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Normative model detects abnormal
functional connectivity in
psychiatric disorders

Duarte Oliveira-Saraiva* and Hugo Alexandre Ferreira

Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon,

Portugal

Introduction: The diagnosis of psychiatric disorders is mostly based on the

clinical evaluation of the patient’s signs and symptoms. Deep learning binary-based

classification models have been developed to improve the diagnosis but have not yet

reached clinical practice, in part due to the heterogeneity of such disorders. Here, we

propose a normative model based on autoencoders.

Methods: We trained our autoencoder on resting-state functional magnetic

resonance imaging (rs-fMRI) data from healthy controls. The model was then tested

on schizophrenia (SCZ), bipolar disorder (BD), and attention-deficit hyperactivity

disorder (ADHD) patients to estimate how each patient deviated from the norm

and associate it with abnormal functional brain networks’ (FBNs) connectivity. Rs-

fMRI data processing was conducted within the FMRIB Software Library (FSL), which

included independent component analysis and dual regression. Pearson’s correlation

coe�cients between the extracted blood oxygen level-dependent (BOLD) time series

of all FBNs were calculated, and a correlation matrix was generated for each subject.

Results and discussion: We found that the functional connectivity related to the

basal ganglia network seems to play an important role in the neuropathology of

BD and SCZ, whereas in ADHD, its role is less evident. Moreover, the abnormal

connectivity between the basal ganglia network and the language network is more

specific to BD. The connectivity between the higher visual network and the right

executive control and the connectivity between the anterior salience network and

the precuneus networks are the most relevant in SCZ and ADHD, respectively. The

results demonstrate that the proposed model could identify functional connectivity

patterns that characterize di�erent psychiatric disorders, in agreement with the

literature. The abnormal connectivity patterns from the two independent SCZ groups

of patients were similar, demonstrating that the presented normative model was also

generalizable. However, the group-level di�erences did not withstand individual-level

analysis implying that psychiatric disorders are highly heterogeneous. These findings

suggest that a precision-based medical approach, focusing on each patient’s specific

functional network changes may be more beneficial than the traditional group-based

diagnostic classification.

KEYWORDS

normative model, functional brain network, deep learning, psychiatric disorders, functional
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1. Introduction

The diagnosis of psychiatric disorders is still exclusively dependent on the analysis of the

signs and symptoms of the patient, and it is mostly based on the Diagnostic and Statistical

Manual of Mental Disorders 5 (DSM-5) (1), as no biomarkers have proven useful in clinical

practice (2). The DSM-5 authors recognized that psychiatric disorders do not always fit

completely within the boundaries of a single disorder, with several symptom domains involving

multiple diagnostic categories. Thus, a high rate of patients are misdiagnosed (3–5). In fact,
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Ayano et al. found that three out of four schizoaffective patients,

one out of two major depressive disorder patients, one out of four

schizophrenia (SCZ) patients, and one out of five bipolar disorder

(BD) patients are misdiagnosed. Besides, patients with BD are more

likely to be misdiagnosed as having SCZ, whereas SCZ patients are

more likely to be misdiagnosed as having BD (4). In addition, it

is estimated that 70–85% of individuals diagnosed with attention-

deficit hyperactivity disorder (ADHD) meet criteria for at least

one other psychiatric disorder (5). As a consequence, therapeutic

approaches do not always succeed, affecting patients’ quality of life.

In order to tackle the challenge of diagnosis, deep learning (DL)

strategies have been studied (6). Although psychiatric disorders

develop over a continuous spectrum and multiple disorders can

coexist in a patient, most research studies make use of binary

classification (6, 7). In addition, some DL algorithms have been

criticized due to the difficulty of explaining how they work. Even

when great accuracy is attained, it is difficult to pinpoint the traits

that contribute the most to a particular diagnosis. As a result,

nothing is learned about the disorders’ underlying mechanisms (8).

Consequently, the translation of those algorithms to clinical practice

is compromised since they are more concerned with identifying

the group to which the patient belongs even when the boundaries

of psychiatric disorders are undefined. Additionally, they give no

information about the abnormalities of the particular subject, which

is essential for the application of the right therapies. To face the

continuous spectrum of such disorders, alternative approaches must

be applied.

The normative model is an emerging approach that describes

and quantifies how individuals deviate from an expected pattern

learned from a population (9). As such, an algorithm is used to

learn patterns from healthy individuals resulting in a model of

“normality” that then is tested on healthy subjects and patients for

anomaly detection. Subjects with abnormal brain patterns concerning

this normal range may be identified as outliers (8). The main

benefits of this approach are that it allows for the identification

of pathological patterns underlying a variety of disorders and

moreover it has the potential to deal with the heterogeneity

of psychiatric disorders (8, 10). Several algorithms have been

used to generate normative models, such as Gaussian process

regression, generative adversarial networks, and autoencoders

[for more information see (10, 11)]. Most studies that applied

the normative model approach to neuroimaging used structural

magnetic resonance imaging (MRI) data (10). Additionally, only

one of the three studies that used functional MRI (fMRI) (12–

14), focused on functional connectivity metrics (14). Considering

that several psychiatric disorders have been associated with the

hypothesis of abnormal functional connectivity, there is much to be

explored about combining functional brain data with the normative

model approach.

Taking into account the available public datasets, we decided to

demonstrate the usage of such normative model with three related

psychiatric disorders: ADHD; BD; SCZ.

ADHD is considered a neurodevelopment disorder and is

characterized by impairing levels of inattention, disorganization,

hyperactivity, and impulsivity (1). It impairs several aspects of

life, affecting social relationships, as well as academic and work

performance (15). In addition, mild delays in language, motor, or

social development often occur (1).

