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Background and aims: Depression often triggers addictive behaviors such as

Internet addiction. In this network analysis study, we assessed the association

between Internet addiction and residual depressive symptoms in patients

suffering from clinically stable recurrent depressive disorder (depression

hereafter).

Materials and methods: In total, 1,267 depressed patients were included.

Internet addiction and residual depressive symptoms were measured using the

Internet Addiction Test (IAT) and the two-item Patient Health Questionnaire

(PHQ-2), respectively. Central symptoms and bridge symptoms were

identified via centrality indices. Network stability was examined using the

case-dropping procedure.

Results: The prevalence of IA within this sample was 27.2% (95% CI: 24.7–

29.6%) based on the IAT cutoff of 50. IAT15 (“Preoccupation with the Internet”),

IAT13 (“Snap or act annoyed if bothered without being online”) and IAT2

(“Neglect chores to spend more time online”) were the most central nodes

in the network model. Additionally, bridge symptoms included the node

PHQ1 (“Anhedonia”), followed by PHQ2 (“Sad mood”) and IAT3 (“Prefer the

excitement online to the time with others”). There was no gender difference

in the network structure.
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Conclusion: Both key central and bridge symptoms found in the

network analysis could be potentially targeted in prevention and treatment

for depressed patients with comorbid Internet addiction and residual

depressive symptoms.

KEYWORDS

major depressive disorder, internet addiction, residential depressive symptoms,
network analysis, central symptoms

Introduction

Recurrent depressive disorder (depression hereafter) is a
major mental disorder (1, 2) that is associated with elevated
risk of having comorbid addictive behaviors such as Internet
addiction (IA) (3, 4). Persons with IA are defined as those who
cannot control their Internet use and typically present several
features including excessive Internet use, withdrawal symptoms,
tolerance, and negative social repercussions (5).

Relations between addiction behaviors and depression
appear to be bidirectional (6, 7). On one hand, depression may
trigger addictive behaviors (8, 9). For example, preliminary
evidence shows that addictive behaviors may alleviate certain
depressive symptoms such as low mood (10), though,
unfortunately depression contributes to an increased likelihood
of problematic Internet use and IA (11–13). Conversely,
excessive Internet use may also increase risk of depression (14).
In addition, depression and IA share a common biological
mechanism involving the 5HTTLRP gene (15, 16). Consistent
with these lines of evidence, research on comorbidity has
estimated the prevalence of comorbid IA in depressed patients
is up to 58.6% (8, 9).

The COVID-19 pandemic and related challenges, such
as social isolation and economic recession, are associated
with increased risk of mental health problems (17) including
depression and IA (18, 19). The pandemic has had a negative
impact on health services in many countries including China.
To elaborate, reduced medical service in tandem with strict
public health measures (e.g., lockdowns) interfere with the
capacity for clinically stable patients with psychiatric disorders
including depression to attend regular check-ups and pursue
routine physical exercise or social activity, hence increasing risk
for psychiatric comorbidities including problematic Internet use
and IA (20, 21).

In light of their frequent co-occurrence, it is essential
to understand the association between IA and depression so
that the risk of negative outcomes caused by IA in depressed
patients including suicidal ideation (22); lowered well-being and
poor academic performance (23, 24) can be reduced. However,
to date, most associated studies have relied on analyses of
relations between total scores on measures of depression and

IA. Such approaches may overlook nuances in links between
individual symptoms of these disorders and are counter to
alternative perspectives that conceptualize psychiatric disorders
as phenomena that arise as complex networks of mutually
reinforcing symptoms (25, 26).

