
TYPE Hypothesis and Theory

PUBLISHED 25 November 2022

DOI 10.3389/fpsyt.2022.985713

OPEN ACCESS

EDITED BY

Je�rey C. Glennon,

University College Dublin, Ireland

REVIEWED BY

Shiro Suda,

Jichi Medical University, Japan

Lane Strathearn,

The University of Iowa, United States

*CORRESPONDENCE

Colleen O’Ryan

colleen.oryan@uct.ac.za

SPECIALTY SECTION

This article was submitted to

Autism,

a section of the journal

Frontiers in Psychiatry

RECEIVED 04 July 2022

ACCEPTED 07 November 2022

PUBLISHED 25 November 2022

CITATION

Mahony C and O’Ryan C (2022) A

molecular framework for autistic

experiences: Mitochondrial allostatic

load as a mediator between autism

and psychopathology.

Front. Psychiatry 13:985713.

doi: 10.3389/fpsyt.2022.985713

COPYRIGHT

© 2022 Mahony and O’Ryan. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A molecular framework for
autistic experiences:
Mitochondrial allostatic load as
a mediator between autism and
psychopathology

Caitlyn Mahony and Colleen O’Ryan*

Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa

Molecular autism research is evolving toward a biopsychosocial framework

that is more informed by autistic experiences. In this context, research

aims are moving away from correcting external autistic behaviors and

toward alleviating internal distress. Autism Spectrum Conditions (ASCs) are

associated with high rates of depression, suicidality and other comorbid

psychopathologies, but this relationship is poorly understood. Here, we

integrate emerging characterizations of internal autistic experiences within a

molecular framework to yield insight into the prevalence of psychopathology

in ASC. We demonstrate that descriptions of social camouflaging and autistic

burnout resonate closely with the accepted definitions for early life stress (ELS)

and chronic adolescent stress (CAS). We propose that social camouflaging

could be considered a distinct form of CAS that contributes to allostatic

overload, culminating in a pathophysiological state that is experienced as

autistic burnout. Autistic burnout is thought to contribute to psychopathology

via psychological and physiological mechanisms, but these remain largely

unexplored by molecular researchers. Building on converging fields in

molecular neuroscience, we discuss the substantial evidence implicating

mitochondrial dysfunction in ASC to propose a novel role for mitochondrial

allostatic load in the relationship between autism and psychopathology.

An interplay between mitochondrial, neuroimmune and neuroendocrine

signaling is increasingly implicated in stress-related psychopathologies, and

these molecular players are also associated with neurodevelopmental,

neurophysiological and neurochemical aspects of ASC. Together, this suggests

an increased exposure and underlying molecular susceptibility to ELS that

increases the risk of psychopathology in ASC. This article describes an

integrative framework shaped by autistic experiences that highlights novel

avenues for molecular research into mechanisms that directly a�ect the

quality of life and wellbeing of autistic individuals. Moreover, this framework

emphasizes the need for increased access to diagnoses, accommodations, and

resources to improve mental health outcomes in autism.
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GRAPHICAL ABSTRACT

Introduction

Research into autism spectrum conditions (ASCs) spans

disparate psychosocial and biomedical disciplines that

traditionally work in isolation. However, the complex and

rapidly evolving sociological context of autism research calls

for a more integrative approach. Psychosocial and clinical

conceptualizations of ASC fundamentally define the parameters

of molecular autism research. Therefore, it is essential to

integrate evolving understandings of autistic experiences within

a molecular framework. Historically, ASC has been defined

by the external perceptions of neurotypical observers rather

than an understanding of internal autistic experiences (1).

This has manifested as an over-reliance on the medical model

of disability in autism research, which was often rooted in

the pathologization of ASC-associated behaviors. With the

increasing incorporation of inclusive participatory research

practices, the field is progressing toward a more comprehensive

integration of the biopsychosocial disability model (2, 3). This

interdisciplinary model recognizes that while the biological

(4–7) and behavioral (8–11) differences associated with ASC

present challenges to independent functioning, the inability

to function within a societal framework that accommodates

only one neurotype is not indicative of an underlying biological

deficit (12, 13). Congruent with this, psychosocial research is

shifting its focus to improving quality of life and minimizing

internal distress, rather than eradicating or correcting autistic

behaviors (14).

However, this paradigm shift is yet to be fully integrated

into the medical and molecular fields of autism research,

since these disciplines require unambiguous definitions of

disease, reductionist animal and cell culture models, and

highly specific questions with limited scope. The challenges of

biomedical research are already compounded by the etiological

heterogeneity of ASC (15, 16) and the limitations of its

conceptualization in diagnostic texts (1, 17). These limitations

are increasingly well-recognized in clinical settings, especially

with respect to the questionable reliability of autism assessments

in females and people of color across varied sociocultural

settings (18–25). Yet, molecular studies require deeply-

phenotyped cohorts characterized according to standardized

diagnostic criteria in order to accurately distinguish between

complex molecular signatures (26). In this context, an over-

reliance on an antiquated deficits-based disability model is

often unavoidable. Moreover, biomedical research often relies

on limited measurements of behavior and flawed indicators

of functioning. The efficacy of an intervention is frequently

measured by a decrease in ASC diagnostic criteria, but it

is becoming clear that this is not a good indicator of

health, wellbeing or quality of life for autistic individuals. In

fact, the chronic suppression of autistic traits contributes to

anxiety, depression, burnout, a diminished quality of life and
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poor mental health in ASC (27–30). It is now recognized

that therapeutic interventions should prioritize physical and

psychological wellbeing, which may indeed manifest differently

in different neurotypes. Of course, the association between

internal distress and the external presentation of autistic

behaviors will reflect the variability that is inherent to all facets

of ASC etiology. Molecular interventions that target behavioral

or biological differences may potentially improve health or

wellbeing. Still, it should be acknowledged that much biomedical

research has sought to decrease the “autism phenotype” without

recognizing that this is not synonymous with an enhanced

quality of life.

Nevertheless, molecular research has demonstrated

potential to be relevant, useful and transformative for the

autistic community. Genetic insight into the heritability of

ASC has been instrumental in improving access to early

diagnoses, and shifting blame away from caregivers or autistic

individuals themselves for their differences. Moreover, an

understanding of molecular ASC etiology has been used to

mitigate common comorbidities that reduce quality of life.

For example, molecular therapies have been developed to treat

tumors and epilepsy in individuals with a monogenic form of

autism called tuberous sclerosis (31). Concurrently, clinicians

are still struggling with existing diagnostic guidelines that do

not easily distinguish between ASC and co-morbidities, or

reflect the heterogeneity in autism presentations, internal lived

experiences or underlying biological processes. In conjunction

with other psychosocial models, molecular research could

be a useful tool to improve the resolution, specificity and

utility of diagnostic labels. Ultimately, this could lead to

a better understanding of individual autism presentations,

their specific challenges, and relevant accommodations.

Therefore, it is essential that molecular researchers grapple

with the task of integrating the rigor of scientific experimental

design and evolving understandings of autism within a

biopsychosocial framework.

Importantly, an interdisciplinary approach could also yield

novel mechanistic insights into molecular ASC etiology. Many

promising findings from in vitro and in vivo molecular studies

have failed to translate into reproducible results in human

clinical trials (16, 32–36). This has largely been attributed to the

complex interplay among genetic, epigenetic and environmental

mechanisms in ASC. However, molecular research is also

inherently reductionist and grounded in a one-dimensional

understanding of ASC that is removed from the internal

experience of autism. This could be a prevailing limitation that

hinders the translatability of molecular research in a clinical and

sociological context (1). Consequently, an integrative approach

is needed to highlight the convergence between different

scientific disciplines involved in autism research. In particular,

this approach could provide crucial insight into the cellular

mechanisms at the intersection of environmental stressors and

biological processes that directly impact quality of life.

Here, we integrate recent characterizations of internal

autistic experiences within a molecular framework to

yield insight into psychopathology and suicidality in ASC.

Interactions between psychosocial stress, ASC physiology and

allostatic load have previously been proposed to influence

clinical outcomes in autism (37–39). Singletary (37) proposed

that autistic children are exposed to significant stress that could

disrupt social and cognitive development during the early

post-natal period. Thus, he suggested that interactions between

early life stress (ELS), underlying physiology and allostatic

overload may contribute to ASC presentations (37). More

recently, Scarpa et al. (38) developed a biosocial vulnerability

model which suggests that ASC neurophysiology mediates a

predisposition to pathological trauma responses. However, this

model remains understudied by molecular researchers.

In this article, we assimilate the emerging definitions

for social camouflaging and autistic burnout with recent

insights into the biological mechanisms that mediate the

stress response. Previous authors focused on the relationship

between ELS and the manifestation of autistic traits. However,

we consider the putative role of ELS in mediating the

relationship between ASC and psychopathology from a

molecular perspective. Consequently, we propose an increased

risk of exposure to, and an underlying molecular susceptibility

to, ELS and Chronic Adolescent Stress (CAS) in ASC. Both

ELS and CAS are known to contribute to psychopathology

and a molecular interplay between mitochondrial allostatic

load (MAL), the Hypothalamic-Pituitary-Adrenal (HPA)

axis, and neuroinflammation is increasingly implicated in

this association (40). Notably, mitochondrial dysfunction

and neuroinflammation are widely documented molecular

signatures in ASC, and each are known to regulate HPA axis

signaling. Moreover, these signaling pathways converge on

neurodevelopmental, neurophysiological and neurochemical

processes that are disrupted in response to ELS and may be

involved in the etiology of both ASC and psychopathology. This

article describes an integrative framework shaped by autistic

experiences that demonstrates how psychosocial and biological

factors converge to increase the risk of psychopathology. This

framework emphasizes the need to improve access to diagnoses,

accommodations, and resources to mitigate poor mental health

outcomes in autism. Moreover, this highlights novel avenues

for future research into molecular mechanisms that affect the

health and wellbeing of autistic individuals.

