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Background: Whether alteration in regional brain volumes can be detected in Type
A alcoholics both at baseline and after a long follow-up remains to be confirmed.
Therefore, we examined volume alterations at baseline, and longitudinal changes in a
small follow-up subsample.

Methods: In total of 26 patients and 24 healthy controls were assessed at baseline
using magnetic resonance imaging and voxel-based morphometry, among which 17
patients and 6 controls were re-evaluated 7 years later. At baseline, regional cerebral
volumes of patients were compared to controls. At follow-up, three groups were
compared: abstainers (n = 11, more than 2 years of abstinence), relapsers (n = 6,
<2 years of abstinence), and controls (n = 6).

Results: The cross-sectional analyses detected, at both times, higher caudate nuclei
volumes bilaterally in relapsers compared to abstainers. In abstainers, the longitudinal
analysis indicated recovery of normal gray matter volumes in the middle and inferior
frontal gyrus, and in the middle cingulate, while white matter volumes recovery
was detected in the corpus callosum and in anterior and superior white matter
specific regions.

Conclusions: Overall, the present investigation revealed larger caudate nuclei in the
relapser AUD patient group both at baseline and at follow-up in the cross-sectional
analyses. This finding suggest that a higher caudate volume could be a candidate risk
factor of relapse. In patients with specific type A alcohol-dependence, we showed
that long-term recovery in fronto-striato-limbic GM and WM volumes occurs during
long-term abstinence. These results support the crucial role of frontal circuitry in AUD.
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1. Introduction

Alcohol use disorder (AUD) causes extensive cortical and

subcortical GrayMatter (GM) andWhiteMatter (WM) brain damage

(1–3), characterized by lower regional volumes. There might be a

change in key-brain regions modulated by treatments available for

AUD, as it is a multidimensional disorder which includes several

subtypes with different neurobiological underpinnings (4, 5).

Previous studies have not exclusively included individuals

without neurological complications (i.e., type A alcohol-dependent

individuals). There are scarce studies examining AUD’s patients with

Type A alcohol-dependence, as designated by Chanraud et al. (6) with

no neurological, somatic or psychiatric complications, and for whom

the onset of dependence occurred late in life (6–8). Compared to 24

controls, Chanraud et al. (6) showed decreases in graymatter volumes

that were detected bilaterally in 26 Type A alcohol-dependent

individuals in the dorsolateral frontal cortex (up to 20% lower), and

in the temporal cortex, insula, thalamus, and cerebellum. Decreases

in white matter volumes were widespread, reaching 10% in the

corpus callosum (6). Fein et al. analyzed 24 young to middle-aged

treatment-naïve Type A alcohol-dependent individuals who showed

reduced whole brain, prefrontal, and parietal cortical gray matter

volumes compared to 17 controls. These structural brain changes

were negatively associated with age and lifetime duration of alcohol

use, which were highly intricated. Temporal cortex and white matter

did not differ between the two groups (7). Finally, Pfefferbaum et al.

showed that 16 Type A alcohol-dependent patients had a cortical

gray matter loss over time in the prefrontal cortex and the anterior

superior temporal lobe and enlarged ventricles, compared to 28

controls who drank low amounts of alcohol (8).

Several longitudinal MRI studies investigated the short-term

reversibility (up to 24 months) of these structural alterations. They

compared AUDs vs. controls as well as abstainers vs. relapsers after

a period of abstinence ranging from 1 to 24 months (9–22) (see for

review Supplementary Table 1). In patients maintaining abstinence

for over 3 months, regional GM volumes partially recovered in

the cingulate cortex, the orbito-frontal cortex and the insula (15).

In patients maintaining abstinence over 8 months a regional GM

volumes recovery was shown in the frontal and parietal regions after

1 month (14, 16).

Furthermore, there are scarce reports on structural predictors

of relapse between relapsers and abstainers. These studies

highlight initial hypovolumetry, in the fronto-ponto-cerebellar

and mesocorticolimbic regions (12, 14), in the bilateral frontal

cortex (21), the frontal cortical thickness (16), as well as in the right

orbito-frontal cortex, medial prefrontal cortex, and right anterior

cingulate cortex regions (17), the amygdala (23) and the striatum and

the thalamus (24).

However, the follow-up duration in all these longitudinal studies

varied from 1 month to 2 years.

Thus, to our knowledge, no studies have investigated the brain

structure damage in AUD between abstainers and relapsers after

more than 24 months.

Besides most of the longitudinal studies conducted evaluated

AUD patients with somatic and psychiatric comorbidities (12–16,

20, 21, 25) (see Supplementary Table 1). Few studies (11, 15, 17, 26)

have explored uncomplicated AUD men and women, i.e., Type A, as

designated by Babor et al. (27).

Therefore, our study aimed to detect whether there are brain

damage differences beyond 24 months between relapsers and

abstainers, particularly in Type A AUD patients, and identify regional

volumes as potential predictors of outcome at baseline, or as

predictors of reversibility at follow-up.

Therefore, we first comparedWM andGM volumetry between all

healthy controls and AUD patients at baseline.

The groups were formed according to the maintenance or not

of abstinence at 7 years of follow-up; afterwards, at follow-up, we

compared relapsers, abstainers, and controls groups.

Secondly, we aimed to investigate the long-term changes in

regional volumes at follow-up, by comparing cross-sectionally and

longitudinally the followed-up subgroups of abstainers, relapsers,

and controls.

In line with the literature, we hypothesized that long-term

abstinence would lead to, at least partial, recovery of the prefrontal

cortex, cingulate cortex, and WM volume reductions.

2. Materials and methods

2.1. Participants

At baseline (BL) twenty-nine AUD patients detoxified for at least

3 weeks (mean age 47.4± 7.7 years), andmeeting DSM-IV criteria for

alcohol-dependence were recruited from consecutive admission to

addiction disorders wards of addiction departments at Paul Brousse

and Emile Roux Hospitals (AP-HP).