Castellanos and Aoki (16) did a review study on functional

connectivity in ADHD. From their analysis, they highlighted that

ADHD may be characterized by a decreased synchrony between the

anterior and posterior nodes of the default mode network and by

the abnormal interplay between several functional brain networks

(FBNs), such as the default mode, executive control, and attention

networks. The authors of Castellanos et al. (17) suggested that the

long-range connections that link the dorsal anterior cingulate to the

precuneus and posterior cingulate are a possible candidate locus of

dysfunction in ADHD. Differently, the authors of Sripada et al. (18)

proposed that the connectivity between the default mode and the

ventral attention networks is a key locus of dysfunction in ADHD. In

another study (19), altered intranetwork connectivity was observed

in the default mode, dorsal attention, and visual networks. The study

from Sun et al. (20) suggested that the development pattern of the

interaction between the dorsal anterior cingulate and the default

mode networks is abnormal in ADHD. The authors of Sutcubasi

et al. (21) supported that ADHD can be characterized as an inter

and intra default mode network dysconnectivity disorder. Aboitiz

et al. (22) explored the connection between the dynamics of the

catecholaminergic signaling in the brain and the activities of FBNs

that regulate behavior. They identified abnormalities in the default

mode, ventral attention, and salience networks, by exploring different

lines of evidence, including pharmacology, brain imaging, and

electrophysiology. Another study (23) that evaluated the functional

connectivity of children with ADHD suggested that the dysregulation

of FBNs in children with ADHD not only involves the dorsal

attention and default mode networks but also the somatosensory,

motor, visual, and auditory networks. Finally, regarding ADHD, it

must be noted that several publications and research demonstrated

language alterations in ADHD patients (24).

BD is characterized by manic, hypomanic, and major

depressive episodes (1). According to the DSM-5 (1), in terms

of symptomatology, family history, and genetics, bipolar and

related disorders constitute a bridge between the SCZ spectrum

and other psychotic and depressive disorders. Family history is

one of the strongest and most consistent risk factors for BD. This

psychiatric disorder leads to cognitive impairments and affects

work performance, decreasing patients’ quality of life. Vocational

difficulties may also be present in BD individuals. Considering that

some ADHD symptoms overlap with the symptoms of mania, it is

possible to misdiagnose those psychiatric disorders (1).

Recently, Yoon et al. (25) did a review study on altered functional

connectivity in BD. They suggested that the pathophysiology of BD

is influenced by disrupted intranetwork and internetwork functional

connectivity. The default mode, central executive, and salience

networks, in particular, exhibit intranetwork hypoconnectivity. In

addition, many of the studies that they reviewed demonstrated

hyperconnectivity between the default mode and salience networks,

while the relationship between the central executive and salience

networks, and between the central executive and default mode

networks indicated hypoconnectivity. Recently, Wang et al. (26)

suggested that the salience and the basal ganglia networks play

important roles in the dysfunctional emotional processing and

regulation of BD patients. They also highlighted the role of the

cerebellum, default mode, and sensory networks (sensorimotor,

visual, and auditory networks) in the neuropathology of affective and

cognitive deficits in BD. The default mode network can underline
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cognitive and affective processing problems and has a possible

role in depressive relapses. The cerebellum plays a role in the

regulation of emotion, affect, and cognitive processes, which are

related to common symptoms in BD. Although abnormal motor

and visual functions do not translate classical symptoms of BD,

sensory networks also seem to play a role in the neuropathology

of BD (26). Besides, several resting-state fMRI (rs-fMRI) studies in

BD demonstrated abnormal ventral prefrontal cortex connectivity

with the amygdala and other subcortical areas (thalamus, striatum)

(27–29).

According to the DSM-5 (1), SCZ belongs to the SCZ spectrum

and other psychotic disorders and results in significant social

and occupational dysfunction. It is characterized by symptoms

and signs in the following domains: delusions, hallucinations,

disorganized thinking (speech), grossly disorganized or abnormal

motor behavior (including catatonia), and negative symptoms (which

include diminished emotional expression and avolition). In addition

to the five characteristic symptoms, the assessment of cognition,

depression, andmania symptom domains is crucial for differentiating

between the various SCZ disorders of the spectrum. Genetic factors

play a significant role in determining SCZ risk, and some risk alleles

are shared by SCZ and other psychiatric disorders, such as BD. It

must be noted that the distinction between SCZ and BD depends

on the temporal relationship between the mood disturbance and the

psychosis, and the severity of the depressive or manic symptoms,

which sometimes lead to misdiagnosis (1).

Although the underlying causes and mechanisms of SCZ are

uncertain, the hypothesis of functional brain disconnection is

possible (30). Garrity et al. (31) compared the default mode network

of SCZ patients with healthy subjects, and their results showed

abnormalities in SCZ patients that correlated with both positive

and negative symptoms. The salience networks seems also to be

involved in SCZ (32). Additionally, Liang et al. (33) found decreased

functional connectivity between the insula and the prefrontal lobe,

the temporal lobe, and the corpus striatum, demonstrating that those

regions may play an important role in the pathophysiology of SCZ.

They also found increased connectivity between the cerebellum and

other brain areas (33). The review study by Bernard et al. (34)

provided further support for basal ganglia dysfunction in SCZ that

may contribute to several symptoms, including cognitive deficits

(34). Li et al. (35) found that SCZ patients and their first-degree

relatives had similar disconnectivity patterns, even when the first-

degree relatives did not present symptoms of the disorder. This

was observed in the right executive control and ventral default

mode networks. They also highlighted that hallucinations were found

to be positively correlated with functional connectivity that links

the left inferior frontal gyrus with the bilateral auditory cortex,

right posterior temporal lobe, middle right anterior cingulate cortex,

right ventral striatum, and left nucleus accumbens. Their study

also showed hyperconnectivity between the bilateral thalamus and

the language network, which may be associated with language, and

consciousness abnormalities in patients with SCZ. Besides, functional

connectivity between the higher visual and the right executive control

networks was positively correlated with the severity of positive

symptoms in SCZ. Additionally, they found abnormalities between

the right executive control and the language networks, and between

the precuneus system and the ventral default mode network (35). The

authors of Skåtun et al. (28) also studied the functional connectivity

of both SCZ and BD patients. Their study focused on thalamic

regions. For SCZ, they found disrupted thalamic communication to

the frontal lobe, possibly affecting higher-order cognitive processes.

For both SCZ and BD, increased connectivity between thalamic and

sensory regions was observed, which highlights the potential role of

the thalamus on psychosis sensory disruptions (28).