Psychopathology and suicidality in
ASC: The role of social camouflaging
and autistic burnout

ASC is associated with a high prevalence of comorbid

psychopathologies that substantially impair functioning and

decrease quality of life (41–43). In particular, the rates of
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generalized anxiety disorder (GAD), major depressive disorder

(MDD), post-traumatic stress disorder (PTSD), self-harm, and

suicidal ideation are significantly increased in ASC (30, 44, 45).

It was recently reported that autistic children between 10 and 13

years old were six times more likely to reach clinically significant

thresholds for measures of depression (46), indicating an earlier

onset of MDD in ASC. Moreover, three measures of suicidality

are more than twice as high in autistic individuals compared

to the general population—including the rates of suicide risk,

suicide attempts, and mortality by self-harm and suicide (43,

44, 47, 48). Compounding this, there are unique challenges

associated with the assessment of suicidal ideation and suicide

risk given that alexithymia and communication difficulties

are core components of ASC (49). The high prevalence of

psychopathology in autism is currently attributed to social

difficulties, alexithymia, cognitive rigidity, loneliness, a lack of

social support and increased exposure to traumatic experiences

(44, 45, 50, 51). In addition, it has been suggested that underlying

genetic (52) and neurological (38, 46, 53) mechanisms in ASC

etiology could mediate a susceptibility to depression and other

mood disorders. Thus, it is critical to understand the internal

experiences and physiological mechanisms that mediate the

relationship between ASC and psychopathology.

Emerging research has begun to characterize the distinct

phenomena known as autistic burnout and social camouflaging,

based on the lived experiences of autistic individuals.

Importantly, this nascent research has intrinsic limitations

in that it does not yet represent the diversity of experiences

across the autism spectrum (29). Ongoing research is still

defining, operationalizing, and empirically validating the

afore-mentioned constructs in a clinical and research context

(54–58). Nevertheless, considering some internal experiences of

ASC may yield valuable insights beyond the inferences based

solely on observable behaviors. Moreover, autistic burnout and

social camouflaging are both understudied, yet integral aspects

of the internal experience of autism that could play a central role

in distinguishing psychological health from psychopathology.

While the field is still refining a consensus definition

for autistic burnout, complementary working definitions are

converging on similar experiences. Autistic burnout has

been described as “a state of physiological and psychological

incapacitation, exhaustion, and distress in every area of life”

(59) marked by loss of function, reduced tolerance to stimulus

and an increased manifestation of autistic traits (60). This

condition results from “a mismatch of expectations and abilities

without adequate supports” (59) and directly impacts “mental

health, quality of life and well-being” (61). Autistic burnout

is conceptually similar to non-autistic burnout in that it

results from chronically operating beyond personal capacity.

However, autistic burnout is distinct with respect to its causes,

manifestations and functional implications (62).

The main contributor to autistic burnout is social

camouflaging, defined as “the need to suppress autistic traits or

disability. . . in order to meet family, social, vocational, or other

mainstream expectations” (59). While several different tools

are emerging to quantitatively measure social camouflaging

(55, 56, 58), current models agree on the presence of three core

components: (i) deliberately adopting new social behaviors to

make up for social difficulties (compensation); (ii) consciously

suppressing autistic traits in order to appear non-autistic

(masking); and (iii) implementing strategies to manage internal

discomfort invisibly (assimilation) (22, 27, 58). Chronic social

camouflaging leads to internal distress, an eroded sense of

self, and physical and mental exhaustion (27, 63, 64) and is

associated with psychopathology (29), self-injury (65–67), and a

higher risk of lifetime suicidality (30).

However, camouflaging also facilitates access to

employment, relationships and social acceptance and is an

unavoidable prerequisite for independent functioning (28, 65).

Thus, autistic individuals are required to exert substantial

effort to perform typically “autonomic” aspects of everyday

life. Consequently, autistic burnout is characterized by an

inability to maintain basic levels of functioning, which is

further exacerbated by the intensified presentation of autistic

traits (60). Moreover, the inescapable demand to meet the

neurotypical threshold for functionality makes recovery from

autistic burnout considerably more difficult. Autistic burnout

is “pervasive” (59), “chronic” (60), and “recurring” (61); this

most closely aligns with a concept known as habitual burnout

(68) which describes a state of functional impairment that

has become embedded into daily life. Notably, the symptoms

of habitual burnout include insomnia, anxiety, behavioral

dysregulation, depression, self-doubt, emptiness and isolation

(68). The characteristics and consequences of autistic burnout

are thus highly specific to its context and present a significant

risk for the development of psychopathology (62).

Importantly, autistic burnout is also distinct from clinical

depression, despite some superficial similarities. Both MDD and

autistic burnout are associated with chronic fatigue, cognitive

incapacitation, and suicidal ideation; however, the anhedonia

and existential hopelessness that characterizes MDD is not

always a defining feature of autistic burnout (60). While

depression is described as a lack of motivation to participate

in life, autistic burnout is experienced as a lack of capacity

to do so (59). Nevertheless, autistic burnout can lead to the

subsequent development of MDD and vice versa. Moreover,

the struggle to survive in a constant state of burnout can

seem objectively irrational, while the fundamental logistics

of living become a physiological impossibility. Thus, autistic

burnout represents a distinct, independent and fundamentally

different path to suicidal ideation even in the absence of clinical

psychopathology (59).

Notably, the interplay between social camouflaging, autistic

burnout, and psychopathology is exacerbated in autistic

individuals who remain undiagnosed throughout childhood

due to an absence of adequate supports and the chronic
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suppression of autistic traits. Furthermore, undiagnosed autistic

individuals lack an explanation for their differences or challenges

and tend to internalize these as personal failings (64, 69). A

pervasive experience among late-diagnosed autistic individuals

is a lifelong sense of “inherent wrongness”, alienation, and a

deep sense of shame about who they are (70). This culminates

in low self-esteem, a lack of self-worth, and destructive core

beliefs that are all risk factors for psychopathology (71). This

emphasizes how the lack of awareness and stigma surrounding

ASC contributes to autistic burnout and how early diagnosis

could play an important role in preventing psychopathology

(61). While the link between ASC and psychopathology is well-

established, there is a critical gap in the literature on what

physiological mechanisms lead to autistic burnout, how they

differ from, or contribute to psychopathology, and crucially, how

these could be prevented. However, recent progress in molecular

neuroscience may reveal an important connection between early

life adversity, allostatic load and psychopathology in ASC.

Early life stress, chronic adolescent
stress, and allostatic load in ASC

There is substantial evidence from both epidemiological

and preclinical studies that ELS and CAS increase the risk of

psychopathology and suicidality in adulthood (72–79). Notably,

the established definitions for ELS and CAS closely mirror

those emerging for autistic experiences of childhood and

adolescence. While it has historically been challenging to derive

a universally accepted definition for ELS or CAS, current

models agree that stress refers to “environmental events or

chronic conditions that objectively threaten the physical and/or

psychological wellbeing of an individual” (73), undermine a

child’s “sense of safety, stability, and bonding” (80) and for which

“adequate coping resources are unavailable” (74). Much of the

literature focuses on adverse childhood experiences, as ELS

during infancy (0–2 yrs old) is thought to disrupt critical periods

of post-natal brain development leading to impairments in

cognition, language processing, social capacity, and behavioral

and emotional regulation (81). However, adolescence is also a

critical period for brain development that is highly sensitive to

stress. In fact, CAS is known to contribute to the development of

depression, anxiety, and other stress-related psychopathologies

(73). Researchers have previously distinguished between good,

tolerable, and toxic stress; these differentially induce adaptation,

resilience or pathology, respectively. Here, the defining feature

of toxic stress is “a lack of internal resources or external support

systems, resulting in chronic physiological dysregulation” (82).

Importantly, the literature suggests that autism is associated

with a significantly increased exposure to toxic stress in

childhood and adolescence. Children with ASC are statistically

more likely to experience early adversity (83), social vulnerability

and isolation (84), bullying, discrimination, and ostracism

(85), and other forms of victimization (86). Differences

with respect to social communication, development and

integration can make it difficult for autistic children to

feel a sense of “safety and stability” among their peers.

Moreover, situations that are “tolerable” for neurotypical

children are experienced as “toxic” stressors due to distinct

neurophysiological differences in autism. Exposure to every-

day sensory stimuli is painful, uncontrollable, and “personally

threatening” due to difficulties with sensory processing. Thus,

autistic children are pushed beyond their capacity just to achieve

a degree of social participation, and even further resources

are expended to achieve social acceptance. Personal accounts

of social camouflaging describe attempts to manage both the

“physically assaultive”, “uncertain, exhausting nature of the social

environment” (87), and the persistent fear of stress, rejection

and being misunderstood by peers (88). Social camouflaging

has been conceptualized as the discrepancy between the internal

experience of autism and the external presentation of autistic

traits (22, 56, 58), and is experienced as a need “to exceed

what nature has given” (27); similarly, autistic burnout has been

described as “having all of your internal resources exhausted

beyond measure” (59). This literature consistently points to a

mismatch between external demands and internal capacity, and

clearly demonstrates an absence of “adequate coping resources”

which is consistent with the accepted definitions for toxic stress.

We propose that social camouflaging could act as a distinct

form of CAS in autism. Camouflaging strategies become

increasingly complex and intentional from middle childhood,

which is a critical period for socialization marked by the

development of self-concept and an increasing capacity for self-

regulation (89). The self-concept tasks of middle childhood

culminate in the ability to internalize expectations for one’s

own behavior and develop strategies to meet these expectations

(89). This enables an autistic child to both identify the need to

suppress autistic traits and develop enough self-regulation to

implement camouflaging as a replacement for natural behaviors.

The extent to which these tasks are completed will vary widely

across the autism spectrum depending on differences in both

ASC presentations and sociocultural factors that contribute

to socialization. Equally, there are significant differences with

respect to an individuals’ ability and motivation to mask their

autistic traits.