Twenty-nine healthy controls with neither past nor current

substance abuse, matched to AUD patients for age, sex, Body Mass

Index (BMI) and education were recruited from the neighboring

community. Body Mass Index (BMI; kg/m2) was calculated as the

ratio of patient collected data on weight and height and is defined

as the weight divided by the square of the body height. Because some

studies have reported sex-differences regarding alcohol-dependence

(28), we chose to include only men in our study, in order to limit the

impact of gender and heterogeneity in our limited sample size.

At baseline (BL), twenty-nine patients and twenty-nine healthy

controls were recruited.

All patients and controls weremales, Caucasian and right-handed

as determined by the Annett Hand Preference Questionnaire (29).

Finally, due to motion artifacts and other technical difficulties, 3

AUD and 5 controls were excluded. Thus, 26 AUD and 24 controls

were finally included in analyses at baseline [see Chanraud et al. (6)

and the flow chart in Supplementary Figure 1].

The inclusion criteria for the control group were a consumption

of less than two standard units of alcohol per week (20 g) during

the previous year and a score of ≤5 on the Alcohol Use Disorders

Identification Test (AUDIT) (30).

Exclusion criteria for both groups included being under 25 or

over 65 years of age, in order to avoid age-related increased brain

vulnerability to alcohol abuse (31–33). Other exclusion criteria were

left- handedness, non-fluency in French, history of substance abuse

or dependence other than caffeine and tobacco, sedative treatment

for at least 1 week, axis I disorder (particularly mood and/or

anxiety disorders, psychosis), high scores (>5) on the Hamilton

Anxiety and Hamilton Depression Rating Scale (HARS and HDRS)

(34, 35), malnutrition, hepatic pathology revealed by a ratio of

liver enzymes aspartate aminotransferase/alanine aminotransferase

(AST/ALT) greater than 2 (36), neurological and somatic diseases

including a history of head injury with loss of consciousness, stroke,

or other major brain abnormalities observed on MRI scans.
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TABLE 1 Characteristics of the three participant groups and whole brain volumes at baseline and follow-up.

At baseline At follow-up

Relapsers
(n = 6)

Abstainers
(n = 11)

Controls
(n = 24)

Kruskal-Wallis /Wilcoxon Relapsers
(n = 6)

Abstainers
(n = 11)

Controls
(n = 6)

Kruskal-Wallis /Wilcoxon

Means
(SD)

Means
(SD)

Means
(SD)

Chi2/Z P-value Means
(SD)

Means
(SD)

Means
(SD)

Chi2/Z P-value

Age (years) 44.17 (6.1) 47.73 (7.52) 44.25 (7.4) 2.09 0.35 50.83 (5.52) 54.91 (5.8) 54.33 (4.41) 1.39 0.5

Education (years) 13.16 (3.54) 12 (2.19) 13.54 (3.25) 1.45 0.48 13.16 (3.54) 12 (2.19) 14.16 (2.56) 2.10 0.34

BMI 22.16 (1.48) 23.94 (3.44) 24.66 (3.1) 3.81 0.15 23.31 (1.91) 24.74 (3.57) 24.37 (3.57) 1.03 0.59

Age of first drinking (years) 18.83 (5.53) 22.18 (10.07) / 0.75 0.38

Age of alcohol dependence onset (years) 41.75 (7.82) 49.5 (8.14) / 2.28 0.13

Total years of alcohol dependence 10.08 (7.26) 6.9 (5.56) 0.65 0.42 14.94 (7.88) 7.15 (5.13) 0.04 0.84

Alcohol family history (yes/no) 2y/4n 9y/2n Fisher test 0.11

Consumption (SDU) 27.50 (20.57) 32.91 (17.54) 0.65 0.42 20 (16.91) 5.18 (17.18) 11.76 0.0006

Prior detoxification treatments No 0.5 (0.54) 1 (1) 0.94 0.33 3.16 (1.47) 1.36 (1.63) 4.44 0.04

Length of abstinence (years) 0.43 (0.45) 1.18 (2.58) 0.45 0.5 0.36 (0.77) 6.02 (0.87) 11.19 <0.001

Pack-years of active smoking 32.25 (18.30) 28.29 (19.31) 3.04 (8.34) 22.77 <0.0001 39.83 (19.36) 31.80 (20.16) 2, 62 (6,41) 10.08 0.006

AST (U/l) 33.83 (20.97) 24.27 (6.77) 0.16 0.68 21.16 (4.11) 19.91 (6.36) 1.02 0.31

ALT (U/l) 31.66 (19.83) 23.81 (11.34) 1.12 0.29 19.66 (9.43) 24.63 (19.96) 0.16 0.68

Gamma GT 71.16 (95.41) 39.63 (43.81) 1.58 0.21 39.5(79.63) 29.82 (29.4) 3.13 0.07

HDRS 1 (1.55) 0.73 (1.01) 6.18 0.01 1 (0.83) 0.73 (1.01) 0.08 0.77

HARS 1.83 (1.17) 2.09 (1.51) 0.02 0.87 1.5 (2.35) 1.09 (1.04) 0.04 0.83

AUDIT 31 (4.98) 35.09 (4.15) 2.2 0.14 13.5 (15.1) / -

MMSE 28.16 (3.6) 29.63 (0.67) 29 (1.21) 3.1 0.21 29.17 (0.98) 29.36 (0.81) 29.16 (1.6) 0.27 0.87

SAS-SR 2.80 (0.46) 2.47 (0.52) 1.71 0.19

CSF volume 367.67 (40.42) 376 (65.51) 306.7 (44.68) 12.1 0.002 426 (65.76) 380, 18 (61.1) 313 (35.83) 7.05 0.03

GM volumes 652 (37.9) 617.27 (52.22) 653.1 (42.1) 2.57 0.09 631 (34.1) 616, 73 (58.4) 611.16 (35.7) 0.39 0.82