In this study, we aim to investigate if normative models based

on functional connectivity are able to discriminate against different

psychiatric disorders (and address the heterogeneous aspect of such

spectrum disorders). Therefore, we propose a normative model based

on autoencoders to evaluate functional connectivity abnormalities in

SCZ, BD, andADHD. The underlying concept is that the autoencoder

learns to copy the input data to its output. Therefore, the proposed

autoencoder will learn to encode the healthy patterns from the input

data to the latent representation, and then, only using the information

from the latent representation, will try to reconstruct the input data as

closely as possible to the original input data. As such, when presented

with patient data it is expected that the reconstruction “fails,” and

therefore abnormal functional connectivity patterns can be identified.

2. Materials and methods

2.1. Data description

The brain rs-fMRI images used in this project were obtained

from three public neuroimaging databases. The Consortium for

Reliability and Reproducibility (CoRR) public database (36) was

chosen because it contains a large number of different datasets

with data from healthy subjects, which is necessary for creating a

generalized model of healthy subjects. The UCLA Consortium for

Neuropsychiatric Phenomics LA5c Study (UCLA) public dataset (37)

was selected to train and test the normative model since it contains

healthy individuals and ADHD, BD, and SCZ patients. The Center

for Biomedical Research Excellence (COBRE) public dataset (38–

41), which is composed of healthy individuals and SCZ patients, was

also chosen to evaluate the performance of the trained model on an

independent dataset.

The original sample was reduced to a total of 700 subjects since

several factors influence fMRI data, including the MRI scanner, scan

parameters, age, and sex. The different scan equipment used by the

various institutes results in a noticeable and unavoidable difference

between the datasets. On the contrary, the scan parameters and the

condition of the eyes during the scan contribute to data diversity but

are more controllable variables. As a result, conditions were set up

to ensure a large sample size while reducing the variability caused by

those factors. We established an age range between 18 and 50 years

old, a repetition time (TR) of 2 s, and we only included subjects who

underwent the MRI scanner with their eyes open.

Table 1 presents additional information about the

selected sample.

2.2. Data processing

First, brain extraction of the T1-weighted images of all subjects

was performed with the OASIS template using the Advanced

Normalization Tools (ANTs) (42). After finishing the preparation
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of the anatomical images, the pre-processing of rs-fMRI images

was handled within the FMRIB Software Library (FSL) (43). We

used the FSL’s MELODIC tool (44) to perform several steps at

once: (i) discard the first four volumes of functional data to ensure

blood oxygen level-dependent (BOLD) fMRI signal stabilization;

(ii) motion correction using the MCFLIRT tool, which attenuates

the effect of head motion by spatially registering each volume

separately to the middle volume, and estimates motion parameters;

(iii) spatial smoothing using a Gaussian kernel with 5 mm full

width at half maximum (FWHM) was also applied, which has the

effect of blurring the images, and is achieved by calculating, at

each voxel, a weighted average over the multiple voxels; (iv) high-

pass filter with a cut-off of 0.01 Hz to remove frequencies lower

than the low-frequency fluctuations that dominate the BOLD signal;

(v) generate the necessary transformations to align the functional

data to the standard space without performing registration; (vi)

single-session spatial independent component analysis (ICA) with

automatic dimensionality estimation was run, which allowed data to

be unmixed into a set of independent components, each described by

their time course and spatial map (45).

After running the FSL’s MELODIC tool, it was possible to

analyze the outputs of the MCFLIRT tool to evaluate the motion

parameters of each subject. For defining general criteria for head

motion rejection, the minimum value of each voxel size was found to

be 3 × 3 × 3 mm3. Considering that, data in which the maximum

framewise displacement exceeded 3 mm, motion in translation

exceeded 3 mm, or angular deviation exceeded 3◦ were excluded

from the sample (46, 47). Following these criteria, 32 subjects were

removed from the analysis. In addition, it was not possible to finish

data preprocessing for several subjects due to the lack of a rs-fMRI

image or T1-weighted image.

In the end, 655 subjects continued to the subsequent analysis.

Spatial ICA was used for signal-denoising since this fully data-

driven method estimates maximally independent components by

selecting which ones explain most of the variance within the dataset.

Considering that several generated components are not brain signals,

those can be removed from the data. For that purpose, the FSL’s tool

FMRIB’s ICA-based Xnoiseifier (FIX) was applied to automatically

detect and remove non-brain signal components. To create a robust

training set, ten healthy subjects from each dataset (and the subject

from Utah2) were randomly selected, and hand-labeled classification

of the ICA components was performed. The trained dataset was then

used by FSL’s tool FIX for classification and removal of the noise

component of all subjects in the sample.

The cleaned 4D preprocessed functional image underwent

registration to the individual T1-weighted structural image through

the boundary-based registration (BBR) method, and then to the

MNI152 standard space through a non-linear transformation.

For group-level comparisons, dual regression was applied. We

used the fourteen FBNs from Shirer et al. (48) as a template [see

Supplementary material for more information about the FBNs used

in this study: anterior salience network (ASN), auditory network

(AN), basal ganglia network (BGN), dorsal default mode network

(DDMN), higher visual network (HVN), language network (LN),

left executive control network (LECN), posterior salience network

(PSN), precuneus network (PN), primary visual network (PVN),

right executive control network (RECN), sensorimotor network (SN),

ventral default mode network (VDMN), and visuospatial network

(VN)]. Therefore, the registered functional data were used as input

for deriving subject-specific maps. For the next steps, we only used

the subject-specific time series, describing the temporal pattern of

each FBN.

2.3. Functional brain connectivity

For investigating functional connectivity differences across

individuals, a functional brain connectivity matrix was built for each

subject. The Pearson’s correlation coefficients between the time series

of all FBNs pairs were calculated. In the end, a 14 × 14 functional

connectivity matrix was created for each subject, giving information

about inter FBNs connectivity. Considering that Pearson’s correlation

coefficient has no information about the direction of functional

connectivity, the network matrix is symmetric. Therefore, to avoid

redundancy, the diagonal matrix and one-half of the network matrix

were discarded. Taking into account that 14×14−14
2 = 91, the

remaining half of thematrix was transformed into a vector containing

91 features (pairs of FBNs) for feeding the normative model.