This has important implications for the relationship between

ASC, chronic stress and psychopathology. Individuals with

more extreme sensory sensitivities, greater difficulties with

self-regulation and communication, or atypical developmental

profilesmay be highly vulnerable to increased early life adversity.

Yet, this might also facilitate earlier diagnosis, access to

accommodations, and a reduced motivation or tendency to

engage in chronic camouflaging. Conversely, many individuals

with a greater tendency to mask may present with a “subclinical”

autism phenotype, but a significant susceptibility to CAS

induced by the chronic suppression of autistic traits. It is worth
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reiterating that social camouflaging refers to internal efforts that

are, by definition, removed from external presentations. High

levels of masking do not correlate with any particular expression

of autism and cannot be inferred based on the nature or

degree of observable autistic traits. Rather, this emphasizes that

different external autism presentations are not always reflective

of the profound physiological and psychological dysregulation

experienced internally. Despite the heterogeneity of ASC, an

underlying susceptibility to stress-related pathologies could be a

common mechanism responsible for negative clinical outcomes

in this context.

The resonance between internal experiences of autism

and established models for toxic stress provides a point of

convergence between psychosocial and molecular research

into ASC. From a molecular standpoint, ELS and CAS are

thought to contribute to allostatic load, which describes

the pathophysiological consequences of chronic stress on

the metabolic, endocrine and immune systems required for

homeostasis (40). Allostatic load provides an integrative model

to quantify the cumulative impact of biological, psychological

and social factors that contribute to pathology (40). In this

context, social camouflaging could serve as a unique form of

toxic stress that increases allostatic load in autism. Autistic

burnout may represent a distinct pathophysiological state

resulting from allostatic overload, culminating in neurological

and psychological dysregulation that leads to psychopathology.

Previous work has described how allostatic load may interact

with behavioral, psychosocial and physiological aspects of ASC

(37–39, 90); however, this model remains poorly characterized

from a molecular perspective. Notably, the molecular

mechanisms that mediate the association between ELS,

CAS and psychopathology are also involved in ASC etiology.

This could signify an underlying molecular susceptibility to ELS

that may yield mechanistic insight into the relationship between

autistic burnout, psychopathology and suicidality.

Mitochondrial allostatic load and
convergent molecular mechanisms

The concept of allostatic load is well-established (91–

93), but the specific molecular mechanisms that mediate

pathological stress responses remain poorly characterized (94).

The HPA axis has traditionally been the focus of stress

pathophysiology research in ASC; however, the evidence for

HPA axis dysregulation in autism is inconsistent (95). Recently,

mitochondrial metabolism has been recognized as a central

regulator of the major neuroendocrine and neuroimmune

systems involved in allostasis (40). Emerging evidence highlights

the particular relevance of mitochondrial allostatic load (MAL),

which describes adaptive changes to mitochondrial morphology,

dynamics, and function in response to chronic stress (93).

Notably, mitochondrial dysfunction is a biological signature

that is not only consistently observed in idiopathic ASC, but

also independently implicated in ELS and psychopathology.

Thus, MAL could serve as a central molecular mechanism

involved in the development of psychological disorders in

autistic individuals.

Mitochondrial allostatic load

A preliminary but growing body of evidence suggests

that mitochondrial dysfunction is involved in the relationship

between ELS and psychopathology (96–98). Clinical studies have

shown that ELS increases mitochondrial respiratory activity (99,

100), mitochondrial DNA (mtDNA) copy number (101, 102),

and circulating cell-free mtDNA (103, 104), all of which indicate

a dysregulation of mitochondrial function. Epidemiological

studies also demonstrate that ELS disrupts typical indicators

of redox homeostasis, including reactive oxygen species (ROS),

antioxidant enzymes like superoxide dismutase (SOD) and

glutathione peroxidase, and total reactive antioxidant potential

(105, 106). This is reflected in animal models for ELS showing

decreased SOD and increased protein carbonylation, ROS and

glutathione (107, 108). Preclinical studies further demonstrated

that ELS impairs mitochondrial electron transport chain (ETC)

activity in the hypothalamus and dysregulates mitochondrial

fission and antioxidant defense genes in the hippocampus,

leading to cognitive impairments (109). Moreover, a recent

systematic review presented consistent evidence for reduced

mitochondrial energy production capacity and ETC complex

activity, altered mitochondrial morphology and changes in

mtDNA copy number in animal models for chronic stress

(110). Notably, the duration and type of stress, as well as

underlying genetic differences significantly affect how stress

alters mitochondrial function (110). Conversely, experimentally

disrupting mitochondrial function alters the physiological and

behavioral consequences of psychological stress (40).

Similarly, mitochondrial dysfunction has been widely

implicated in the pathogenesis of MDD; this has recently been

comprehensively reviewed (93, 111–117). Mood disorders are

frequently reported in patients with mtDNA mutations and

up to half of patients with primary mitochondrial diseases

present with MDD. Conversely, depression is associated with

elevated mtDNA deletions, aberrant mtDNA copy number

and oxidative mtDNA damage (113, 118, 119). Independent

studies have reported increased oxidative stress and altered

ETC activity (120) and decreased levels of antioxidants and

antioxidant enzymes (121) in the brain tissue of patients

with depression. Of note, Karabatsiakis et al. (122) reported

significantly impaired mitochondrial metabolism in individuals

with MDD, which correlated significantly with the severity of

depressive symptoms. Pre-clinical studies also demonstrate an

increase in ROS and a decrease in ATP and glutathione in

models for depression (113). Importantly, many pre-clinical
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models for MDD are induced by ELS, and consistently implicate

mitochondrial mechanisms in the subsequent development of

depressive behaviors (116). For example, in vivo models for

MDD have shown that mitochondrial ETC complex activity

is disrupted in brain tissue following maternal deprivation,

social isolation, restraint stress, mild stress, and unpredictable

stress (123–128). Moreover, several transcriptomic studies

have reported significant dysregulation of mitochondrial

genes involved in lipid metabolism, oxidative phosphorylation

(OXPHOS) and glucose homeostasis in preclinical models

for chronic and acute stress (114, 129–131). Thus, both

epidemiological studies and animal models support a role

for mitochondrial dysfunction in the relationship between

ELS and MDD. Indeed, a recent review describes the central

role of MAL in the symptoms of MDD and emphasizes the

utility of targeting mitochondrial function to develop novel

pharmacological treatments (93).

Mitochondrial dysfunction is also a widely-studied

molecular signature associated with ASC; thus, the interplay

between ELS and MAL is particularly relevant in this context.

A seminal 1998 review of ASC clinical data demonstrated

decreased cortical glucose uptake and ATP synthesis, as well as

plasma lactic acidosis, carnitine deficiency and elevated urinary

Krebs cycle metabolites (132). Subsequently, multiple lines of

evidence have emerged to support a role for mitochondrial

dysfunction in ASC and these are well-described in recent

reviews (133–139). Noteworthy, clinical studies have reported

altered mtDNA copy numbers and deletions (136, 140–

143), mtDNA mutations (144, 145), mitochondrial ETC

deficits (140, 142, 146) and altered plasma levels of lactate,

pyruvate, alanine, creatine kinase, glutathione-S-transferase

and caspase 7 (144, 147). Recent studies in ASC-derived

lymphoblastoid cell lines (LCLs) showed significantly increased

mitochondrial respiration and mitochondrial membrane

potential as well as elevated activities of ETC complexes (148),

while disruptions to mitochondrial bioenergetics, dynamics

and morphology were observed in ASC-derived fibroblasts

(149, 150). This is supported by independent transcriptomic

studies that have reported reduced expression of mitochondrial

respiration genes in ASC brain tissue (151–154). In fact, ASC

transcriptomic, proteomic and DNA methylation functional

enrichment signatures consistently converge on mitochondrial

OXPHOS (155). Furthermore, increased oxidative stress is

well-documented in ASC, with recent reviews discussing

the cumulative evidence for altered glutathione metabolism,

lipid peroxidation, protein oxidation, DNA oxidation and

antioxidant enzyme activity in ASC (156–161). Thus, there is

substantial evidence for altered mitochondrial metabolism in

ASC, which could serve as a molecular susceptibility to the

pathological consequences of MAL.

Notably, the relationship between MAL and ELS has only

recently emerged, and the limitations of the current state of

knowledge have been comprehensively evaluated (97). The field

is still developing quantitative cell-specific techniques and more

integrative computational approaches to better characterize the

complex and dynamic role of mitochondria in psychopathology

and disease. Only recently have clinical studies explored indices

of MAL, and these studies may be confounded by genetic and

environmental factors that affect mitochondrial function (96).

Nevertheless, the evolving field of mitochondrial psychobiology

(97) represents a novel avenue for future research to explore a

role forMAL in ASC clinical outcomes. Moreover, mitochondria

are mechanistically implicated as essential modulators of both

the neuroendocrine and neuroimmune components of allostasis

(40, 96), each of which are thought to play a role in ASC.

MAL and the HPA axis in stress-related
psychopathology

The HPA axis is the major neuroendocrine system involved

in initiating the stress response and coordinating the molecular

components of allostatic load (73). Children are particularly

vulnerable to HPA disruption during early childhood and

adolescence, which are periods marked by higher HPA axis

plasticity. Thus, HPA signaling is a key mediator of pathological

responses to ELS and CAS (73, 81). A recent systematic review

has demonstrated an established role for HPA axis dysregulation

in mood disorders, suicidal behavior, and the relationship

between ELS and major depression (162). Transcriptomic

studies in brain tissue suggest that HPA axis signaling is

involved in the development of MDD following ELS (72,

163). Furthermore, disruptions to cortisol and catecholamine

signaling have been reported in individuals with a history of

ELS who develop PTSD, depression and suicidality (164). Recent

work in animal models has also shown distinct perturbations

to HPA axis signaling, stress reactivity, and cognitive and

emotional functioning in response to both ELS and CAS (165).