WM volume 532.33 (45.46) 521.27 (39.37) 543 (50.68) 3.72 0.15 505.67 (49.5) 519, 09 (44.47) 506.16 (36.36) 0.20 0.9

TIV 1,551.8 (74.1) 1,514.9 (123.1) 1,502.6 (95.7) 1.4 0.5 1,562.8 (77.1) 1,516 (121, 84) 1,430.8 (97.5) 5.43 0.07

R, relapsers; A, abstainers; C, controls. BMI, body mass index; alcohol consumption in Standard Drinking Unit. Drinking Unit. Unity Laboratory norms. AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl-transferase; Tests: AUDIT,

Alcohol Use Disorders Identification Test (range 0–40); MMSE, Mini-Mental State Examination; SAS-SR, Social Adjustment Scale Self Report; TIV, Total intracranial volume; GM, Gray Matter; WM, White Matter; CSF, Cerebrospinal fluid. Between-group comparisons

were performed using Kruskal-Wallis and Wilcoxon tests. Bold P-values indicate a significant difference between groups (p < 0.05).
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The characteristics of the participants’ groups are provided

in Table 1. The Bicêtre Ethics Committee (CPP-IDF 7) approved

the study protocol. All participants received verbal and written

protocol information, signed a consent form and received monetary

compensation for their participation.

2.2. Clinical assessment

Trained psychiatrists (CM, EA, HJA, and JLM) performed a

clinical evaluation of all the participants, examined their medical

records and biological data at BL and follow up (FU). The presence

of an axis I disorder (particularly mood and/or anxiety disorders,

psychosis) was evaluated by a clinical interview. Trained psychiatrists

(CM, EA, HJA, and JLM) interviewed and clinically evaluated

patients, as well as examined their medical records and biological

data. The diagnosis was determined after the clinical interview,

by consensus of at least two interviewers and according to DSM-

IV criteria.

Alcohol-dependence was assessed using the AUDIT and nicotine

dependence by the Fagerström test (FTND) (38). Social functioning

was evaluated using the Social Adjustment Scale Self Report (SAS-

SR) (39), a self-report questionnaire, that evaluates daily functioning,

and includes questions on leisure and social activities, relationships,

economic status, marital status, children and extended family.

Intellectual deterioration was assessed by the Mini-Mental State

Examination (MMSE) (40), intellectual efficiency was assessed by

the Information Subtest of the Weschsler Adult Intelligence Scale III

Third Revision (41), and anxiety and depression were assessed using

the Hamilton Anxiety Rating Scale and Hamilton Depression Rating

Scale respectively (34, 35).

Moreover, we asked participants to rate among their first-

and second-degree family members, the number of problematic

alcohol drinkers.

Biological blood tests were performed for all subjects on both BL

and FU. On the day of testing, fasting blood samples were drawn

to investigate the somatic complications of chronic alcoholism. The

panel of tests included liver function tests: aspartate aminotransferase

(AST), alanine aminotransferase (ALT), gamma-glutamyl-transferase

(GGT), carbohydrate-deficient transferrin (CDT), bilirubin,

hemoglobin, hematocrit andmean blood volume (MCV). Abstinence

was ascertained by normal blood levels of carbohydrate-deficient

transferrin (CDT), of gamma-glutamyl-transferase (GGT), and of

mean blood volume (MCV).

At FU, the AUDIT and the alcohol consumption self-report

since BL were used to retrospectively estimate the quantity and

the frequency of their alcohol consumption. Participants were

also asked to report the duration and number of relapses and

related-detoxifications during the follow-up period (from 0 to 3

detoxifications). Furthermore, we verified these data by reviewing

their medical records.

Sub-group’s characteristics: sub-groups were formed according to

patients self-reported alcohol consumption during the 2 years before

follow-up evaluation and confirmed by medical reports and blood

alcohol tests [normal blood levels of gamma-glutamyl-transferase

(GGT), carbohydrate-deficient transferrin (CDT) and mean blood

volume (MCV)].

Abstainers self-reported no alcohol consumption for at least 2

years at FU that was confirmed by available medical records and

available laboratory indicators of alcohol consumption [e.g., gamma

glutamyltransferase (GGT)], which were within normal limits at

follow-up. Relapsers self-reported alcohol consumption in the 2 years

before FU, and this was confirmed by available medical records.

The two-year threshold is in line with the literature on long-term

abstinent alcoholics, which commonly uses a duration of abstinence

of more than 18 months (18, 37, 42) or more than 2 years (11, 43, 44).

All controls remained abstinent: three did not drink at all, one

drank one drink per week, one consumed 2 drinks by month and one

consumed 2 drinks by year. At 6-year follow-up, all AUD patients

and controls were called by phone. The average duration between

the baseline and follow-up MRI acquisitions was 77 ± 5 months and

ranged from 68 to 85 months. Among the initial twenty-six AUD

patients, eighteen were still followed in detoxification centers. Of

those lost to follow up, two died between BL and FU. An additional

research subject was excluded because of an incidental leukemia

diagnosis. Five patients were unreachable. Among the twenty-four

control subjects, seventeen were unreachable. At FU, a technical

problem was encountered during the MRI acquisition of one patient

and one control subject.

Overall, 17 AUD (11 abstainers and 6 relapsers) patients and 6

controls were included in the final analyses.

2.3. Imaging methods

2.3.1. Magnetic resonance imaging acquisition
MRI data was acquired at BL and at FU on the same Signa

1.5 Tesla Whole Body system from General Electrics (Milwaukee,

Wisconsin) at SHFJ (CEA, Orsay, France), with a standard

3D T1-weighted inversion recovery fast-spoiled gradient-recalled

sequence with identical parameters: axial orientation, matrix = 256

× 192 interpolated to 256 × 256, 124 slice locations, 0.9375

× 0.9375 mm2 in-plane resolution, slice thickness = 1.3mm,

TE = 2ms, TR = 10ms, TI = 600ms, flip angle = 10◦, and read

bandwidth= 12.5 kHz.