2.4. Normative model

2.4.1. Data split and standardization
The first step in the creation of the DL normative model was to

split the data into different sets (see Table 2).

Data standardization was performed before training the model.

z =
x− µ

σ
(1)

where x represents the original value of the feature for a specific

subject, µ represents the mean value of the feature for all subjects

of the H-Train set, and σ the standard deviation value of the feature

for all subjects of the H-Train set.

To calculate the mean and the standard deviation values for

standardization, only the subjects belonging to the training set were

used. After that, standardization was applied to all sets of subjects.

2.4.2. Model training
Autoencoder was the selected architecture for the generation of

the normative model, and it was implemented using theKeras Python

library. For optimization, only the training set fed the model, to

avoid bias in the analysis. Ten fold cross-validation was applied to

validate the optimized model while studying its generalization. The

proportion of datasets was kept similar for the different folds. The

model was trained and tested ten times, using a different fold as

the validation set in each time. For optimizing the model, a global

metric per subject was defined by calculating the mean squared error

between the reconstructed data and the input data of the autoencoder

for each subject of the different sets (MSEs):

MSEs =
1

n

n∑

i=1

(ŷi− yi)2 (2)

where n is the number of features (91), ŷi is the reconstructed feature

i, and yi is the inputted feature i.

The mean of the median MSEs values of the training set for the

10 folds of cross-validation, and the difference between the mean
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TABLE 2 Datasets for the normative model.

Set group Dataset Number Females (%) Age range Age mean

H-Train CORR and UCLA 366 47 18–49 26

H-Test-U UCLA 39 51 21–50 34

SCZ-Test-U UCLA 47 26 22–49 37

BD-Test-U UCLA 45 44 21–50 35

ADHD-Test-U UCLA 39 49 21–50 32

H-Test-C UCLA 70 30 18–50 35

SCZ-Test-C UCLA 49 18 19–50 31

Data were split into several sets of subjects. H-Train represents the 366 healthy subjects from CORR and UCLA datasets that were used to train the model. H-Test-U is the set of 39 healthy subjects

from the UCLA dataset that were used to test the model. SCZ-Test-U, BD-Test-U, and ADHD-Test-U are the sets of psychiatric patients consisting of 47 SCZ patients, 45 BD patients, and 39 ADHD

patients from the UCLA dataset, respectively. H-Test-C and SCZ-Test-C are the independent test sets consisting of 70 healthy subjects, and 49 SCZ patients from the COBRE dataset, respectively.

of the median MSEs values of the training set and the mean of the

median MSEs values of the validation set for the 10 folds of cross-

validation were calculated for optimizing the model. Those metrics

were used to evaluate the performance and the generalization of the

model on reconstructing the data, respectively. Considering that a

conjugation between both metrics is crucial to decide which one is

the best model architecture, and by knowing that the range of their

values was different, both metrics were normalized.

xnorm =
xoriginal −min

max−min
(3)

where xnorm is the normalized value of the evaluation metric, xoriginal
is the original value of the evaluation metric, and min and max

are the minimum, and maximum values of the evaluation metric,

respectively.

The model that better balanced both normalized metrics was

selected for training. It consisted of three hidden layers (91–46–13–

46–91), with the activation function of the hidden layers being the

leaky rectified linear unit. A L2 regularization parameter of 1−5 and a

dropout value of 0.5 were applied. Additionally, the mean squared

error was chosen as the loss function, the weights were initialized

following He initialization, and the model was trained for 1,000

epochs, using Adam optimization (β1 = 0.9, β2 = 0.999, ǫ = 10−7,

and a learning rate of 0.0005).

2.4.3. Model evaluation
After training the autoencoder with 366 healthy subjects, it was

tested with both healthy subjects and patients.

The global metric per subject defined in Equation 2 was used to

generate a boxplot for each test group, and the median values were

compared between the different test sets. Besides, a Mann–Whitney

statistical test was applied between the MSEs values of different

groups of subjects to evaluate if the differences between groups were

statistically significant. Additionally, the absolute difference between

the output vector and the input vector was calculated. The generated

difference vectors for each subject were reshaped into a 14× 14 lower

triangular matrix, and binarized using the threshold that is defined in

the results section. Note that the retained values represent pairs of

FBNs that were more abnormal. Graph theory was used to obtain the

network degree for each subject. The number of degrees represents

the number of connections to a node. For each test group, the median

value of the number of degrees was calculated for each FBN. In the

end, for each test group, a 14-row vector was generated, representing

the median value of the number of degrees for each FBN.

To study which pairs of FBNs were abnormal in each test set, the

mean squared error was calculated for each feature, giving a global

metric per feature [mean squared error per feature (MSEf )].

MSEf =
1

N

N∑

i=1

(f̂ i− fi)2 (4)

where N is the number of subjects in each test set, f̂ i is the

reconstructed feature of subject i, and fi is the inputted feature of

subject i.

For each test set, the MSEf values of each pair of FBNs were

combined into a matrix.

To determine which pairs of FBNs were specific of each group

of patients, the MSEf matrix of healthy subjects (H-Test-U set) was

subtracted from the MSEf matrices of each group of patients. To

more robustly investigate the pairs of FBNs that characterize each

group of patients, an additional analysis with a larger H-Test-U set

was conducted (see Supplementary material).

Finally, the pairs of FBNs characteristic of each group of patients

were analyzed for each subject, to assess whether the group-level

results were still present at the individual-level.

2.4.4. Schizophrenia case study
In the end, the normative model was tested on an independent

dataset, COBRE. This way it was possible to compare the results of

SCZ for the UCLA and COBRE datasets, in order to evaluate the

generalization of the model.

3. Results

3.1. Analysis of the reconstruction error per
subject

The MSEs were calculated for each subject, and boxplots were

generated for each group of subjects.

From Figure 1 it is evident that the healthy test set presents a

lower median MSEs value than all patient test sets, suggesting that

the model was able to learn healthy specific characteristics.
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FIGURE 1

Boxplots presenting the MSEs values of all subjects, for each group.

TABLE 3 Mann–Whitney test between theMSEs values data of the groups of

subjects.