Importantly, a bidirectional relationship is emerging

between the HPA axis and mitochondrial metabolism

(Figure 1). Stress-responsive glucocorticoids (GCs) like

cortisol and corticosterone (166) are released in response

to HPA axis activation and act on GC receptors (GRs) to

regulate genes involved in neurogenesis, neuroplasticity,

and neurotransmission (167). Mitochondria are directly

responsible for the synthesis of GCs via cytochrome P450

enzymes that are coupled to mitochondrial redox state (168).

Mitochondrial metabolism not only regulates, but is also

modulated by, GC signaling (40, 102); this relationship is

mediated by both genomic and non-genomic mechanisms

that have been comprehensively reviewed (169–176). At

physiological levels, short-term GC exposure improves

mitochondrial oxidation, membrane potential and calcium

buffering, while chronic GC treatment reduces the activity of

specific mitochondrial ETC complexes, increases mitochondrial
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FIGURE 1

The reciprocal relationship between glucocorticoid signaling and mitochondrial allostatic load (created with BioRender.com). HPA activation in

response to chronic stress leads to the release of GCs which di�use through the blood-brain barrier to activate GRs in neurons. GCs alter

circulating levels of key energetic substrates including ketone bodies, glucose, lactate and pyruvate, which modulates mtFAO, glycolysis and

OXPHOS. Activated GRs act via Bcl-2 and other non-genomic mechanisms to modulate membrane potential, calcium bu�ering, ATP

production and redox homeostasis in the mitochondria. Activated GRs also bind to glucocorticoid response elements in both nuclear and

mitochondrial DNA to moderate the transcription of key genes involved in the regulation of mitochondrial tra�cking (TRAK1/2, MIRO1/2),

morphology (MFN1/2), biogenesis (PPARGC1A, TFAM, NRF1/2) and mitophagy (BNIP3, NIX). Conversely, mitochondria are responsible for the

synthesis of GCs via the CYP540 and HSD/KSR enzymes. GC synthesis increases mitochondrial ROS, and conversely, oxidative stress is known to

inhibit steroidogenesis. HPA, hypothalamic-pituitary-adrenal; GCs, glucocorticoids; GRs, glucocorticoid receptors; mtFAO, mitochondrial fatty

acid oxidation; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; Bcl-2, B-cell lymphoma 2; MFN1/2, mitofusin 1 and 2;

TRAK1/2, Tra�cking Kinesin Protein 1/2; MIRO ½, Mitochondrial Rho GTPase; BNIP3, Bcl2 Interacting Protein 3; NIX, BNIP3-like; PPARGC1A,

peroxisome proliferator-activated receptor gamma coactivator-1 alpha; TFAM, mitochondrial transcription factor A; NRF1/2, NRF1/2 nuclear

respiratory factors 1 and 2; CYP, cytochrome P450; HSD/KSR, hydroxysteroid dehydrogenase/ketosteroid reductase.

ROS production, and upregulates mitochondrial fragmentation

(175, 177–180). Moreover, GCs affect the availability and

turnover of key energetic substrates in the brain, including

pyruvate, glucose, lactate and ketone bodies which regulate

mitochondrial OXPHOS, glycolysis and fatty acid oxidation,

respectively (169). GCs also modulate mitochondrial dynamics

by regulating the expression of relevant genes via GC response

elements (GREs) in both nuclear and mtDNA (172–174).

GCs have been shown to downregulate the transcription of

the genes involved in mitochondrial fusion, trafficking and

clearance (170, 180) and increase the expression of several

central transcriptional regulators of mitochondrial biogenesis

(102, 174, 181). Notably, animal models have shown that both

chronic stress and corticosterone treatment increase mtDNA
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copy number (119), and conversely, that mtDNA genetic

variants can alter corticosterone production and HPA signaling

(182, 183). Additionally, epidemiological studies have shown

that mtDNA copy number is elevated in people with a history

of ELS (184) and in major depression (119), while recent work

demonstrated that the relationship between ELS and mtDNA

copy number was mediated by differential methylation of

the GR (184). Thus, both mitochondrial function and GC

signaling are independently implicated in the response to ELS

and MDD and recent findings suggest that these mechanisms

are interdependent.

Interestingly, thismay reveal a novelmolecular susceptibility

to ELS that has been overlooked in the context of ASC. Although

much research has investigated a role for HPA signaling in

the relationship between autism and psychopathology, this

has yielded inconsistent results. There is a large body of

evidence suggesting global disruptions to cortisol signaling in

autism (95, 185–193) and independent studies have reported

HPA hyperactivation (185, 188, 194, 195) and increased stress

reactivity (186, 196) in ASC. A relationship between elevated

evening cortisol and psychopathology in ASC has been proposed

(194); altered cortisol responses were associated with GAD and

social anxiety in boys with ASC (197, 198), while the cortisol

awakening response was reported to correlate with depression

and suicidal ideation in autistic girls (199). Moreover, targeted

molecular studies have found disruptions to GR expression in

ASC brain tissue (200), while genetic polymorphisms in the GR

chaperone were associated with serum cortisol levels (201) and

moderated the relationship between autistic traits and social

anxiety (202). However, several reviews have summarized the

conflicting evidence for HPA dysregulation, and its association

with psychopathology, in ASC (46, 95, 185–187, 203). These

authors emphasize that current findings lack intra- and inter-

individual reproducibility, while numerous studies report no

significant differences in cortisol levels, rhythms, variability or

responsivity in ASC. Of note, Muscatello et al. (46) found no

relationship between HPA activation, depression and anxiety

in autistic children; instead reporting a complex multi-systemic

relationship between HPA signaling and psychopathology.

Yet, many studies assess HPA function using end-point

measurements of salivary cortisol, which cannot always reflect

complex interactions between biological signaling processes

and genetic architecture with sufficient resolution. The existing

literature suggests some role for the HPA axis in ASC etiology;

however, the relationship between HPA axis signaling and

psychopathology in autism is multifaceted and likely mediated

by pleiotropic biological factors that contribute to an increased

susceptibility to HPA axis dysregulation (46). In this context,

the emerging relationship between mitochondrial metabolism

and HPA signaling highlights mitochondrial dysfunction as

a common biological signature that could act as a novel

susceptibility to stress-related psychopathology in ASC.

The neuroimmune system: A link
between MAL and the HPA stress
response

The neuroimmune system is the second established

component of allostatic load that works in concert with HPA

neuroendocrine signaling to modulate the stress response.

Neuroimmune dysregulation is well-documented in clinical

studies of neuropathology and is observed in response to

ELS (74, 204, 205), and neurodevelopmental (206) and

psychological (207–209) disorders. In fact, Bottaccioli et al.

(210) proposed that the “neuroendocrine-immune” network is

a central molecular mediator between psychosocial stress and

the psyche. Accordingly, preclinical models have demonstrated

that chronic stress consistently induces microglial activation

and proinflammatory cytokine signaling in key brain regions

involved in psychiatric disorders (205). Moreover, recent

animal studies showed that ELS-induced depressive behaviors

were associated with neuroinflammation (108, 211, 212)

and aberrant microglial activity (213), while CAS was also

shown to increase hippocampal immune reactivity (214).

Furthermore, disruptions to microglial phagocytosis impaired

neuronal development, cognitive performance, memory, reward

processing, and processing of social stimuli (215). Notably,

there is also extensive evidence for neuroinflammation in ASC

(160, 216–221). Inflammatory cytokines are reported to be

elevated in ASC blood and post-mortem brain tissue, while

immunohistochemistry, positron emission tomography and

morphological data demonstrates glial over-proliferation and

over-activation in ASC (222–227). Transcriptomic studies have

shown that genes involved in inflammation, astrocyte function

and microglial activation were significantly dysregulated in ASC

brain tissue (228), including the glial-specific marker GFAP

which was overexpressed at both the mRNA and protein levels

(229). Post-mortem studies also found a significant upregulation

of microglial-specific genes (226), increased microglial density

(224, 230) and excessive microglial activation (225, 231)

in ASC brain tissue, while two recent systematic reviews

report consistent evidence for disrupted microglial morphology,

organization and activation in autism (220, 232). Although the

precise nature of neuroimmune dysregulation is context-specific

and pleiotropic in both ASC and ELS (204, 233), these data reveal

an interesting mechanistic overlap between ASC neurology and

stress-related psychopathology.

The neuroimmune system also acts as an intermediary

between MAL and the HPA axis on a molecular level. Firstly,

mitochondrial metabolism is a central modulator of glial cell

phenotypes and neuroinflammatory state (40). Glial functions

are controlled by tightly regulated interactions between

microglia, astrocytes, oligodendrocytes and neurons, which are

closely coupled to glial metabolism (234). Glial phenotypes

are dynamic, shift in response to different stimuli and can be
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either neuroprotective or neurotoxic (235). The transition to

an inflammatory phenotype is known as reactive gliosis, which

is characterized by transcriptional, biochemical, metabolic and

morphological re-modeling (236). This has distinct implications

for the metabolism, physiology and function of different

glial cell types (237–242). While microglia, astrocytes and

oligodendrocytes are each implicated in specific aspects of

ASC neurology (216, 220, 243–246), microglial phenotypes

are particularly relevant in the context of neurodevelopment.

Microglia are the only glial cells present in the early embryonic

brain (247) that play an essential role in the regulation of

neurogenesis, synaptic activity and axonal myelination (242,

248–250), all of which are dysregulated in autism (216, 251, 252).

Moreover, a cohesive body of work from animal models suggests

that microglia are centrally involved in the neurological and

behavioral consequences of ELS (253).