2.3.2. Magnetic resonance image preprocessing
Spatial normalization and tissue segmentation in gray and

white matter probability maps were performed for all images using

the Cat12 toolbox (http://www.neuro.uni-jena.de/cat/), in SPM12

(Statistical Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/)

implemented in Matlab (https://fr.mathworks.com/help/matlab/ref/

edit.html). Gray and white matter segmented images were modulated

to compensate for deformations and finally smoothed with a 8-

mm FWHM Gaussian filter. Total intracranial volume (TIV) was

also estimated using the Cat12 toolbox. Visual quality control was

performed for each raw image by one author (RM) and verified

by another (CM). Cat12 quality rating was examined, and all

preprocessed images were used.

Thus, participants underwent brain scanning both at BL and

FU, using the same scanner, head coil, and volumetric MRI

sequence parameters.
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2.4. Statistical analyses

2.4.1. Sociodemographic, clinical, and biological
analyses

At BL and at FU, socio demographic, clinical and biological data,

brain volumes of the three groups (relapsers, abstainers and controls)

were compared, with the Jmp 14 software (https://www.jmp.com/

fr_fr/home.html) using non-parametric tests such as Wilcoxon

and Kruskal-Wallis.

All neuroimaging analyses were performed with SPM12, in whole

brain. All scans were free from abnormalities.

2.4.2. Cross-sectional voxel-based morphometry
analyses

Cross-sectional voxel-based morphometry (VBM) analyses were

performed on whole-brain GM and WM images (45) at both BL

and FU.

A one-way ANOVA model in SPM was used, with group

(relapsers, abstainers, controls) as the between-subject factor and age,

years of education and TIV as confounding covariates.

At baseline, analyses were performed with all included controls

(n= 24), and all AUD patients. Thereafter, we compared the baseline

groups from participants included at both times (abstainers n = 11,

relapsers n= 6, controls n= 6). At FU, analyses were conducted with

all subjects included at both times (abstainers n= 11, relapsers n= 6,

controls n= 6).

Statistical height threshold was set at p < 0.001 uncorrected,

and extent threshold at p < 0.05 uncorrected (k = 300 voxels) (46).

The get_totals SPM function was used to extract volumes from all

significant clusters at BL (http://www0.cs.ucl.ac.uk/staff/g.ridgway/

vbm/get_totals.m.).

2.4.3. Longitudinal analyses
Longitudinal analyses were conducted using a flexible factorial

design (one-way ANOVA for repeated measures) with time (BL

and FU) as within-subject factor and group (relapsers, abstainers,

controls) as between-subject factor.

As tobacco consumption may have confounding effects (20, 47),

we conducted supplementary analyses with the number of cigarette

packs smoked per year, entered as covariate.

In the longitudinal analyses, the height threshold was set at p <

0.001 uncorrected and the extent threshold at p < 0.05 uncorrected

(respectively k = 150 voxels and k = 210 voxels for the GM and the

WM analysis).

We used the AAL atlas (48) within the xjview toolbox (https://

www.alivelearn.net/xjview/) and the JHU toolbox in MRIcron

software to locate regions in all VBM analyses (49).

3. Results

3.1. Participant’s characteristics

The three participant groups did not significantly differ in most

socio-demographic data, biological variables, rating scales scores and

whole brain tissues volumes except for CSF at BL and at FU, as

described in Table 1. The duration of alcohol abstinence (p< 0.0001),

alcohol consumption (p = 0.0006) and the number of withdrawals

(p = 0.04) differed between the two subgroups of AUDs (abstainers

vs. relapsers) at FU whereas no difference was found at BL. In

addition, AUD patients smoked more than controls at both time

points (BL: RvC Z = 4.08; p < 0.0001; AvC Z = 3.23; p < 0.0001;

RvA Z = 0.15; p = 0.88; FU: RvC Z = 2.9; p = 0.004; AvC Z=2.65;

p = 0.008; RvA Z=0.45; p = 0.65). All patients had good social

functioning based on the SAS-SR scale: SAS-SR scale AUD subgroups

scores were not different at BL (Table 1).

Thus, AUD patients were split into two groups: relapsers, who

had been abstinent for <2 years (n= 6; mean 0.36± 0.77 years), and

abstainers, whose duration of abstinence was >2 years (n = 11; 6.02

± 0.87 years).

It is worth noting that no significant difference in education level,

age, or BMI was found between the unreachable (n = 6) and the

reachable (n= 17) controls (Supplementary Table 2).

3.2. MRI results

3.2.1. Cross-sectional GM analyses at baseline
At BL, the comparison between controls and all AUD patients

(controls n = 24; AUDs n = 17) revealed significant regional

gray matter volume reductions in AUDs in bilateral hippocampus

and para-hippocampus, left amygdala, bilateral medial frontal,

right precentral, left temporal middle gyri and right thalamus

(Supplementary Table 3). No larger GM volumes were found in AUD

patients compared to controls.

The cross-sectional BL differences between subgroups (controls

n = 24; relapsers n = 6; abstainers n = 11) with voxel-wise two-

sample t-tests showed that the relapsers had a higher volume than the

abstainers in the head of the caudate nucleus (CN) bilaterally (PFWE-

corrected <0.05 at cluster and peak levels) (Table 2, Figure 1A).

Individual plots of the bilateral heads of the caudate nuclei cluster

volumes (in cm3), at baseline, in controls, relapsers and abstainers

are represented in Figure 1B to illustrate this result. No significant

difference was found among relapsers < abstainer’s contrast.

With respect to controls, the relapsers only had a higher volume

in the right caudate head (p < 0.001 uncorrected at peak level)

(Supplementary Table 3).

Compared to controls, the abstainers had lower volumes in

the right precentral gyrus, left hippocampus, left medial frontal

gyrus, right para-hippocampus and bilateral thalamus (p < 0, 001

uncorrected at cluster and peak level) (Supplementary Table 3).