Group I Group II p-value

H-Test-U SCZ-Test-U 0.002

H-Test-U BD-Test-U 0.011

H-Test-U ADHD-Test-U 0.007

SCZ-Test-U BD-Test-U 0.339

SCZ-Test-U ADHD-Test-U 0.452

BD-Test-U ADHD-Test-U 0.373

A Mann–Whitney test was selected to evaluate if the differences

between groups were statistically significant, since the Shapiro–Wilk

test rejected the null hypothesis that the data was normally distributed

for all groups of subjects presented in Figure 1 (see Table 3).

Considering a p = 0.05, it is noticeable that the differences

between the groups of patients and the healthy subjects are

statistically significant. On the contrary, the null hypothesis

is not rejected for the statistical test between the groups of

patients. These findings show that the normative model was

able to learn healthy characteristics and distinguish patients from

healthy individuals.

3.2. Analysis of the reconstruction error per
pair of functional brain networks

3.2.1. Graph theory metrics calculation
Graph theory was also applied to perform group analysis, by

transforming the difference vectors into binarized matrices. For

defining the threshold, we first merged the difference vectors of

all subjects used to test the autoencoder. Then, we considered

the 20% higher values of the merged vector, which corresponds

to a threshold value equal to 1. The elements of the matrix

that were retained represent the pairs of FBNs that were worse

reconstructed regarding network degree of the difference in

reconstruction, which are those that are probably functionally

abnormal. Figure 2A shows the number of FBNs distributed by

the median number of degrees. It is observed that the sets of

the patients are right-shifted when compared with the healthy

subjects. In comparison to healthy people, SCZ, BD, and ADHD

patients have a greater number of connected FBNs. This means that

there are more pairs of FBNs worse reconstructed for the test sets

of patients.

The median number of degrees were also regionally analyzed.

Figure 2B displays the median number of degrees for each FBN.

The FBNs with the most number of degrees are the ones that

were poorly reconstructed. Considering that some FBNs have more

degrees than others, not all FBNs are reconstructed in the same way.

The ASN, HVN, LN, RECN, SN, VDMN, and VN are the more

abnormal FBNs in the ADHD group. The ASN, BGN, DDMN, HVN,

LN, and PSN are the more atypical FBNs in the BD group. The

ASN, BGN, HVN, LN, LECN, PSN, RECN, and VDMN are the

more divergent FBNs in the SCZ group. The results demonstrate

that different psychiatric disorders have different characteristics and

that the normative model can determine the FBNs that are more

abnormal for each group. Nevertheless, even the group of healthy

subjects present some FBNs that are worse reconstructed than

others. This may be justified by the fact that some FBNs are more

variable among healthy subjects than others, and that their functional

connectivity was more difficult to learn by the normative model.

Even though, it must be noted that threshold decision influences

the results.
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FIGURE 2

Graph theory analysis. (A) Distribution of the number of FBNs for the number of degrees, for the H-Test-U, SCZ-Test-U, BD-Test-U, and ADHD-Test-U

groups. (B) Representation of the median number of degrees for each FBN, for the H-Test-U, SCZ-Test-U, BD-Test-U, and ADHD-Test-U groups. FBNs,

functional brain networks; ASN, anterior salience network; AN, auditory network; BGN, basal ganglia network; DDMN, dorsal default mode network; HVN,

higher visual network; LN, language network; LECN, left executive control network; PSN, posterior salience network; PN, precuneus network; PVN,

primary visual network; RECN, right executive control network; SN, sensorimotor network; VDMN, ventral default mode network; VN, visuospatial

network.

3.2.2. MSE calculation for each pair of functional
brain networks

Afterward, the MSEf was calculated for each pair of FBNs.

The resulting matrices for each set of subjects are presented

in Figure 3.

The results are consistent with the hypothesis that the normative

model might not reconstruct every pair of FBNs similarly.

Some pairs of FBNs appear to be more difficult to reconstruct

than others.

The pairs LN-HVN, SN-LN, and VDMN-PN are worse

reconstructed for the H-Test-U, and are also highlighted for the other

three test sets. This suggests that the functional connectivity of those

pairs of FBNs varies even among healthy subjects. In addition, some

FBNs present more abnormal connectivity than others, for each test

set. This is consistent with the results from graph theory analysis since

most of the pairs of FBNs that are highlighted in Figure 3 involve

the FBNs that were considered to be atypical following graph theory

analysis for each test set (Figure 2B). For ADHD, several pairs of

FBNs that were highlighted involved the ASN. For BD, the BGN and

the LN are the FBNs that are more evidently different. For the SCZ,

the BGN, HVN, and LN are the FBNs that are more noticeable. This

corroborates some of the findings of the graph theory analysis, since

the two different methods led to similar results.

Considering that the H-Test-U matrix also contains elements

with a high MSEf , the MSEf matrix of the healthy subjects was

subtracted to each of the other MSEf matrices from the groups of

patients (Figure 4). Thus, the pairs of FBNs that are highlighted

represent abnormalities that may be specific to that group of

patients, since a group of healthy subjects from the same dataset

is used to exclude pairs of FBNs that are variable even among

healthy individuals.

To analyze those results in detail, Figure 5 was displayed.

It shows the 10% of worst reconstructed pairs of FBNs for

each test, before and after subtracting the MSEf matrix of

healthy subjects.

3.2.3. Functional brain networks that characterize
each group of patients

To investigate more robustly which pairs of FBNs characterize

each group of patients, an additional analysis with a larger H-Test-U

set was conducted. This was done since the H-Test-U set was used to

test the ability of the algorithm to learn specific healthy characteristics

and, consequently, the ability to characterize the different patient

groups (see Supplementary material).

For this additional analysis, it was decided to double the size

of the H-Test-U. Therefore, two conditions may be taken into

account in analyzing the results: (a) a model with a H-Test-U set

with 39 healthy individuals and a corresponding H-Train set with

366 healthy individuals; (b) a model with a H-Test-U set with

78 healthy individuals and a corresponding H-Train set with 327

healthy individuals.