Importantly, mitochondrial dysfunction can induce

microglial activation via both extrinsic and intrinsic

mechanisms (Figure 2) (235, 254). Mitochondrial dysfunction

in surrounding brain tissue leads to the release of damage-

associated molecular patterns (DAMPs) that bind to microglial

receptors and induce pro-inflammatory pathways (137).

Moreover, microglial activation is marked by intrinsic metabolic

reprogramming, and different microglial phenotypes are

associated with distinct metabolic pathways (249). While resting

microglia rely primarily on OXPHOS (255), the shift toward

the inflammatory M1 phenotype is driven by a decrease in

mitochondrial respiration and an upregulation of glycolysis.

The latter enhances flux through the pentose phosphate

pathway and increases lactate production to meet increased

cellular energy demands (235). Recent work has demonstrated

that mitochondrial metabolism directly regulates microglial

activation (256, 257) and that disrupting mitochondrial function

has profound implications for microglial inflammatory state

(248, 249, 257, 258). In vitro studies have shown that inhibiting

mitochondrial ETC activity (259) or increasing mitochondrial

fragmentation (249) induces microglial activation and pro-

inflammatory cytokine signaling; this could be mitigated by

targeting mitochondrial fission (260), membrane potential,

or ROS (249). Concurrently, mitochondrial stress impairs

the transition to the anti-inflammatory M2 phenotype (261),

which exacerbates neuroinflammation and oxidative stress

(262). Conversely, different cytokine stimuli are known to alter

microglial metabolic state. Inflammatory stimuli were found

to induce a metabolic switch from OXPHOS to glycolysis in

microglia in vitro (263), marked by increased lactate production

and decreased OXPHOS, oxygen consumption and ATP

production (264, 265). This metabolic shift correlated with

increased production of proinflammatory cytokines (266) and

nitric oxide (263), demonstrating a proinflammatory feedback

loop driven by metabolic reprogramming. Ultimately, this

highlights an intrinsic coupling between the neuroimmune and

mitochondrial mechanisms implicated in allostatic load.

Stress-responsive neuroendocrine mediators are also known

to modulate immune responses (40), and the bidirectional

relationship between inflammatory- and GC- signaling has

been well-documented in the context of psychopathology (106,

209, 267–270). GRs mediate anti-inflammatory effects via the

transcriptional transrepression of pro-inflammatory genes such

as nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-κB) and the activation of anti-inflammatory genes like

annexin 1 (171, 268, 270). GRs also regulate key pathways

involved in cell proliferation and differentiation to inhibit

immune cell activation and inflammatory cytokine production.

On the other hand, GCs have been shown to upregulate

pro-inflammatory pathways via toll-like receptors, tumor

necrosis factor α (TNF-α) or the NLRP3 inflammasome (209).

Conversely, inflammatory cytokines modulate GC signaling

by disrupting GR expression, phosphorylation and nuclear

translocation (271). Cytokine-stimulated immune cells can also

promote HPA axis activation and GC signaling by upregulating

the production of corticotrophin-releasing hormone (CRH) in

the hypothalamus (181). Of particular relevance, animal models

have demonstrated an antagonistic relationship between HPA

activity and interleukin 6 (IL-6), which is one of the most

consistently upregulated inflammatory markers associated with

ELS (204), MDD (209) and ASC (272) that has also been

widely implicated in psychological disorders (273). Markedly,

recent preclinical studies suggest that neuroimmune-HPA

interactions facilitate the neuroinflammatory response to stress.

ELS was shown to increase GR promoter methylation and

decrease GR expression, which was associated with upregulated

proinflammatory NF-κB signaling (274). Similarly, CAS led

to a significant transcriptional dysregulation of GR signaling,

increased NF-κB signaling and excessive microglial activation in

female rats (275).

Given that GR signaling regulates mitochondrial function,

and that mitochondria are central to immune modulation,

it has been proposed that HPA-immune interactions could

be mediated by mitochondrial mechanisms (40, 171, 276).

Mitochondria co-ordinate several of the inflammatory pathways

at the interface between HPA and immune signaling, including

NF-κB, IL-6, and inflammasome signaling (99). The GC-

dependent NF-κB and MAPK signaling pathways are also

intrinsically coupled to central regulators of mitochondrial

biogenesis and homeostasis, including PPARGC1A (277).

Moreover, GCs have been shown to upregulate the secretion

of cell-free mtDNA in vitro, which in turn, serves as a potent

activator of inflammatory signaling (103). Congruent with

this, recent data demonstrate that ELS concurrently impairs

mitochondrial function and increases neuroinflammation in

animal models (278). Additionally, clinical studies report

a significant correlation between mitochondrial respiration,

oxidative stress and the production of pro-inflammatory

cytokines, including IL-6, following ELS (99). Collectively,

this reveals a tightly coupled interplay between mitochondrial
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FIGURE 2

Neuroimmune responses at the interface between mitochondrial metabolism and the HPA axis (created with BioRender.com). Neuroimmune

homeostasis is maintained by a tightly regulated interplay between dynamic glial phenotypes. Microglial activation toward a pro-inflammatory

state is driven by intrinsic metabolic reprogramming away from OXPHOS and FAO toward glycolysis, FAS and the PPP. Conversely, microglial

metabolic profile directly influences inflammatory state. Activated microglia release pro-inflammatory cytokines and ROS, which in turn

activates neighboring astrocytes and induces mitochondrial dysfunction in neurons. Reactive astrocytes release lactate and calcium, which

upregulates glutamatergic neurotransmission and culminates in an excitotoxic loop that drives further inflammation and oxidative stress.

Damaged mitochondria in neurons induce the release of DAMPs and ccf-mtDNA which induce pro-inflammatory signaling in microglia.

Inflammatory stimuli drive hypothalamic CRH production via MyD88, COX-2, mPEGS-1 and PGE2. HPA activation leads to the release of GCs

which mediate inflammatory signaling on several fronts. GCs promote anti-inflammatory responses via SLP1, MKP-1, GILZ and Annexin 1, while

downregulating pro-inflammatory signaling by IL-1,2,4 and 6, NF-κB, IFN-γ, and AP1. GCs have also been shown to upregulate inflammatory

pathways via TLRs, TNF-α and the NLRP3 inflammasome. Conversely, pro-inflammatory cytokines interfere with GC signaling by disrupting GR

expression, phosphorylation and nuclear translocation. MT, mitochondrial; HPA, hypothalamic-pituitary-adrenal; OXPHOS, oxidative

phosphorylation; FAO, fatty acid oxidation; FAS, fatty acid synthesis; PPP, pentose phosphate pathway; ROS, reactive oxygen species; DAMPs,

Damage Associated Molecular Patterns; ccf-mtDNA, circulating cell-free mitochondrial DNA; GCs, glucocorticoids; CRH,

corticotrophin-releasing hormone; MyD88, Myeloid di�erentiation primary response 88; COX-2, Prostaglandin-endoperoxide synthase 2;

mPEGS-1, microsomal prostaglandin E synthase; PGE2, prostaglandin E2; SLP1, secretory leukocyte protease inhibitor; MKP-1,

mitogen-activated protein kinase phosphatase-1; GILZ, glucocorticoid-induced leucine zipper protein; IL, Interleukin; NF-κB, Nuclear factor

kappa-light-chain-enhancer of activated B cells; IFN-γ, Interferon gamma; AP-1, activator protein 1; TLRs, toll-like receptors; TNF-α, tumor

necrosis factor α; NLRP3, NLR family pyrin domain containing 3.

metabolism, neuroimmune and neuroendocrine signaling that

underlies the established relationship between ELS, MAL and

psychopathology. This discussion has highlighted evidence

implicating each of these molecular stress signatures in

ASC (Table 1), emphasizing how mitochondrial dysfunction

plays a central role in modulating the neuroimmune and

neuroendocrine stress responses that contribute to allostatic

load. Undoubtedly, further work is required to fully elucidate

Frontiers in Psychiatry 11 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.985713
https://BioRender.com
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mahony and O’Ryan 10.3389/fpsyt.2022.985713

TABLE 1 Molecular components of allostatic load implicated in ASC.

Component of

allostatic load

Evidence of dysregulation in ASC Original

reports

Meta analyses and

reviews

Mitochondrial Transcriptomic, proteomic and epigenomic mitochondrial

signatures

Mitochondrial DNA copy number, deletions and mutations

Altered electron transport chain function, mitochondrial

membrane potential, bioenergetics, dynamics and morphology

Increased lactic acidosis and Krebs cycle metabolites, decreased

carnitine and altered pyruvate, alanine, creatine kinase,

glutathione-S-transferase and caspase 7 in plasma

Decreased glucose uptake, ATP synthesis & transcription of

OXPHOS genes in brain tissue

Dysregulated glutathione metabolism, lipid peroxidation, protein

oxidation, DNA oxidation and antioxidant enzyme activity

(136, 140, 142–144,

146–153)

(132–135, 137–139, 141,

145, 154–161)

Neuroendocrine Global disruptions to cortisol signaling

Hypothalamic–pituitary–adrenal (HPA) hyperactivation and

increased stress reactivity

Disrupted glucocorticoid receptor (GR) expression in brain tissue

Mutations in GR cochaperone associated with serum cortisol and

social anxiety

Cortisol awakening response, evening cortisol and signaling

between the HPA and autonomic nervous system correlated with

psychopathology, anxiety, depression and suicidal ideation

(46, 185, 188, 193–

196, 199–202)

(46, 95, 186, 187, 191,

192)

Neuroimmune Elevated inflammatory cytokines in blood and brain tissue

Reactive gliosis, increased microglial density and activation and

disrupted microglial morphology and organization

Dysregulated transcription of genes involved in inflammation,

astrocyte function and microglial activation and significant

upregulation of microglial-specific genes

(222–230) (160, 216–221, 232)

the molecular relationships between the HPA axis, MAL

and neuroinflammation, and to better characterize how these

mechanisms contribute to clinical aspects of ASC. Nevertheless,

this model points to a molecular signature that could serve as an

underlying susceptibility to ELS, and may contribute to the high

rates of psychopathology and suicidality in ASC.