To address these concerns, network analysis offers a
new statistical approach to conceptualizing and estimating
interactions between various symptoms of psychiatric disorders
(25). Network analysis can identify influential (central)
symptoms within an entire symptom network (27, 28). Central
symptoms may point to key mechanisms involved in triggering
particular psychiatric disorders. Hence, treating these symptoms
is associated with more effective outcomes (26). For example, a
previous study on IA among Japanese adolescents with autism
based on network analysis found that both concealment of
Internet use and defensive and secretive behaviors were central
symptoms (29). However, previous studies focused exclusively
upon adolescents with IA or problematic smartphone use.
Although network analyses can also examine comorbidities
between psychiatric disorders/problems (30), to date, no
published network studies have evaluated relations between IA
and depressive symptoms among depressed patients.

To address this gap, the network structure of IA and
residential depressive symptoms (RDS) was examined among
clinically stabilized patients with depression.

Materials and methods

Participants

This study was part of a large-scale project on mental
health status of clinically stable patients with depression
during the COVID-19 pandemic conducted in outpatient
departments of six tertiary psychiatric hospitals (31). Similar to
other studies (32–35), the “Wenjuanxing” program embedded
in the WeChat application was administered in this study.
All outpatients treated in the participating hospitals were
consecutively invited to complete this survey within the study
period. Inclusion criteria were: (1) 18 years or older and (2) a
diagnosis of recurrent depressive disorder based on the ICD-10
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(36). Institutional Review Board (IRBs) of respective hospitals
approved the study protocol, and all participants signed the
online electronic informed consent.

Measurements

A data collection form designed for this study was used to
collect information on socio-demographic characteristics. The
self-report Internet Addiction Test (IAT) (37, 38) was used to
measure IA. The IAT consists of 20 items, each scored on a
frequency scale from “1” (rarely) to “5” (always). The Chinese
version of the IAT has been validated with good psychometric
properties, including a Cronbach’s alpha of α = 0.90 (37). The
two items-Patient Health Questionnaire (PHQ-2) (39, 40) was
used to measure residual depressive symptoms (RDS); each item
was scored for frequency of occurrence from “0” (not at all) to
“3” (almost every day). Psychometric properties of the Chinese
version of the PHQ-2 have been found to be satisfactory,
including a Cronbach’s alpha of α = 0.76 (40).

Analytical procedure

Network structure
R software (41) was used to examine comorbidity of IA and

RDS network symptoms. We computed polychoric correlations
among all IAT and PHQ-2 items to assess the network edges.
We also estimated the Graphical Gaussian Model (GGM) using
R package “qgraph” (42), with GGM as a pairwise Markov
random field (PMRF) model used for interval or ordinal data.
Edges in the GGM reflect partial correlation coefficients, with
thicker edges representing stronger relations between nodes.
We estimated centrality indices of nodes to determine which
symptoms were more influential (central) in the network
(43). To further assess accuracy of centrality indexes, the
bootstrap method was used to examine the stability of central
index strength based on correlation stability coefficients (CS-
coefficient). We set the CS-coefficient cutoff at 0.25 for all
indexes because evidence indicates CS-coefficients are typically
below 0.25 when centralities do not differ from one another (42).

In addition, we estimated bridge symptoms with the bridge
function of R package “networktools” (44, 45). Following a
previous study (30), bridge strength is the widely used index
to examine symptoms that may stop activation spread between
different psychiatric disorders/syndromes.

The relationship between network model and
genders

An earlier study have found gender had a significant role
on both depression and IA (46). Similar to other network
analyses (47, 48), gender differences of network characteristics
were examined with the R “NetworkComparisonTest”

package (Version 2.2.1) (49). Gender differences in
network structure, global strength and each specific edge
were also examined.

Results

Study sample

In total, 1,298 patients were screened; 1,267 (97.6%) fulfilled
the inclusion criteria and were included for analyses. Of these,
367 (29.0%) were men, 509 (40.2%) were married, and 1,006
(79.4%) had senior high school education or higher. The mean
IAT score was 40.85 [standard deviation (SD) = 16.21] and
prevalence of IA within this sample 27.2% (95% CI: 24.7–29.6%)
based on the IAT cutoff of 50 (Table 1).