Besides, for a better understanding of the results, it should be

noted that: (1) the 10% worse reconstructed pairs of FBNs that were

highlighted without and with subtraction of the H-Test-U should

be considered characteristic of that group of psychiatric patients

since they were easy to reproduce for the healthy subjects. (2) The

10% worse reconstructed pairs of FBNs that were highlighted before

subtracting theMSEf matrix of healthy subjects but were not present

after subtraction are not useful to distinguish the group of patients

from the group of healthy subjects. They probably do not present a

stable connectivity pattern even among healthy individuals and may

not characterize that patient group. On the contrary, they may be

specific to that group of patients, and have been poorly reconstructed

due to model limitations, which are presented later in the discussion

section. (3) The 10% worse reconstructed pairs of FBNs that were

not highlighted before the subtraction, and were present after, are

those that were easy to learn by the normative model, indicating that

they are stable among healthy people, but are probably abnormal in

the group of patients. Considering that, the pairs of FBNs that are

considered to characterize the patient groups need to follow rules (1)

or (3) for conditions (a) and (b).
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FIGURE 3

Matrices representing the MSEf for each pair of FBNs, for the four test sets. The color bar ranges between the lowest and the highest values from the

MSEf for each pair of FBNs of all test sets.

For the SCZ-Test-U, the correlations between the ASN-BGN,

BGN-HVN, and HVN-RECN are pairs of FBNs that characterize

the group, since they are present before and after subtraction

of the MSEf matrix of the healthy subjects for both conditions.

The ASN-LECN, BGN-PSN, and HVN-PVN pairs of FBNs also

characterize the SCZ group following rule (3). This suggests that

the connectivity pattern between these FBNs is important to

characterize the healthy pattern, and that the normative model

tried to minimize the reconstruction error of those features. Thus,

for the SCZ-Test-U, the reconstruction error of those pairs of

FBNs was not very high, because the normative model strives to

reconstruct those features well. On the contrary, the other pairs

of FBNs that were not mentioned above might not accurately

describe the SCZ-Test-U, because the normative model failed to

successfully learn how to reconstruct those features for healthy

people or because different conclusions were drawn for conditions

(a) and (b).

For the BD-Test-U, the BGN-DDMN, BGN-HVN, BGN-LN,

HVN-PVN pairs of FBNs were kept before and after subtraction of

theMSEf matrix of the healthy subjects for conditions (a) and (b), and

consequently, they should characterize the BD group. The AN-BGN,

AN-PVN, and PVN-RECN are also characteristic of BD patients since

they were highlighted after subtracting the matrix of the healthy test

subjects for conditions (a) and (b). On the contrary, the other pairs

of FBNs that were not mentioned above should not be specific of the

BD-Test-U set.

The ASN-LN, ASN-PN, and LN-RECN pairs of FBNs are

representative in the ADHD-Test-U. In addition, the HVN-PVN,

ASN-VN and LN-VN also seem to characterize the ADHD group,

because their reconstruction error is distinguishable from the

reconstruction error of the healthy subjects. Differently, for the other

pairs of FBNs that were not mentioned above, it is not possible

to conclude that their functional connectivity pattern is useful to

characterize the ADHD group.
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FIGURE 4

SCZ-Test-U, BD-Test-U, and ADHD-Test-U matrices represented in Figure 3, subtracted by the H-Test-U matrix. The color bar ranges between the lowest

and the highest value from the MSEf for each pair of FBNs of all test sets after subtraction of the H-Test-U MSEf matrix.

FIGURE 5

Connectograms showing the 10% of pairs of FBNs that were worse reconstructed for each group without (top) and with (bottom) subtraction of the

H-Test-UMSEf matrix. The color bar ranges between the lowest and highest values of those 10% of pairs of FBNs extracted from Figures 3, 4, respectively.

3.2.4. Individual-level analysis of the pairs of FBNs
that characterize each group of patients

After performing the group-level analysis, a simple

representation of the individual patterns was conducted to

determine whether the group findings persisted across all subjects.

To this end, an individual-level analysis of the pairs of FBNs that

were previously considered characteristic of each group of patients

was done. Figure 6 shows the absolute values of the differences

between the reconstructed and inputted data for those pairs of FBNs,

for each subject, for the H-Test-U, SCZ-Test-U, BD-Test-U, and

ADHD-Test-U sets.

The findings show that SCZ, BD, and ADHD patients generally

have larger reconstruction errors than healthy subjects, although this

trend varies among individuals. Besides, high heterogeneity is found

within the same set of patients, which suggests that the group-level

findings may not resist an individual-level analysis.
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FIGURE 6

Individual-level analysis of the absolute values of the di�erences between the reconstructed and inputted data of the pairs of FBNs that characterize

SCZ-Test-U, BD-Test-U, and ADHD-Test-U groups. The color bar ranges between the lowest and the highest values of the absolute di�erence between

the reconstructed and inputted data for the selected features of all subjects used for testing the normative model.

FIGURE 7

Boxplots presenting the MSEs values of all subjects, for healthy and SCZ subjects from the UCLA and COBRE datasets.

3.3. Schizophrenia case study

The trained autoencoder was tested with an independent test set.

The healthy subjects and the SCZ patients from the COBRE dataset

were used to evaluate the generalization of the model. Therefore, to

compare the results, those are presented in combination with the

results from the H-Test-U, and SCZ-Test-U. Figure 7 displays the

boxplots of the MSEs values. The differences between the boxplots

of H-Test-C and SCZ-Test-C are not as notorious as those from the

UCLA dataset. Nevertheless, the SCZ-Test-C boxplot is shifted up

when compared to the H-Test-C boxplot, which may indicate that

the normative model has more difficulty in reconstructing data from

TABLE 4 Mann-Whitney test between theMSEs values data of the groups of

subjects, for the COBRE dataset.

Group I Group II p-value

H-Test-U H-Test-C 0.100

H-Test-C SCZ-Test-C 0.324

the SCZ patients. For the COBRE dataset, the Shapiro-Wilk test also

rejected the null hypothesis that the data were normally distributed.