From MAL to neurophysiology,
neurochemistry, and behavior: A
mechanistic perspective

A role for MAL in the relationship between autism and

psychopathology is supported by mounting evidence that

mitochondria are centrally involved in neurodevelopment,

neurophysiology and neurochemistry. In fact, mitochondria are

known to modulate distinct neurological processes that are

disrupted in response to ELS and involved in the etiology of

ASC. ELS alters the proliferation, differentiation and survival

of neuronal stem cells (NSCs), culminating in disruptions

to synaptogenesis, synaptic pruning, and neurotransmission

(72, 164). Extensive synaptic remodeling also occurs during

adolescence, and CAS is known to disrupt synaptic plasticity

and myelination with long-term implications for psychology,

cognition and behavior (73, 279). These neurophysiological

differences have largely been attributed to signaling between

the HPA axis, GCs and neurogenic factors (e.g., Brain-derived

neurotrophic factor and Wnt) (233, 234). However, just as the

concept of MAL is becoming increasingly established in stress

research, mitochondria are also emerging as central regulators

of neurodevelopment and physiology (Figure 3).

The balance between NSC self-renewal and neuro-, oligo-

and astrogenesis is closely tied to metabolic state. Neurogenesis

requires a metabolic shift from glycolysis to OXPHOS

while oxidative and metabolic stress drive stem cell fate
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FIGURE 3

The mitochondrial modulation of ASC neurophysiology (created with BioRender.com). Mitochondrial metabolism functions as a central

regulator of NSC self-renewal and di�erentiation. Neuronal di�erentiation is driven by a significant increase in OXPHOS while stem cell fate is

shifted toward gliogenesis under oxidative and metabolic stress. Thus, mitochondrial dysfunction disrupts neurodevelopment and contributes to

glial over-proliferation and subsequent neuroinflammation. The remodeling of mitochondrial metabolism also facilitates the maturation of

myelinating oligodendrocytes and modulates the activation of microglia during neurodevelopment. Microglial activation is essential for

post-natal synaptic pruning, which is dysregulated in ASC leading to synaptic overgrowth, cortical hyperconnectivity, and an imbalance between

excitatory and inhibitory synapses. Anti-inflammatory microglia release growth factors that promote oligodendrocyte maturation while

pro-inflammatory microglia are responsible for demyelination via phagocytosis. The coupling between mitochondrial fatty acid metabolism and

glial phenotypes underlies the oligodendrocyte-microglial interactions that modulate myelin synthesis and turnover, which is crucial for the

formation and plasticity of neural networks. Therefore, mitochondrial dysfunction is a common mechanism implicated in several features of

ASC neurodevelopment, physiology and function. NSC, Neuronal Stem Cell; IPC, Intermediate Progenitor Cell; OPC, Oligodendrocyte

Progenitor Cell; OXPHOS, oxidative phosphorylation; E/I imbalance, excitatory/inhibitory imbalance.

toward gliogenesis (280–283). Moreover, distinct alterations to

mitochondrial morphology and function are observed during

the maturation of myelinating oligodendrocytes (284, 285).

Metabolic state is coupled to, and regulated by, mTOR signaling,

and each are essential for synaptic signaling, function and

plasticity (286–295). In fact, preclinical data suggest that ELS

impairs neuronal metabolism and synaptic plasticity viamTOR-

dependent mechanisms (296, 297). The interplay between

mitochondrial metabolism and microglial activation is also

essential to regulate neuronal apoptosis, synaptic pruning

and myelination during neurodevelopment (238, 242, 298).

Synaptogenesis is tightly regulated to shape neural circuitry

and connectivity (243, 299) while myelin processing is vital for

the activity, synchronization and dynamics of neural networks

(300). Notably, disruptions to mTOR signaling (289, 301,

302), synaptic pruning (232, 303) and myelination (245) are

hallmarks of ASC that contribute to cortical hyperconnectivity

and the resultant behavioral phenotypes (250, 299). Thus,

the mitochondrial modulation of neuronal development,

plasticity and circuitry converges on shared neurophysiological

mechanisms in ELS and ASC.

In addition, disruptions to neurotransmitter signaling and

neuroendocrinology are implicated in both ELS and ASC.

Preclinical studies have shown that chronic stress disrupts

glutamate- (304–307), serotonin- (308) and dopamine-(309–

312) signaling, leading to increased anxiety-like behaviors

and impairments in social recognition, social interest and

cognitive flexibility. These data are supported by human cohort

studies showing that ELS disrupts dopaminergic responses to

psychosocial stress (313, 314), and alters glutamate/glutamine

cycling (315) and serotonin transporter binding (316) in

patients with MDD. In fact, genetic mutations in the serotonin

receptor have been shown to mediate the effect of ELS on

the subsequent rates of depression and suicidality (317). CAS

also alters neuroendocrinology on several fronts, by inducing

glutamatergic excitotoxicity and decreasing levels of serotonin,
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dopamine and norepinephrine (73). Notably, an unbalanced

excitatory-to-inhibitory synaptic signaling ratio (318–320) and

disruptions to glutamatergic (246, 320–325), serotonergic (326–

330) and dopaminergic (319, 331, 332) neurotransmission

are well-established aspects of ASC neurochemistry that are

associated with distinct aspects of ASC etiology. Glutamatergic

excitotoxicity is thought to contribute to anxiety, perseveration,

motor stereotypies, and differences in language, social memory

and cognition (325). Serotonin signaling is linked to altered

social cognition, facial recognition, emotion processing and

communication (329) while dopamine signaling is associated

with disruptions to sleep, mood and attention in ASC

(319, 331, 332).

This underlying neuroendocrinological dysregulation is

not only associated with core facets of ASC etiology, but

also has direct functional implications for stress-related

psychopathology. A disruption of glutamatergic and GABAergic

signaling contributes to the etiology of anxiety disorders

(333–336), PTSD (337), eating disorders (338–340), OCD

(341) and substance use disorders (SUDs) (342, 343). The

serotonergic, dopaminergic and noradrenergic systems are

implicated in MDD, anxiety and SUDs (344–346) while

serotonin is also associated with mood disorders, stress,

aggression and anti-social conduct (347–349), and dopamine is

thought to play a role in eating disorders (350, 351), executive

dysfunction and behavioral inhibition (352, 353). Moreover,

well-documented interactions between neurotransmitter,

neuroimmune and neuroendocrine pathways play a central

role in modulating suicide risk after ELS exposure (354).

Glutamate is involved in both driving HPA responses and

limiting HPA overactivation (355–357), and conversely, GC

signaling is known to modulate glutamatergic synapse plasticity

and excitability (358). Serotonergic neurotransmission excites

CRH-producing neurons in the amygdala (209) and acts as an

important regulator of GR signaling in the pre-frontal cortex

after exposure to acute stress (359). On the other hand, animal

models show that corticosteroids decrease serotonin receptor

binding densities (360, 361) and this relationship is implicated

as a mediator of suicidality following ELS (317). Finally, GCs

also activate the mesolimbic dopamine pathway (362, 363)

by upregulating the rate-limiting step of dopamine synthesis,

downregulating dopamine degradation, clearance and synaptic

uptake, or by acting directly on GRs in dopamine-receptive

neurons (364).

Crucially, MAL functions as a mechanistic link between

the molecular, neurochemical and behavioral aspects of ASC

that have been highlighted here as potential contributors

to psychopathology (Figure 4). Numerous reviews have

comprehensively described the close coupling of mitochondrial

function with glutamatergic (365–367), serotonergic (368–370)

and dopaminergic (371–375) neurotransmission, although this

relationship remains understudied in the context of MAL and

psychopathology. Glutamatergic neurotransmission is tightly

coupled to neuronal and astrocytic metabolism, and glutamate

functions as a substrate for both the mitochondrial citric acid

cycle and the transulfuration pathway (Figure 4A) (376, 377).

In this way, glutamate fuels OXPHOS and antioxidant synthesis

to promote mitochondrial function and combat oxidative

stress (366, 377–380). Thus, mitochondrial metabolism is

essential for glutamate-glutamine cycling, and cytoplasmic

glutamate levels are regulated by mitochondrial TCA cycle flux

as well as intracellular redox homeostasis (381). Dopamine

(DA) auto-oxidation is also regulated by intracellular redox

state (Figure 4B), and an accumulation of oxidative dopamine

metabolites leads to mitochondrial membrane depolarization,

decreased ETC activity and impaired ATP synthesis (374).

Moreover, DA can also be directly taken up by mitochondria

where it reversibly inhibits the first ETC complex, leading to

oxidative stress and impaired mitochondrial energy production

(373). On the other hand, DA functions as a precursor

to norepinephrine (NE) which protects mitochondrial

function by preventing membrane depolarization, and

has both anti-inflammatory and anti-oxidant properties

(382). Conversely, mitochondrial dysfunction can disrupt

both glutamatergic and dopaminergic neurotransmitter

signaling; TCA cycle anaplerosis diverts glutamate away

from glutamine recycling, while oxidative stress promotes the

generation of oxidative dopamine derivatives. Notably, the

consequent shift toward glycolysis in glial cells upregulates pro-

inflammatory signaling and increases the production of lactate

and serine, which potentiates glutamatergic excitotoxicity

(246, 383).