3.2.2. Cross-sectional GM analyses at follow-up
At FU, the comparison between the reassessed controls and all

AUD patients (AUDs n = 17; controls n = 6) revealed no significant

regional GM volume reduction in all AUDs vs. controls contrasts.

The cross-sectional GM differences between subgroups (relapsers

n = 6, abstainers n = 11, controls n = 6) with voxel-wise two-

sample t-tests still showed higher volumes in the head of the

CN bilaterally in relapsers compared to abstainers (see Table 2,

Figure 1C). No significant difference was found in the relapsers <

abstainers’ comparison.

No significant GM volume difference was found between controls

and both patient sub-groups (Supplementary Table 3).
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TABLE 2 Gray Matter (GM) cross-sectional analyses: comparisons between relapsers and abstainers: Relapsers > Abstainers.

Regions Cluster level Peak level MNI coordinates

k p (FWE)-corr t p (FWE)-corr x y z

Baseline R Caudate Head 1,091 0.007 6.21 0.01 10 18 4

L Caudate Head 899 0.016 5.58 0.049 −12 16 0

Follow-up L Caudate Head 987 0.011 8.09 0.009 −14 16 2

R Caudate Head 1,055 0.008 6.09 0.161 10 16 0

P(FWE)-corr = P Family-Wise Error corrected; BA, Brodmann’s area; L, left; R, right. No significant difference for WM cross-sectional relapsers vs. abstainers comparisons, at baseline and

at follow-up.

FIGURE 1

(A) Gray matter volumes: cross-sectional bilateral caudate nuclei increases in relapsers compared to abstainers Alcohol Use Disorders (AUD) patients, at
baseline (height and extent threshold p < 0.05 FWE corrected). (B) Individual plots: bilateral heads of the caudate nuclei cluster volumes (in cm3) at
baseline in controls on the left, relapsers on the middle and abstainers on the right. (C) Idem at follow-up (height threshold p < 0.001 uncorrected and
extent threshold p < 0.05 FWE corrected).

3.2.3. Cross-sectional WM analyses at baseline
At BL, the comparison between controls and all AUD patients

(controls n = 24; AUDs n = 17) revealed widespread reductions of

the regional WM volume in patients in the midbrain, left cerebral

peduncle, right retrolenticular part of the internal capsule, superior

and inferior longitudinal and inferior fronto-occipital fasciculi, right

superior corona radiata and left corpus callosum. Reductions were

also detected in the bilateral parietal and left middle occipital,

superior temporal, cingulate, middle frontal, left medial and left

superior frontal (Supplementary Table 3). No significantWMvolume

reduction was found in controls compared to AUD patients.

The cross-sectional BL comparisons between subgroups for

volumes of WM (controls n = 24; relapsers n = 6; abstainers

n = 11) showed no difference between relapsers and abstainers.

However, compared to controls, relapsers had significant WM

reduction adjacent to the bilateral thalamus, lingual, inferior frontal,

and inferior parietal regions, as well as in the left cerebral

peduncle, midbrain, and right superior longitudinal fasciculus

(Supplementary Table 3). Also, compared to controls, abstainers had

lower WM volume in the superior longitudinal fasciculus, left

superior corona radiata, left anterior limb of internal capsule (ALIC),

right external capsule, sagittal stratum and regions adjacent to the left
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putamen and bilateral frontal regions. NoWM volume reduction was

found in controls compared to abstainers (Supplementary Table 3).

3.2.4. Cross-sectional WM analyses at follow-up
At FU, the comparison between the reachable controls and all

AUD patients (controls n = 6; AUDs n = 17) revealed no significant

regional WM volume differences, and none were found between

subgroups (Supplementary Table 3).

The cross-sectional analysis results are maintained after control

by tobacco consumption (pack/year).

3.2.5. CSF at both BL and FU
AUD patients had significantly more CSF than controls at both

BL and FU (BL: RvC Z = 2.70; p = 0.007; AvC Z = 2.79; p = 0.005;

RvA Z= 0.45; p = 0.65; FU: RvC Z= 2.80; p = 0.005; AvC Z= 1.66;

p < 0.1; RvA Z= 0.75; p= 0.45).

3.2.6. Longitudinal gray matter analysis
For relapsers vs. abstainers, significant time (BL and FU) x group

interactions were found in the frontal cortex bilaterally: middle

frontal gyrus (BA 9, BA 10, and BA 46), inferior frontal gyrus, pars

opercularis (BA 44), and the left precuneus. Other significant clusters

include the bilateral middle cingulate (BA 24 and BA 32) (see Table 3,

Figure 2A).

GM volume decreased in relapsers over the course of 7 years in

all listed regions, while abstainers displayed GM volume increase. An

example is given for the middle frontal region in Figure 2B.

For controls vs. relapsers, significant time (BL and FU) x group

interactions were found in the pars triangularis of the inferior frontal

gyrus bilaterally. Post-hoc analyses indicated that relapsers had lost

GMvolume in this region while it had increased in controls over time.

For controls vs. abstainers, no significant time (BL, FU) x

group interactions were found. Supplementary Table 4 reports all

time (BL and FU) x group (relapsers, abstainers, and controls) GM

volume interactions.

3.2.7. Longitudinal white matter analysis
For the relapsers vs. abstainers, significant time (BL, FU) x group

interactions were found in all parts of the corpus callosum. The

same interactions were found in left anterior limb of internal capsule,

bilateral corona radiata, external capsule, in the regions adjacent

to caudate nuclei and the cingulate gyrus (all cluster-level PFWE-

corrected≤ 0.05). Interactions were also found in the left inferior and

superior longitudinal fasciculi, inferior fronto-occipital fasciculus,

and regions adjacent to the inferior frontal gyrus, pars opercularis

(see Table 3, Figure 2C).

For all listed regions, WM volume decreased in relapsers and

increased in abstainers over the course of 7 years. An example is given

for the left ALIC region in Figure 2D.