Network structure

The mean predictability was 0.50 in the network model
(Figure 1), which indicates that, on average, 50% of the variance
in each node could be explained by nodes in the model. The
network analysis indicated the connection between node PHQ1
(“Anhedonia”) and PHQ2 (“Sad mood”) was the strongest
positive edge in the RDS community. In the IA community, the
connection between IAT3 (“Prefer excitement online to the time
with others”) and IAT19 (“Spend more time online over going
out with others”) was the strongest positive edge, followed by
edges between IAT16 (“Request an extension for longer time
spent online”) and IAT17 (“Failure to cut down time spent
online”) and between IAT6 (“Careers suffer due to Internet use”)
and node IAT8 (“Check email/SNS before doing things”). In
the RDS and IA network model, the connection between nodes
PHQ1 (“Anhedonia”) and IAT3 (“Prefer excitement online
to the time with others”) (average edge weight = 0.07) had
the strongest positive edge, followed by connections between
PHQ2 (“Sad mood”) and IAT6 (“Careers suffer due to Internet
use”) (average edge weight = 0.02454), and between PHQ2
(“Sad mood”) and IAT14 (“Sleep loss due to late-night logins”)

TABLE 1 Sample characteristics (n = 1,267).

Variables

N (%)

Male gender 367 (29.0)

Married 509 (40.2)

Senior high school and above 1,006 (79.4)

Mean (SD)

Age(year) 32.2 (15.2)

IAT score 40.85 (16.21)

SD, standard deviation; IAT, internet addiction test.
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FIGURE 1

Network of residual depressive symptoms and internet addiction.

(average edge weight = 0.02345) (Figure 1 and Supplementary
Tables 1, 2).

Node IAT15 (“Preoccupation with the Internet”) had
the highest strength, followed by nodes IAT13 (“Snap or
act annoyed if bothered without being online”) and IAT2
(“Neglect chores to spend more time online”) within the
network (Figure 2), suggesting that these symptoms are most
central for the association between RDS and IA in clinically
stable depressed patients (Figure 2). In terms of bridge
centrality, PHQ1 (“Anhedonia”) was the key bridge symptom
linking RDS and IA, followed by PHQ2 (“Sad mood”) and
IAT3 (“Prefer excitement online to the time with others”)
(Figure 3).

Regarding network stability, centrality index strength had
excellent stability with a CS-coefficient of 0.75, indicating
that 75% of the sample could be dropped and the structure
of the network would not change significantly (Figure 4).
Supplementary Figure 1 shows that the bootstrapped 95%
CIs for estimated edge weights were relatively narrow. The
bootstrap difference test indicated most comparisons between
edge weights were statistically significant (Supplementary
Figure 1).

The confounding effects of basic
demographic data on internet
addiction and residential depressive
symptoms

Previous studies (50, 51) found that gender, age, marital
status and education level had significant associations with IA in
depressed patients. Following previous studies (52, 53), IA and
RDS network models and structure indexes were re-calculated
after controlling for age, marital status, gender, and education
level. No significant structure change was found compared to
the original network, after controlling for these factors (strength:
rs = 0.89 [0.80; 0.96]) (Supplementary Figure 2).

Gender differences in the observed
network model

No significant gender difference was identified in terms of
network global strength (network strength: 9.84 for men; 10.15
for women; S = 0.31, p = 0.131), and edge weights (M = 0.16,
p = 0.639; Supplementary Figures 3–5).
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FIGURE 2

Centrality indices of network. PHQ-1: Anhedonia; PHQ-2: Sad
Mood; IAT-1: Stay online longer; IAT-1: Stay online longer than
you intend; IAT-2: Neglect chores to spend more time online;
IAT-3: Prefer the excitement online to the time with others;
IAT-4: Form new relationship with online users; IAT-5: Others
complain about your time spend online; IAT-6: School grades
suffer due to Internet use; IAT-7: Academic efficiency declines
due to internet use; IAT-8: Check email/SNS before doing things
you need to do; IAT-9: Become defensive/secretive Internet use;
IAT-10: Sooth disturbing thoughts using the Internet; IAT-11:
Anticipation for future online activities; IAT-12: Fear that life is
boring and empty without the Internet; IAT-13: Snap or act
annoyed if bothered without being online; IAT-14: Sleep loss due
to late-night logins; IAT-15: Preoccupation with the Internet;
IAT-16: Request an extension for longer time; IAT-17: Failure to
cut down the time spend online; IAT-18: Conceal the amount of
time spend online; IAT-19: Spend more time online over going
out with others; IAT-20: Depress/moody/nervous being offline.