Similarly, a reciprocal relationship between mitochondrial

function and the two branches of tryptophan metabolism

modulates the synthesis of serotonin, melatonin, and

kynurenine (KYN) metabolites (Figure 4C) (384). Serotonin

positively regulates mitochondrial biogenesis, oxidative capacity

and ATP synthesis (370, 385) while serotonin deficiency

disrupts amino acid and lipid metabolism, oxidative respiration

and antioxidant activity (386, 387). Serotonin functions as

a precursor to melatonin, which regulates mitochondrial

OXPHOS, redox homeostasis and inflammatory responses

(388). Moreover, melatonin modulates the expression of the

rate-limiting enzymes involved in serotonin synthesis and

catabolism (389), thereby controlling the balance between

the serotonin and KYN branches of the tryptophan catabolic

pathway. Importantly, the KYN pathway functions as a key

mediator between neuroendocrinology and neuroinflammation

that is tightly regulated by interactions between glial cells

and neurons. The KYN metabolites kynurenic acid (KYNA)

and quinolinic acid (QUIN), respectively, activate and inhibit

glutamate receptors (132). Additionally, flux in the QUIN

branch of the KYN pathway that alters de novo NAD+

synthesis also modulates metabolic and oxidative state

(390). Mitochondrial dysfunction shifts the KYN pathway

toward QUIN production by increasing the demand for
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FIGURE 4

From mitochondrial allostatic load to neurochemistry, behavior and psychopathology (created with BioRender.com). Mitochondrial metabolism drives the synthesis and cycling of key

neurotransmitters involved in ASC-associated behavior and psychopathology. While specific neuronal sub-types express subsets of the enzymes involved in the metabolism of each neurotransmitter,

each neurotransmitter pathway is depicted in one diagram for the sake of simplicity. (A) Glutamine (Gln) and Glutamate (Glu) are synthesized in the mitochondria of glutamatergic neurons and glial

cells. Glutamate can be directly integrated into the TCA cycle via GDH, converted into GABA via GAD or shunted into the transulfuration pathway via GSS. After glutamate is released from presynaptic

neurons, a small percentage is taken up by post-synaptic glutamate receptors which mediate post-synaptic impulses via calcium-dependent signaling cascades. Chronic glutamatergic activation

leads to an influx of calcium and mitochondrial dysfunction in post-synaptic neurons. The majority of presynaptically-released glutamate di�uses out of the synaptic cleft and is taken up by glial cells

where it is either integrated into the TCA cycle or converted to glutamine by GS. Glial glycolysis also supplies neurons with key substrates for the synthesis of the antioxidant GSH. (B) In dopaminergic

neurons, DA is either deaminated by MAO or auto-oxidized by mitochondrial-derived ROS to produce quinones leading to oxidative stress, mtDNA damage and OXPHOS deficits. DA can also enter

the mitochondria to directly inhibit the rate-limiting complex in the ETC. Upon neuronal excitation, DA is released into the synaptic cleft and reimported into presynaptic neurons or taken up by

surrounding glial cells where it is degraded by COMT or MAO. DA can also be metabolized by DBH in synaptic vesicles to generate NE which exerts antioxidant e�ects via the inhibition of NOX

signaling in microglia. (C) Serotonin (5-HT) is produced from tryptophan via MAO in serotonergic neurons while melatonin is produced from 5-HT in pinealocytes. 5-HT upregulates mitochondrial

biogenesis, oxidative capacity and ATP synthesis and decreases oxidative stress while melatonin functions as an antioxidant and anti-inflammatory agent. Melatonin also mitigates against

mitochondrial membrane permeabilization by activating Bcl-2. Once released, 5-HT can be taken up by either presynaptic neurons or glial cells via 5-HT transporters and broken down by MAO. In

glial cells, tryptophan is oxidized via the KYN pathway. Astrocytes produce the neuroprotective metabolite KYNA while microglia generate the neurotoxic metabolite QUIN. Microglial immune

activation in response to pro-inflammatory stimuli upregulates the expression of IDO1 to facilitate tryptophan transport into the cell, which both decreases local tryptophan availability and increases

the production of QUIN in microglia. GDH, glutamate dehydrogenase; GAD, glutamate decarboxylase; GSS, glutathione synthetase; GS, glutamine synthetase; GSH, glutathione; DA, dopamine; MAO,

monoamine oxidase; ROS, reactive oxygen species; mtDNA, mitochondrial DNA; OXPHOS, oxidative phosphorylation; ETC, electron transport chain; COMT, catechol-Omethyltransferase; DBH, DA

betahydroxylase; NE, norepinephrine; NOX, Nicotinamide adenine dinucleotide phosphate oxidase; Bcl-2, B-cell lymphoma 2; SERT, serotonin transporter; KYN, kynurenine; KYNA, kynurenic acid;

QUIN, quinolinic acid; IDO1, Indoleamine-pyrrole 2,3-dioxygenase.
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NAD+ (391); conversely, QUIN contributes to mitochondrial

dysfunction by increasing cytoplasmic calcium concentration

and superoxide production in microglia (392). A pathogenic

shift toward an inflammatory microglial phenotype upregulates

tryptophan import, decreasing local tryptophan availability

for serotonin synthesis and further increasing the rate of

QUIN production (392). Moreover, QUIN upregulates

glutamatergic neurotransmission and inhibits glutamate uptake

from the synaptic cleft, thereby promoting excitotoxicity

(393). Altogether, a disruption of the relationship between

mitochondrial function and the glutamatergic, serotonergic

and dopaminergic neurotransmitter cycles increases oxidative

stress and shifts glial metabolism toward glycolysis, thereby

contributing to gliosis, excitotoxicity and neuroinflammation

(246, 373, 393).

Thus, these neurotransmitter systems are intrinsically

coupled to, and mediators of, the relationship between

mitochondrial dysfunction, neuroinflammation and HPA

axis signaling that is implicated in ELS and ASC. This

discussion highlights that MAL plays a central role in the link

between molecular stress signatures and neurophysiological-

and neurochemical- mechanisms that lead to psychopathology.

Moreover, these mechanisms are known to contribute to distinct

neurological and behavioral aspects of ASC etiology and could

function as an underlying susceptibility to allostatic load. This

provides a preliminary conceptual framework for a molecular

signature that may underly autistic burnout, mediate the

relationship between social camouflaging and suicidality,

or predispose autistic individuals to psychopathology.

The interactions between environmental, psychological,

physiological and molecular processes involved in ASC are

notably understudied and the hypothesis proposed here

remains to be further investigated. However, this model does

illustrate the necessity for an interdisciplinary framework in

molecular autism research. Moreover, our hypothesis describes

a mechanistic interplay between MAL, HPA and neuroimmune

signaling that could be an important target for future research

toward improving quality of life in ASC.

Conclusion: An integrative
biopsychosocial framework for
psychopathology in ASC

Molecular research into ELS is increasingly integrating

various paradigms from disparate scientific disciplines in

order to develop a cohesive understanding of pathological

stress responses (394). While ELS research is distinctly and

fundamentally separate from autism research, this discussion

has highlighted the utility of such an integrative framework to

shape molecular research into ASC. The hypothesis presented

in this article builds on separate bodies of work, that are

well-documented in their respective fields, to propose a

framework for the development of psychopathology in autism

(Figure 5). This framework integrates emerging literature

that is foregrounding autistic experiences with the molecular

model for allostatic load that quantifies the cumulative impact

of biological and psychosocial stress (40). We propose that

ASC is associated with both an increased exposure to, and an

underlying molecular susceptibility to, ELS that contributes

to allostatic overload and the subsequent development

of psychopathology.

There is substantial evidence that autistic children

are more likely to be exposed to ELS and psychosocial

stress, while also having inadequate internal resources to

cope with these stressors. The recent characterization of

concepts like social camouflaging and autistic burnout further

highlights that autistic children are exposed to chronic and

distinct forms of stress throughout adolescence that often

go unrecognized. Chronic social camouflaging creates an

increasing mismatch between internal capacity and external

expectations, culminating in autistic burnout. Importantly,

both social camouflaging and autistic burnout are known

to contribute to the development of psychopathology and

suicidality in ASC. However, the physiological mechanisms

that are involved in these phenomena, or their relationship

to each other, remain unknown and largely unexplored by

molecular researchers.

The molecular mechanisms that mediate the relationship

between ELS, CAS and psychopathology revolve around

interdependent signaling between mitochondrial metabolism,

inflammatory immune responses and stress-responsive HPA

signaling. MAL is emerging as a central modulator of the

neurophysiological processes that are disrupted by ELS

and contribute to psychopathology. Notably, mitochondrial

dysfunction is an underlying component of ASC physiology that

is sensitive to GC signaling and plays a central role in regulating

HPA axis and innate immune responses. Mitochondria

function as essential regulators of neurodevelopment by

facilitating the metabolic shift toward OXPHOS that is required

for neuronal differentiation. Mitochondria also modulate

microglial activation, which is necessary for synaptogenesis

and synaptic pruning during neurodevelopment. Moreover, the

relationship between mitochondrial metabolism and microglial

activation regulates myelin turnover, neuronal function,

redox homeostasis and glial inflammatory state throughout

childhood and adolescence. The HPA axis is intrinsically

coupled to both mitochondrial metabolism and inflammatory

signaling, and this relationship is consistently shown to be

disrupted by ELS and altered in psychopathology. Notably, the

serotonergic, dopaminergic and glutamatergic neurotransmitter

systems that are directly involved in many psychological

disorders are closely coupled to mitochondrial metabolism,

modulated by the HPA axis and represent independent

mechanisms that contribute to gliosis and excitotoxicity. This

article has highlighted how these molecular mechanisms are
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FIGURE 5

An integrative biopsychosocial vulnerability framework for the development of psychopathology in ASC (created with BioRender.com). There is

a well-established relationship between exposure to early life stress (ELS) or chronic adolescent stress (CAS) and the development of

psychopathology. Autism is associated with both a significantly increased risk of exposure to ELS and high rates of psychopathology and

suicidality. Emerging characterizations of internal autistic experiences including social camouflaging and autistic burnout overlap closely with

established definitions for ELS and lead to increased levels of anxiety, depression, self-injury and suicidality in ASC. Thus, the development of

psychopathology in autism may be mediated by an increased exposure to toxic stressors culminating in allostatic overload. Molecular stress

research has demonstrated that mitochondrial allostatic load (MAL) plays a central role in psychopathology following ELS by disrupting a closely

coupled network between neuroimmune and neuroendocrine signaling. Cellular neuroscience has comprehensively characterized the tightly

regulated biochemical relationships between (i) mitochondrial dysfunction and neuroinflammation, (ii) mitochondrial metabolism and the HPA

axis, and (iii) inflammatory- and HPA-signaling. Notably, ASC etiology is also characterized by mitochondrial dysfunction, gliosis and

neuroinflammation, and a complex signature of HPA axis dysregulation. Moreover, this three-way molecular interplay converges on the

regulation of key neurodevelopmental processes implicated in the response to ELS and psychopathology that are also associated with distinct

neurophysiological, neurochemical and behavioral aspects of ASC etiology. Collectively, this could point to a molecular vulnerability to the

development of psychopathology in ASC, highlighting how psychosocial and biological factors converge to increase the risk of

psychopathology and suicidality.

implicated in the neurophysiology and neurochemistry of

autism and contribute to the development of psychopathology

following ELS.