For the controls vs. relapsers, significant time (BL, FU) x group

interactions were found in regions adjacent to the insula, as well as

in the right external capsule, right anterior corona radiata and right

ALIC (see Supplementary Table 4).

For the controls vs. abstainers, no significant time (BL, FU) x

group interactions were found. The Supplementary Table 4 reports

the time (baseline and follow-up)× group (relapsers, abstainers, and

controls) WM volume interactions.

4. Discussion

Regional tissue volume was different during long-term (7-year)

recovery in a Type A alcohol-dependent sample compared with a

control group. Yet, the final numbers of participants in each group

(primarily abstainers and relapsers and controls) were small and due

to the small patient sample, the present findings have to be considered

as exploratory. Future studies are therefore necessary to confirm these

findings in larger groups. It is however noteworthy that the finding of

larger caudate nuclei appears to dissociate specifically relapsers from

abstainers both at BL and FU. This main finding is supported by

other ones in the present study, which are in agreement with previous

literature concerning shorter follow-ups (generally up to 2 years).

In line with the literature, at BL, AUD patients relative to healthy

controls showed smaller gray matter volume in limbic structures

(hippocampus, para-hippocampus, amygdala) as well as the medial

frontal and temporal regions, the precentral gyrus, and thalamus

(12, 18, 23, 47, 48). In this same comparison, a significant decrease

in the volume of WM is extensive in the brainstem, in the cerebral

peduncle, in the anterior regions (the right internal capsule, the

superior, and anterior right corona radiata), in the cingulum middle

bilaterally and the right inferior and superior longitudinal bundle,

in the right fronto-occipital inferior bundle, and in the commissural

fibers of the corpus callosum (genu). Volume reductions were also

detected in the right superior temporal WM, the bilateral sub gyral

and middle frontal WM, in the left median and superior frontal WM,

the right parietal WM and in the left occipital WM (49–52). These

decreases in volumes of bothWM and GM correspond to the parallel

increase in the volume of CSF (12, 48, 53, 54) and further confirm

our results.

Both at BL and at FU, relapsers had larger heads of caudate nuclei

(CN) than abstainers bilaterally.

Longitudinal analyses showed recovery of normal GM volumes

in the bilateral middle and inferior frontal, left precuneus and

the bilateral mid-cingulate after long-term abstinence. Findings

pointed to potential recovery of WM volume in adjacent

regions, as well as in commissural tracts, the corona radiata

bilaterally, left ALIC, the external capsule and the left superior

and left inferior longitudinal fasciculus and the inferior fronto

occipital fasciculus.

4.1. Cross-sectional gray matter analysis:
The caudate nuclei

The finding of larger heads of CN in relapsers compared

to abstainers was bilateral and symmetrical at both BL and FU,

indicative of its robustness. The longitudinal analysis did not detect

any significant change in this region, confirming the stability over

time of the larger CN volumes in relapsers. This suggests that the

pre-existing CN volume difference at baseline might be associated

with a risk of relapse and thus could be a candidate vulnerability

factor. It is strikingly consistent with a recent IMAGEN consortium

study reporting higher GM volume in bilateral CN at age 14, as a

Frontiers in Psychiatry 07 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1067326
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Martelli et al. 10.3389/fpsyt.2023.1067326

TABLE 3 Grey Matter (GM) and White Matter (WM) longitudinal analyses: comparisons between relapsers and abstainers.

Interaction between times (BL–FU) and groups (abstainers vs. relapsers): GM longitudinal comparison

Regions BA Cluster level Peak level MNI coordinates

k p uncorr. t p uncorr x y z

R middle frontal gyrus 46 448 0.002∗ 5.55 1.43× 10−5 46 40 14

L middle frontal gyrus 10 194 0.031∗ 5.01 4.54× 10−5 −39 44 14

L inferior frontal gyrus, opercular part 44 166 0.044 5.01 4.58× 10−5 −52 20 12

L precuneus/cingulate gyrus 437 0.003∗ 4.96 5× 10−5 −4 −56 27

L precuneus/parietal lobe 4.78 7.41× 10−5 −6 −64 33

R inferior frontal gyrus, opercular part 44 227 0.021 4.89 5.9× 10−5 46 10 28

R middle frontal gyrus 9 4.52 1.31× 10−4 42 3 38

L middle cingulate/supplementary

motor aera

32 256 0.016 4.44 1.58× 10−4 −4 9 45

L middle cingulate 24 4.34 1.99× 10−4 −2 3 44

R middle cingulate 32 4.32 2.06× 10−4 8 3 46

L middle cingulate 24 4.10 3.22× 10−4 −6 −6 39

Interaction between times (BL – FU) and groups (relapsers > abstainers): GM longitudinal comparison: no significative di�erence.

Interaction between times (BL–FU) and groups (abstainers vs. relapsers): WM longitudinal comparison.

Regions Cluster level Peak level MNI coordinates

k p uncorr t p uncorr. x y z

L anterior limb of internal

capsule/caudate nuclei

2,511 2.52× 10−7∗ 6.81 1.12× 10−5∗ −18 20 8

Body of corpus callosum/sub gyral

frontal lobe

5.33 2.27× 10−5 −16 12 26

L cingulum 4, 92 5.54× 10−5 −8 21 27

L anterior corona radiata 4, 84 6.6× 10−5 −28 22 6

L external capsule 4, 53 1.30× 10−4 −28 16 6

R anterior corona radiata 1,173 1.06× 10−4∗ 5.33 2.28× 10−5 20 30 0

Genu of corpus callosum 4, 39 1.76× 10−4 12 26 0

L inferior frontal gyrus, opercular part 215 0.05 5.22 3.23× 10−5 −48 8 8

WM near R median cingulate gyrus 214 0.05 4.71 3.22× 10−4 9 −42 33

WM near R posterior cingulate gyrus 3.37 3.7× 10−4 8 −42 28

Splenium of corpus callosum 3, 28 5.24× 10−4 4 −36 16

L inferior longitudinal fasciculus and

inferior fronto occipital fasciculus

437 0.009∗ 4.64 1.02× 10−4 −44 −20 −14

L superior longitudinal

fasciculus/sub-gyral frontal lobe

280 0.03 4.56 1.22× 10−4 −32 0 28

∗Height or extend threshold <0.05 FWE corrected. The height threshold was set at p < 0.001 uncorrected and the extent threshold at p < 0.05 uncorrected; L, left; R, right. Interaction between times