Discussion

This was the first study to investigate relations of IA
and RDS in a large sample of patients with depression from
the perspective of network analysis. IAT15 (“Preoccupation
with the Internet”), IAT13 (“Snap or act annoyed if bothered
without being online”) and IAT2 (“Neglect chores to spend
more time online”) were the most influential symptoms in
the IA-RDS network model. Furthermore, bridge symptoms
included PHQ1 (“Anhedonia”), PHQ2 (“Sad mood”) and IAT3

FIGURE 3

Bridge centrality indices of network. PHQ-1: Anhedonia; PHQ-2:
Sad Mood; IAT-1: Stay online longer than you intend; IAT-2:
Neglect chores to spend more time online; IAT-3: Prefer the
excitement online to the time with others; IAT-4: Form new
relationship with online users; IAT-5: Others complain about
your time spend online; IAT-6: School grades suffer due to
Internet use; IAT-7: Academic efficiency declines due to internet
use; IAT-8: Check email/SNS before doing things you need to
do; IAT-9: Become defensive/secretive Internet use; IAT-10:
Sooth disturbing thoughts using the Internet; IAT-11:
Anticipation for future online activities; IAT-12: Fear that life is
boring and empty without the Internet; IAT-13: Snap or act
annoyed if bothered without being online; IAT-14: Sleep loss due
to late-night logins; IAT-15: Preoccupation with the Internet;
IAT-16: Request an extension for longer time; IAT-17: Failure to
cut down the time spend online; IAT-18: Conceal the amount of
time spend online; IAT-19: Spend more time online over going
out with others; IAT-20: Depress/moody/nervous being offline.

(“Prefer excitement online to the time with others”). Potential
implications are discussed below.

Analyses identified node IAT15 (“Preoccupation with the
Internet”) as the most influential symptom, which is consistent
with proposed diagnostic criteria for IA in previous studies (54).
Patients with IA often report initial experiences of increased
preoccupation with the Internet; those with IA often think about
Internet use when they are offline and fantasize about surfing the
Internet even when they are attempting to concentrate on other
tasks (55). Previous studies found that premorbid personality
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FIGURE 4

Stability of network structure by case dropping subset bootstrap. The x-axis represents the percentage of cases of the original sample used at
each step. The y-axis represents the average of correlations between the centrality indices in the original network and the centrality indices
from the re-estimated networks after excluding increasing percentages of cases. The lines indicate the correlations between strength and
bridge strength.

and cognitive dysfunctions are closely associated with increased
risk for excessive Internet use and IA (56). Depressed patients
with cognitive dysfunction may have difficulty exercising
inhibitory control over Internet use (57, 58). Therefore, relevant
treatments could target cognitive dysfunction as a means to
improving impulse control and preoccupation with the Internet
for depressed patients with comorbid IA.

Node IAT13 (“Snap or act annoyed if bothered without
being online”) was also a central symptom within the IA-
RDS network in clinically stable patients with depression.
Depressed patients often become socially withdrawn and/or
find interpersonal contacts to be overwhelming (59); hence
for some of them, the Internet may provide an alternative,
less burdensome means of experiencing social contact (60).
However, it should be noted that IA and depression both have
negative interpersonal effects, that could, in turn, perpetuate
each of these problems (61). Another central symptom in
the IA-RDS model was node IAT2 (“Neglect chores to spend
more time online”), that aligns with commonly used IA criteria

related to continued excessive use and loss of control of the
Internet to the neglect of other responsibilities (62, 63). Our
findings also converge with previous network analysis findings
on problematic smartphone use in Chinese adolescents (64)
and evidence that excessive screen time may trigger IA (65).
In tandem with these data, one hypothesis that follows from
this finding is that control processes are a critical influence on
the prevention and treatment of IA in clinically stable patients
with depression. It follows that efforts to reduce screen time
and strengthen self-control may be useful targets in treating and
preventing IA in patients with depression.

