse models of disease are of immense importance to give
us an insight into pathogenesis of neuropsychiatric involvement
in SLE. However, none of the mutations and genetic risk factors
found in murine models of NPSLE commonly occur in patients
with SLE (66). Nevertheless, most of the mouse models produce
antibodies similar to SLE patients and exhibit important clinical
manifestations, which makes it possible to study specific underlying
pathways and generate therapeutic options.
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