(BL–FU) and groups (relapsers > abstainers): WM longitudinal comparison: no significative difference.

structural brain predictor of a larger increase in alcohol use scores

over 5 years, between age 14 and 19 (55). While both studies

used voxel-wise analyses methods over the whole-brain volume

(Supplementary Figure 2), the present findings in AUD relapsers

confirm the location of their CN findings. This is consistent with the

hypothesis that larger CNmay indirectly denote vulnerability to poor

alcohol use outcome.

Several reports below are of note to support this suggestion.

For instance, enlarged CN volume was reported in binge drinkers

(56), in cocaine dependence (57, 58) and in methamphetamine

dependence (59, 60). Moreover, only a few studies in AUD patients

report a longitudinal exploration of the CN volume, notably in

Type A alcohol-dependent subjects, and their follow-up durations

were much shorter, ranging from 3 weeks to 18 months. Among

eleven longitudinal and cross-sectional studies comparing abstinent

AUD patients vs. controls, seven did not explore the caudate nuclei

volumes (8, 19, 61–65) three did not find any significant difference

(24, 66, 67) and one reported a reduction in CN volume (68). Two

previous studies comparing AUD patients abstinent for 6 years to

controls, but without any longitudinal design, and did not find any
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FIGURE 2

Longitudinal gray matter and white matter analysis: Time by Group Interaction. (A) 2D views of GM regions showing significant time x group interaction.
The height threshold was set at p < 0.001 uncorrected and the extent threshold at p < 0.05 uncorrected. (B) Individual plots and adjusted voxel values at
baseline (boxplots in green) and at follow-up (boxplots in purple) in control, relapser and abstainer groups at the highest peak-voxel detected by the Time
by Group Interaction in GM (right middle frontal gyrus, BA 46: MNI coordinates: x = 46, y = 40, Z = 14). (C) 2D views of WM regions showing significant
time x group interaction. The height threshold was set at p < 0.001 uncorrected and the extent threshold at p < 0.05 uncorrected. (D) Individual plots and
adjusted voxel values at baseline (boxplots in yellow) and at follow- up (boxplots in blue) in control, relapser and abstainer groups at the highest
peak-voxel detected by the Time by Group Interaction in WM (Anterior Limb of Internal Capsule: MNI coordinates: x = −18 y = 20, Z = 8).

difference in CN volume either (42, 69) (see Supplementary Table 1

for a review).

Among twelve longitudinal studies comparing abstainers vs.

relapsers, one reported a tendency toward CN volume increase

in abstainers (12) at 7-months follow- up, one noted CN volume

heterogeneity (20), and five did not find any differences in CN volume

between groups (13, 14, 18, 20, 21).

The remaining studies did not explore potential differences in CN

volume (9, 11, 15, 17, 22, 26).

Critically, most of these studies used data from patients

with comorbidity (addictions and mental health disorders) (see

Supplementary Table 1). This variety of subjects contrasts with the

homogeneity of our own AUD patient sample, which might account

for the detection of higher CN volume in relapsers. The filter used

to smooth Jacobian maps could contribute to a difficulty in accurate

detection of brain matter volume differences (12). Moreover, we

can note other differences in the methodology used in the only

longitudinal report over 18-months in abstainers vs. relapsers, which

did not find any difference in CN volume, which included the manual

delineation of brain regions, with no voxel-based analysis, and a

mixed-gender sample (70).

The caudate nucleus mediates higher cognitive functions,

including the executive functions and cognitive control (71–73), and

is highly connected with the prefrontal cortex (74).

Moreover, the CN is implicated in the reward system (75, 76).

The dorsal striatum, including CN and putamen, has been strongly

linked to the development and expression of habituation behaviors

(72, 77, 78). A link was made between enlarged striatal volumes and

higher dopamine synthesis capacity, with an increase in dopamine

level in the dorsal striatum, including the caudate and putamen

(79, 80). In an fMRI study, when presented with alcohol-associated

stimuli, dependent AUD patients showed hyper-activation of the

caudate nuclei (81).

These data and the present exploratory results may suggest that

individuals who recruit more often or more strongly motivational

or reward circuits have larger CNs and are more likely to feel

alcohol craving and thus relapse. Replication of our findings in a

larger sample could allow further confirmation of this potential risk

factor for alcohol consumption relapse. Therefore, supplementary

investigations are needed to test the hypothesis of an enlargement of

the CN, as an appetitive region, and a risk factor of relapse through

automatic behavior.
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4.2. Cortical gray matter longitudinal analysis

In line with the literature and with our hypotheses, abstainers

compared to relapsers showed an increase in GM volume in a

number of frontal regions, including the bilateral middle (BA 9, BA

10, and BA 46) and inferior (BA 44) frontal cortex, left precuneus

and bilateral mid-cingulate (BA 24, 32). Consistently, previous

longitudinal comparisons among abstainers and relapsers mentioned

similar results, with a frontal GM volume increase already detected

after 4 weeks of abstinence (22). After 3 months (15), then 8 months

of abstinence (12), GM volume recovery was reported in the cingulate

cortex. After 12 months of abstinence, a GM volume increase was

also detected in various frontal regions in abstainers, in the superior

frontal gyrus and orbitofrontal cortex (14–16), middle frontal cortex

(16), middle and anterior frontal cortices (12), anterior mesial and

prefrontal cortices (9), dorsolateral frontal cortex (13), and inferior

frontal cortex (26).

We can also note that the consistency of the present findings with

the previous literature supports that such volumetric changes can be

detected using longitudinal voxel- and pair- wise methods in small

and homogeneous groups of abstainers and relapsers followed-up

during a longer time.