Considering both the increased risk of exposure and

underlying vulnerability to ELS in autism emphasizes how

psychosocial and biological factors converge to increase

the risk of psychopathology. This interplay could act as

a novel mechanism that contributes to the high rates of

depression and suicidality in autistic individuals and may

reveal a biological signature that underlies autistic burnout.

Autistic burnout, depression and suicidality are factors

that directly impair health and wellbeing for people with

autism. Much of the literature highlights the importance

of improved access to accommodations, earlier diagnosis

and decreased stigmatization of autistic traits in mitigating

psychopathology in ASC. In addition, our framework proposes

that investigating an underlying susceptibility to ELS could

inform research into novel molecular interventions. Targeted

therapeutic strategies could potentially protect autistic

children from the development of psychopathology, facilitate

recovery from autistic burnout, or identify diagnostic tools

to differentiate autistic burnout from clinical depression.

In particular, this framework highlights the potential to

harness recent advances in mitochondrial psychobiology to
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better characterize the molecular determinants of mental

health in autism. Ultimately, this highlights the utility of

molecular research that foregrounds autistic experiences to

work toward strategies that tangibly improve the quality of life

of autistic individuals.
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311. Majcher-Maślanka I, Solarz A, Wedzony K, Chocyk A. The effects of early-
life stress on dopamine system function in adolescent female rats. Int J Dev
Neurosci. (2017) 57:24–33. doi: 10.1016/j.ijdevneu.2017.01.001

312. Catale C, lo Iacono L, Martini A, Heil C, Guatteo E, Mercuri NB,
et al. Early life social stress causes sex- and region-dependent dopaminergic
changes that are prevented by minocycline. Mol Neurobiol. (2022) 59:3913–32.
doi: 10.1007/s12035-022-02830-6

313. Oswald LM, Wand GS, Kuwabara H, Wong DF, Zhu S, Brasic JR.
History of childhood adversity is positively associated with ventral striatal
dopamine responses to amphetamine. Psychopharmacology. (2014) 231:2417–
33. doi: 10.1007/s00213-013-3407-z

314. Pruessner JC, Champagne F, Meaney MJ, Dagher A. Dopamine release
in response to a psychological stress in humans and its relationship to early life
maternal care: a positron emission tomography study using [11C]Raclopride. J
Neurosci. (2004) 24:2825–31. doi: 10.1523/JNEUROSCI.3422-03.2004

315. Averill LA, Abdallah CG, Fenton LR, Fasula MK, Jiang L, Rothman DL, et al.
Early life stress and glutamate neurotransmission in major depressive disorder. Eur
Neuropsychopharmacol. (2020) 35:71–80. doi: 10.1016/j.euroneuro.2020.03.015

316. Underwood MD, Kassir SA, Bakalian MJ, Galfalvy H, Dwork AJ,
Mann JJ, et al. Serotonin receptors and suicide, major depression, alcohol
use disorder and reported early life adversity. Transl Psychiatry. (2018) 8:1–
15. doi: 10.1038/s41398-018-0309-1

317. Pompili M, Serafini G, Innamorati M, Möller-Leimkühler AM,
Giupponi G, Girardi P, et al. The hypothalamic-pituitary-adrenal axis
and serotonin abnormalities: a selective overview for the implications
of suicide prevention. Eur Arch Psychiatry Clin Neurosci. (2010)
260:583–600. doi: 10.1007/s00406-010-0108-z

318. Lee EJ, Choi SY, Kim E. NMDA receptor dysfunction in autism spectrum
disorders. Curr Opin Pharmacol. (2015) 20:8–13. doi: 10.1016/j.coph.2014.10.007

Frontiers in Psychiatry 25 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.985713
https://doi.org/10.1089/ars.2014.6200
https://doi.org/10.3390/brainsci10070447
https://doi.org/10.3390/neurosci3010008
https://doi.org/10.3233/BPL-170044
https://doi.org/10.1007/s00018-019-03430-9
https://doi.org/10.1016/j.conb.2021.05.003
https://doi.org/10.1016/j.bbagen.2015.01.022
https://doi.org/10.3390/metabo11060359
https://doi.org/10.1007/s00018-021-03802-0
https://doi.org/10.1016/j.neuron.2014.09.001
https://doi.org/10.1134/S2079059717080020
https://doi.org/10.3390/ijms19051544
https://doi.org/10.1038/s41467-021-26131-z
https://doi.org/10.3233/JAD-160702
https://doi.org/10.3233/JAD-160726
https://doi.org/10.1089/ars.2011.4277
https://doi.org/10.1111/j.1471-4159.2004.02872.x
https://doi.org/10.1016/j.neuroscience.2014.09.018
https://doi.org/10.3233/JAD-170283
https://doi.org/10.3389/fgene.2020.590068
https://doi.org/10.1016/j.pnpbp.2021.110508
https://doi.org/10.3389/fnmol.2018.00010
https://doi.org/10.3389/fimmu.2018.02576
https://doi.org/10.1073/pnas.1916646117
https://doi.org/10.5483/BMBRep.2019.52.7.137
https://doi.org/10.1134/S0006297921050072
https://doi.org/10.1177/1073858420921378
https://doi.org/10.1016/j.bbr.2019.112306
https://doi.org/10.1016/j.ynstr.2021.100303
https://doi.org/10.1111/adb.13077
https://doi.org/10.1016/j.neuropharm.2020.108412
https://doi.org/10.1016/j.bbr.2022.113764
https://doi.org/10.3390/jpm11040315
https://doi.org/10.1016/j.neubiorev.2018.09.003
https://doi.org/10.1016/j.ijdevneu.2017.01.001
https://doi.org/10.1007/s12035-022-02830-6
https://doi.org/10.1007/s00213-013-3407-z
https://doi.org/10.1523/JNEUROSCI.3422-03.2004
https://doi.org/10.1016/j.euroneuro.2020.03.015
https://doi.org/10.1038/s41398-018-0309-1
https://doi.org/10.1007/s00406-010-0108-z
https://doi.org/10.1016/j.coph.2014.10.007
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mahony and O’Ryan 10.3389/fpsyt.2022.985713

319. Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto
M, Vetri L, et al. The neurochemistry of autism. Brain Sci. (2020)
10:1–18. doi: 10.3390/brainsci10030163

320. Essa MM, Braidy N, Vijayan KR, Subash S, Guillemin GJ.
Excitotoxicity in the pathogenesis of autism. Neurotoxicity Res. (2013)
23:393–400. doi: 10.1007/s12640-012-9354-3

321. Vieira MM, Jeong J, Roche KW. The role of NMDA receptor and neuroligin
rare variants in synaptic dysfunction underlying neurodevelopmental disorders.
Curr Opin Neurobiol. (2021) 69:93–104. doi: 10.1016/j.conb.2021.03.001

322. Yang P, Chang CL. Glutamate-mediated signaling and autism spectrum
disorders: emerging treatment targets. Curr Pharm Des. (2014) 20:5186–
93. doi: 10.2174/1381612819666140110120725

323. Zheng Z, Zhu T, Qu Y, Mu D. Blood glutamate levels in autism
spectrum disorder: a systematic review and meta-analysis. PLoS ONE. (2016)
11:e0158688. doi: 10.1371/journal.pone.0158688

324. Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova
OP, Chirumbolo S, et al. The role of glutathione redox imbalance
in autism spectrum disorder: a review. Free Radic Biol Med. (2020)
160:149–62. doi: 10.1016/j.freeradbiomed.2020.07.017

325. Kawada K, Kuramoto N, Mimori S. Possibility that the onset of autism
spectrum disorder is induced by failure of the glutamine-glutamate cycle. Curr Mol
Pharmacol. (2020) 13. doi: 10.2174/1874467213666200319125109

326. László A, Horváth E, Eck E, Fekete M. Serum serotonin, lactate and
pyruvate levels in infantile autistic children. Clin Chim Acta. (1994) 229:205–
7. doi: 10.1016/0009-8981(94)90243-7

327. Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem
F, Drouot X, et al. The serotonin-N-acetylserotonin-melatonin pathway
as a biomarker for autism spectrum disorders. Transl Psychiatry. (2014)
4:e479. doi: 10.1038/tp.2014.120

328. Aaron E, Montgomery A, Ren X, Guter S, Anderson G, Carneiro
AMD, et al. Whole blood serotonin levels and platelet 5-HT 2A
binding in autism spectrum disorder. J Autism Dev Disord. (2019)
49:2417–25. doi: 10.1007/s10803-019-03989-z

329. Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in
autism spectrum disorder: from biomarker to animal models.Neuroscience. (2016)
321:24–41. doi: 10.1016/j.neuroscience.2015.11.010

330. Daly E, Tricklebank MD, Wichers R. Neurodevelopmental roles and the
serotonin hypothesis of autism spectrum disorder. In: The Serotonin System.
Amsterdam: Elsevier (2019). p. 23–44.
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