PHQ1 (“Anhedonia”), PHQ2 (“Sad mood”), and IAT3
(“Prefer the excitement online to the time with others”)
were the key bridge nodes linking IA and RDS communities.
These results dovetail with previous findings (66, 67) linking
anhedonia and sad mood (i.e., diminished pleasure in normally
enjoyable activities) to the etiology of IA. Specifically, anhedonia
and sad mood are associated with lowered reward sensitivity
and reduced ventral striatum responsivity to pleasant or
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beneficial stimuli (66–71). Furthermore, anhedonia has been
found to predict increased risk for compulsive Internet use
and addiction (72). Conversely, IA is related to lowered reward
sensitivity, possibly due, in part, to reduced reward-related
subcortical system activity (66, 73). In addition, misuse of the
Internet, characterized by excessive time spent online, has been
implicated as an influence on increased risk for depression
(74–76).

Internet addiction-residual depressive symptoms network
model results have potentially important implications for
clinical practice in treating and preventing comorbid IA and
depression. For instance, cognitive behavioral therapy (CBT)
targeting central and/or bridge symptoms in this network
through behavioral activation and cognitive restructuring may
have utility in treating comorbidity in this population (57,
58). For patients with depression, psychosocial interventions
targeting anhedonia may be helpful to prevent and treat
comorbid IA (72). Alternately, a recent review concluded
that most antidepressants have beneficial effects in reducing
anhedonia (77). Strategies used to reduce symptoms related
to sad mood and lack of pleasure and interest may have
corresponding benefits in reducing IA symptoms when
excessive internet use is a source for excitement.

Advantages of this study included use of network
analysis, a multicenter study design and a large sample
size. However, certain limitations need to be noted. First,
causality between variables cannot be inferred because of
the cross-sectional study design. Second, this study was
conducted among clinically stable patients with depression,
a focus that limits generalizability of findings to depressed
patients in other stages (e.g., initial onsets). Third, the study
did not assess all depressive symptoms or comorbidities
that may have influenced the observed network model
to some extent. To elaborate, although an impressive
50% of the variance in each node could be explained by
neighboring nodes, substantial remaining variance in IA-
RDS model was not accounted for by measured variables.
Fourth, confounding effects of basic demographic data on
IA and RDS were statistically controlled for in the network
analysis. For logistical reasons, however, certain disease-
related factors linked to psychiatric comorbidities, such
as use of psychotropic medications, were not recorded.
Consequently, unmeasured variables associated with IA
and RDS such as other depressive symptoms (e.g., lack
of energy, impaired concentration, inappropriate guilt),
suicidality, poor sleep quality, severity of depression and
other psychiatric comorbidities (e.g., anxiety disorders)
(58, 78–80) should be considered in extensions of
the current work.

In conclusion, this study identified preoccupation with
the Internet, neglect chores to spend more time online,
and requests for extensions to spend more time online as
the most central nodes and Anhedonia, Sad mood, and

Prefer excitement online to the time with others as key
bridge nodes in an IA-RDS network model of clinically
stable patients with depression. With the help of certain
applications targeting Internet use [e.g., tools that help to
block or limit amounts of time and access to the Internet,
social media or gaming websites (81, 82)] and interventions to
reduce emotional distress, clinically stable depressed patients
could reduce their risk for IA (83). Additionally, family
members and guardians should also help patients control
use of internet activities and reduce the negative influence
of unsafe and unhealthy information from the Internet
(84, 85).
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