Thus, the Mann-Whitney test was applied (Table 4)
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FIGURE 8

Graph theory analysis for the COBRE dataset. (A) Distribution of the number of FBNs for the number of degrees, for the H-Test-U, SCZ-Test-U, H-Test-C,

and SCZ-Test-C groups. (B) Representation of the median number of degrees for each FBN, for the H-Test-U, SCZ-Test-U, H-Test-C, SCZ-Test-C groups.

Considering a p = 0.05, the null hypothesis is not rejected for the

comparison between the groups of healthy subjects.When comparing

the both groups of the COBRE dataset, the differences between

the SCZ patients and the healthy individuals are not statistically

significant. This suggests that the model’s ability to distinguish

healthy individuals from patients in an independent dataset is less

accurate. Figure 8A shows that the distribution of the number of

FBNs by the median number of degrees is similar for both sets.

Nonetheless, it seems that the H-Test-C contains less abnormal FBNs

than the SCZ-Test-C.

Figure 8B shows some distinct differences, by examining each

FBN separately. Both groups of SCZ patients have similar patterns,

which suggests that the model can characterize SCZ. On the contrary,

there are fewer similarities between the patterns of both groups of

healthy subjects.

Analyzing the connectivity between the pairs of FBNs, it is

possible to deeper explore those findings. Figure 9 shows that in

general the pairs of FBNs that were worse reconstructed for the

H-Test-C have a lower reconstruction error than those from the

SCZ-Test-C and SCZ-Test-U. In addition, both SCZ groups have a

similar pattern, with a high reconstruction error for many of the

same pairs of FBNs. This indicates that the normative model was

successful in identifying characteristics of SCZ. Differently, the two

groups of healthy subjects do not present such similar patterns. The

pairs of FBNs shared between those healthy groups that were poorly

reconstructed may represent patterns of connectivity that are not

stable in healthy individuals (e.g., the ASN-LN, and the PN-VDMN).

Other pairs of FBNs that appear in one of the healthy groups but not

the other could be associated with the specific dataset. For example,

the pair LECN-RECN seems to be unique to the COBRE dataset, as

it is highlighted in both COBRE groups, but not in any of the other

test groups.

Figure 10 shows the SCZ patients’ connectograms from the

UCLA andCOBRE datasets. From the nine thresholded pairs of FBNs

(10% of pairs of FBN worse reconstructed), six are shared between

the two groups. These incude the ASN-BGN, BGN-HVN, BGN-

DDMN, ASN-LN, LN-SN, and PN-VDMN. Besides, the ASN-BGN

and BGN-HVNwere also considered characteristics of the SCZ-Test-

U set. Nonetheless, it must be observed that the MSEf of some of

those shared pairs of FBNs are also high in the groups of healthy

subjects. On the contrary, the DDMN-LN, HVN-RECN, HVN-LN,

ASN-HVN, LECN-RECN, ASN-PSN are not thresholded for the

two groups of SCZ patients, although some of these pairs of FBNs

still have a high MSEf value. Overall, this suggests again that the

normative model was able to identify SCZ patterns.

4. Discussion

In this study, we evaluated the performance of a normative model

on rs-fMRI data of SCZ, BD and ADHD patients. First, a group-level

analysis was pursued for evaluating if the developed normative model

would be able to identify disorder’s patterns in agreement with the

literature. A simple individual-level analysis was also done to evaluate

the heterogeneity within each group of patients.

Our results demonstrate that patients deviate more than healthy

individuals from the pattern learned by the normative model

(Figure 1). This was further supported by the graph theory approach,

which demonstrates that patient groups show more FBNs with a

higher number of degrees (Figure 2). Besides, the abnormal pairs of

FBNs that seem to characterize each group are in agreement with

several literature findings (Figures 3–5).

According to the literature, the default mode and salience

networks appear to play a role in SCZ, which is consistent with

the findings of this study, especially given the match between the

FBNs of Shirer et al. (48) and the FBNs of Thomas Yeo et al.

(49) reported in the Supplementary material. Considering that the

anterior and posterior insula are located in the ASN and PSN,

respectively, that corpus striatum belongs to basal ganglia, and that

the LECN combines regions of the temporal and prefrontal lobes, the

pairs of FBNs corresponding to the ASN-BGN, BGN-PSN, and ASN-

LECN that were highlighted in the SCZ-Test-U follow the findings of

Liang et al. (33), previously mentioned in the Introduction. The role

of the basal ganglia in SCZ was previously reported (34), and is also

found in the results of this study. The abnormal connectivity between

the HVN and the RECN was also reported in previous studies (35),

and that pair of FBNs was the most abnormal in this group of SCZ

patients when compared with the group of healthy subjects.
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FIGURE 9

Matrices representing theMSEf for each pair of FBNs, for the healthy (Left) and SCZ (Right) test sets of the UCLA (Top) and COBRE (Bottom) datasets. The

color bar ranges between the same values of Figure 3.

The role of the BGN in BD is evident from the results and

is in agreement with some studies in the literature. It has been

previously suggested that basal ganglia may play an important role in

the dysfunctional emotional processing and regulation of BD patients

(26). Nevertheless, whereas in this study the BGN is highlighted as the

FBN that is more functionally abnormal in BD, in the literature it has

been demonstrated that some other FBNs appear to be more relevant

in BD, such as the default mode, central executive, and salience

networks (25). Our results demonstrate that the ASN seems to be

abnormal in BD, but we did not find any significant abnormalities

related to executive control networks in our study. There are parts

of the default mode network (DDMN, PN, and LN) that seem to be

abnormal in BD, but they do not seem to play a role as relevant as

the BGN. Unfortunately, the cerebellum network was not included in

this study, and it also seems to play a role in BD (26). The thalamus

was also previously considered to play a role in BD, which may justify

the atypical functional connectivity of the BGN since it includes

thalamic regions. In particular, the abnormal connectivity between

the DDMN and BGN is in line with the studies that mentioned the

atypical connectivity between the ventral prefrontal cortex and basal

ganglia regions (27–29). The role of the visual regions, which include

the PVN and the HVN, also characterize BD in the present study.

Although visual regions have been previously reported to be related

to the neuropathology of BD, not much focus has been given to FBNs

related to visual processes (26).