Herein, no longitudinal difference was detected between

abstainers and controls in GM volume. This may indicate a recovery

of the cortical GM volume. Previous longitudinal studies comparing

AUD patients and controls found smaller volumes in the medial

frontal and lateral prefrontal cortices (66). After 7 months of

abstinence, a volume increase was reported in the dorsolateral and

orbitofrontal cortices (65).

Overall, our results are mostly in line with the literature, showing

general frontal hypovolumetry in relapsers compared to abstainers,

the latter having possibly recovered GM volumes at long-term

(7 years).

4.3. White matter longitudinal analysis

In line with the literature and with our hypotheses, relapsers

compared to abstainers showed a widespread WM volume increase

along with long-term abstinence in the cingulum, inferior frontal

and temporal regions and adjacent to the bilateral CN. WM

volume increase was also detected in the commissural tracts (genu,

body and splenium of the corpus callosum), the corona radiata

bilaterally, left ALIC, the external capsule and the left superior and

left inferior longitudinal fasciculi, and finally the inferior fronto

occipital fasciculus.

This is in line with previous longitudinal reports stating that

relapsers compared to abstainers have smaller WM volume after 24

months (11), after 13 months (9) and after as early as 8 months of

abstinence, in the brainstem, corpus callosum, cerebellum, bilateral

temporal, anterior, and middle frontal WM connected to the bilateral

orbitofrontal cortex (12), and in the WM in close proximity to the

right frontal cortex and adjacent to anterior cingulate (14). Thus,WM

volume starts to increase in a linear manner in AUD patients after at

least 7.5 months of abstinence (20, 21) and the present results support

that this effect remains on the long-term.

No significant difference in WM volume was found, after 7

6? years, between controls and abstainers, in line with reports of

recovered WM assessed by Diffusion Tensor Imaging (20, 21) in

abstainers, although with shorter abstinence duration.

On a speculative note, we provide evidence of volume recovery

with abstinence in cortical regions and WM, while volumes in

appetitive (sub-cortical CN) regions did not vary. Imbalance between

the “appetitive” network including the CN, and the “executive”

network including the cingulate and prefrontal cortex (82), might

therefore lead to a failure to optimize the regulation of relevant

functions (follow-up of recent actions, anticipation of results and

action choice) that could a fortiori increase vulnerability to relapse.

4.4. Limitations

Due to our stringent exclusion criteria and the rigorous quality

control processes, eligible patient profiles (only male Caucasian

subjects, characterized by good social functioning, and preserved

executive functions) were rare in a hospital setting. As we included

subjects with Babor’s Type A alcohol addiction, our results cannot be

generalized to all AUD patients. Our sample was homogeneous but

small, making our findings mostly exploratory and further studies are

needed to extend our results to all alcohol-dependent patients.

Indeed, from the 26 patients and 24 controls recruited at baseline,

we were only able to re-include 17 patients and 6 controls at follow-

up. Most control participants were difficult to reach and were lost

at follow-up due to the long duration of the study. This could

explain that we did not find any difference between groups in the

cross-sectional analysis, at follow-up.

As we already mentioned, many participants were lost at follow-

up due to the long duration of the study but also to technical

difficulties (cf Flow chart in Supplementary Figure 1). Consequently,

our small sample limited our possibilities to highlight correlations

between neuroimaging and neuropsychology.

A technical limitation in long-term longitudinal studies is linked

to evolving MRI methods. At baseline, and then at follow-up, we had

access to a 1.5 Tesla MRI, but, at follow-up, the acquisition settings

had been slightly updated twice. However, the same machine was

used for both evaluations. We could have used another MRI machine

at high field strengths at follow-up, but this would have created

another bias.

Further studies should continue to investigate other typologies

of alcohol-dependence, such as Type B alcoholism, which is often

associated with family history of alcoholism and related genetic

data (BDNF gene). Some studies showed that among AUD patients

and after 7 months of abstinence, BDNF gene Val/Val homozygotes

displayed an increase in hippocampal volume compared to Val/Met

heterozygotes (19). Another study showed a caudate nuclei volume

decrease among Val/Val after 5 weeks of abstinence, but not among

Val/Met (68). Mon et al. (68), showed that caudate nuclei volume

recovery in abstinent Type A alcohol-dependent individuals was

dependent on BDNF genotype. Indeed, among 41 middle-aged

alcohol-dependent subjects (including 5 women), who started their

heavy drinking around 27 years old and without biomedical or

psychiatric disorders, Val/Val genotype patients had a caudate nuclei

volume decrease after 5 weeks of abstinence, whereas Val/Met did

not. The BDNF Val66Met (rs6265) polymorphism was significantly

related to the recovery of regional GM tissue volumes within the

first 5 weeks of sobriety, suggesting genetic influences on brain tissue

changes during abstinence from alcohol in this Type A alcohol-

dependent cohort. The BDNF is associated with neuronal survival,

neuronal growth and synaptic plasticity in the adult brain (83). The
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allelic association of the A1 allele of the DRD2 gene with alcohol-

dependence was found in males but not in females. This discrepancy

could be explained by the gender difference in dopamine D2-like

receptor affinity and levels (84). Moreover, it has been shown that the

presence of this A1 allele of the DRD2 gene is correlated with a lower

density of the D2 receptor in the striatum, including the caudate

nucleus (85).

Overall, these results suggest that caudate volume in males with

type A alcoholism could be associated with BDNF genotype. In our

study, we did not perform genetic analyses due to our small sample

and due to the scarcity of genetic assays.

5. Conclusions

The present findings raise the hypothesis of higher caudate

GM volume to be a candidate risk factor of relapse. In patients

with specific type A alcohol-dependence, we showed that long-

term recovery in fronto-striato-limbic GM and WM volumes occurs

during long-term abstinence. These results support the crucial role of

frontal circuitry in AUD.
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