In ADHD, the pair ASN-PN presents the highest MSEf among

the ADHD group, which corroborates with a previous study that

considered the link between the dorsal anterior cingulate and the

precuneus to be a possible candidate locus for the dysfunction of

ADHD (17). The abnormal interplay of the default mode, executive

control and attention networks (16) in ADHD was also observed

in this study, considering that the LECN and the RECN make

up the executive control networks, the ASN and the VN are the

attention networks, and the DDMN and the LN belong to the

default mode network. All those FBNs were found to be involved

in the functional connectivity pattern of ADHD. Additionally, the
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FIGURE 10

Connectograms showing the 10% of pairs of FBNs that were worse reconstructed for the SCZ patients of the COBRE (Left) and UCLA (Right) datasets.

The color bar ranges between the lowest and highest values of those 10% of pairs of FBNs extracted from Figure 9.

visual networks (HVN and PVN) also seem to be involved in the

neuropathology of ADHD. This is in line with a recent study (23),

which highlighted the role of somatosensory FBNs in ADHD. The

language alterations reported in ADHD patients are also in line

with the results since the LN seems to be functionally abnormal in

ADHD (24).

Several results are in agreement with the literature, which

demonstrates the ability of the normativemodel to identify functional

connectivity patterns of several psychiatric disorders.

The good performance of the normative model is also supported

by the results obtained for the independent dataset, COBRE. A

similar pattern for both groups of SCZ patients is observed in

Figure 9, which demonstrates that the normative model was able to

identify characteristics of SCZ. Overall, the results obtained for the

COBRE dataset suggest that the normative model was generalizable.

Regarding the individual-level analysis, the results presented in

Figure 6 show that, although generally, the reconstruction error of

the patients is higher than the reconstruction error of the healthy

subjects, this is not true for all subjects. Besides, the individual pattern

of reconstruction errors of each patient is not constant among all

individuals within the same group. Those results are expected and

are in line with the premise of this study, which is that psychiatric

disorders comprise a spectrum with undefined boundaries leading

often times to misdiagnosis.

As an example, the characteristic symptoms of SCZ involve a

range of cognitive, behavioral, and emotional dysfunctions. However,

no single symptom is specific to the disorder. SCZ diagnosis

involves the recognition of a constellation of signs and symptoms

associated with occupational or social impairments. Therefore, SCZ

can be considered a heterogeneous psychiatric disorder, since several

individuals diagnosed with SCZ will vary in most of the features

that describe the disorder (1). Some of them present similar patterns

of functional connectivity, which may be related to a similar

manifestation of SCZ. Other patients are very different in terms of

functional connectivity, possibly due to different manifestations of

the psychiatric disorder. The DSM-5 authors have already recognized

SCZ as a spectrum of psychiatric disorders, but the diagnostic criteria

are still too broad. Subgroups seem to still be present in patients that

are diagnosed with SCZ. The same is true for BD and ADHDpatients.

The three psychiatric disorders included in this study share several

characteristic signs and symptoms and seem to share some functional

connectivity abnormalities. Therefore, misdiagnosis can be expected.

Nonetheless, this hypothesis is also true for healthy subjects,

since the functional connectivity pattern is also not the same for

all individuals. Considering that personality traits may be related to

patterns of functional connectivity and that those patterns are also

dependent on sex, those results are expected as well (50). Even a

group of healthy subjects can be split into several subgroups based

on personality traits, age, and sex, among other factors. In future

studies, it is worth considering the use of unsupervised clustering

models as a step following normative models. This way, investigating

the existence of subgroups within the same psychiatric disorder

becomes possible, allowing for a more individual-level analysis of the

psychiatric patients as well.

Also, we may be aware of the limitations of the study, which

may hurt the results. First, although the parameters of acquisition

that were defined led to the best balance between the amount

and quality of data, longer scan duration and higher temporal

resolutions are both important factors for more reliable results.

Secondly, the template that was used for dual regression was not

specific to the data used in this study. Nonetheless, it allowed for

a comparison with the literature, and since it included more FBNs

than several studies using rs-fMRI in the context of psychiatric

disorders, it resulted in findings that are novel to the field of

functional interconnectivity analysis. However, this study did not

explore intranetwork connectivities, which have been found to be

abnormal in a number of psychiatric disorders. Incorporating those

metrics could have aided in the improvement of the analysis. Thirdly,

the sample size was small, which is a limitation. Fourthly, we

started with a simple autoencoder that received no information

about sex/age. The model led to good results, but improvements

to it could lead to better results. Fifth, we should consider that

treatment (medication doses), disease severity, and disease course

(stage or duration of onset) impact on the current findings,

and a control of such factors could improve this study. Finally,

considering that fMRI is a dynamic imaging technique and that

the pairs of FBNs are not necessarily physically connected in a

direct manner, some pairs of connections may not be as stable as
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when constructed from structural MRI data and potencially limit the

obtained.

Overall, it is demonstrated that functional connectivity has the

potential to be used to distinguish patients from healthy subjects

and that different psychiatric disorders are characterized by different

functional connectivity patterns in the context of a normative model.

Besides, the results of this study demonstrate that the group-level

differences do not resist to the individual-level analysis. Therefore,

the concept of group-pattern disguises the interindividual differences

presented in the same psychiatric disorder group. This study also

supports the hypothesis that the average patient concept falls apart

at the individual-level in the field of psychiatry (51, 52). The findings

show that to better understand the neuropathology of psychiatric

disorders and develop effective therapeutic approaches, researchers

must look beyond the average patient. Considering that psychiatric

disorders develop over a continuous spectrum, a precision-based

approach focused on the specific functional network changes of

individual patients would lead to a more effective diagnosis. The

DL-based normative model approach used in this study may be

considered for that purpose. It establishes a bridge between DL

models and precision medicine, which may be the key to the

translation of these models to clinical practice. The normative model

approach provides an intuitive match between the manifestations of

the disorder and the brain abnormalities, which was not explored

in this study. It would be feasible to practice more precise, person-

centered care by looking beyond the group-level findings and

connecting the clinical symptoms of the patients to the functional

connectivity abnormalities identified by the normative model. This

association could also lead to the finding of several subgroups within

each psychiatric disorder.
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