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Autism spectrum disorder (ASD) is a neurodevelopmental disorder

characterized by variable impairment of social communication and repetitive

behaviors, highly restricted interests, and/or sensory behaviors beginning early

in life. Many individuals with ASD have dysfunction of microglia, which may

be closely related to neuroinflammation, making microglia play an important

role in the pathogenesis of ASD. Mounting evidence indicates that microglia,

the resident immune cells of the brain, are required for proper brain function,

especially in the maintenance of neuronal circuitry and control of behavior.

Dysfunction of microglia will ultimately a�ect the neural function in a variety

of ways, including the formation of synapses and alteration of excitatory–

inhibitory balance. In this review, we provide an overview of how microglia

actively interact with neurons in physiological conditions and modulate the

fate and functions of synapses. We put a spotlight on the multi-dimensional

neurodevelopmental roles of microglia, especially in the essential influence

of synapses, and discuss how microglia are currently thought to influence

ASD progression.
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Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders

characterized by impairments in social communication and restricted or repetitive

behaviors or interests (1). The worldwide prevalence of ASD has increased, across all 11

Autism and Developmental Disabilities Monitoring (ADDM) sites in the United States,

1/44 has been estimated to have ASD of 8 years old children reported by the American

Centers for Disease Control and Prevention (CDC) in 2021, and incidence and median

age varied widely from site to site (2). Accumulating evidence has revealed that both

genetic (e.g., de novo variants, copy number variations, and large deletions) (3) and

environmental factors [e.g., perinatal events (4) and maternal obesity (5)] are potential

risk factors for ASD (6). Less is known about the physiological pathology of ASD,

but it may involve a number of systemic connections, nerves, biochemistry, cellular,

and molecular characteristics (5). It has been recognized that complex interactions

and combinations of genetic, environmental factors, and immune dysfunction can

play a potential role in its development (7, 8). In particular, previous research has

highlighted that ASD is an imbalance of central nervous system homeostasis caused

by chronic inflammatory responses, which are often accompanied by the activation of

microglia (9, 10).
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Neurodevelopmental abnormalities in early life are an

essential mechanism of ASD development, in which microglia

work as critical regulators. Specifically, neurons have been

examined to be over-produced than required for the proper

function of the development of the cerebral cortex during fetal

neurogenesis (11). Microglia probe their micro-environment

and correlate with the activity of individual synapses (12,

13). To maintain environmental stability, when neurogenesis

is nearing completion, microglia limit the overproduction of

neurons by swallowing precursor neural cells. In addition,

they shape the connections between synapses through synaptic

pruning during postnatal brain development (11, 14). Once

neurodevelopment is completed, microglia act as innate

immune cells in the CNS by monitoring the microenvironment

and becoming activated when irritated by injury, infection,

or disease (15, 16). In the early stages of brain development,

chronic neuroinflammation could activate microglia, which

could affect the length, orientation, and assignment of dendritic

spines on neurons, especially excitatory and inhibitory neuron

assignment, inducing the impairment of behavioral and

cognitive (17) or social communication impairment in ASD

(18, 19). For example, it has been observed inmice that increased

synaptic density was caused by inhibited microglial autophagy,

ultimately leading to decreased sociability (20).

In summary, recent studies have shown that activation

of microglia can influence the structure and function of

synapses and the process of neurodevelopment. For instance,

synaptic defects disrupt the excitatory and inhibitory balance

and synaptic pruning, and the accurate mechanisms in the

neurodevelopment of microglia in cellular and molecular ASD

remain to be fully elucidated. The main idea of this review

is that microglial activation is associated with ASD and may

have a significant impact on synaptic function. This study will

summarize the factors and pathways that may be involved

in microglia and synaptic function, thus providing a new

understanding of the role of microglia in ASD.

Origin and function of microglia

As a vital role in regulating brain development, neuronal

networks, and injury repair, microglia are the primary cells that

maintain defense stability throughout the brain parenchyma

(21). Recent studies highlight that microglia are a type of

phagocytic cell in the brain that can eliminate entire cells or

substructures of cellular, especially synapses both in humans and

mice (16, 22).

The origin of microglia is shown concretely in mouse

studies. During the first trimester after pregnancy in murine, the

fate-mapping analysis revealed that adult microglia derive from

C-KIT+/CD41+ erythromyeloid myeloid progenitors that arise

before embryonic day 8 (E8.0) in the developing yolk sac (23).

During fetal development, microglia progenitor cells migrate

and colonize in the brain before cerebral vascular branching is

completed and the blood–brain barrier (BBB) is fully shaped

(24, 25). In mice, these precursors migrate into the embryonic

brain around E9.5 and are restricted by the fully completed BBB

as an autonomous, long-lived cell population that maintains the

ability to divide and self-renew throughout the lifespan (26–28).

During neurogenesis of early brain development, excess

synaptic connections will be removed to maintain proper

connections by synaptic sculpting, which is important for

maintaining normal neural function (29). Microglia exert a

vital role in regulating immature synapses during development

viaengulfing synaptic structures and synaptic pruning (30). For

example, in mice with the defective function of microglia,

the spine density and the frequency of miniature excitatory

postsynaptic currents were increased (20, 31). Therefore, it could

be speculated that the aberrant function of microglia influenced

by risk factors of genetics and environment, could lead to

neurodevelopmental disorder in ASD.

The regulation of microglia on
inflammation

Nowadays, neuroinflammation has increasingly

gained interest as a target to explore the mechanism of

neurodevelopment (32). The occurrence and spread of

neuroinflammation are closely related to the interaction

between microglia and neurons (33). While certain features of

closely regulated proinflammatory activity are necessary for

healthy neural development, uncontrolled early inflammation

may alter the programming of the microglial population itself,

thereby perpetuating neuroinflammatory damage produced

early in life (34).

Microglia are thought to be “quiescent” but recent evidence

suggests that they continuously scan the brain environment

and make contact with synapses in the normal brain (29, 35).

Microglia are easily affected by environmental high-risk factors,

especially in pregnancy and prenatal development. Interestingly,

in the early pathological process of many diseases, microglia are

rapidly activated, which is characterized by increased somatic

cell size and pro-inflammatory cytokines. Reactive microglia

could have an important impact on different processes of

neuroinflammation. They can not only act directly via the

abundantly expressed or release the molecules or mediators,

such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor

necrosis factor -α (TNF-α), NO, C-X-C chemokine receptor

type 4 (CXCL-4), and toll-like receptors (TLRs) (36), but also

indirectly act as catalysts and amplify cellular and molecular

responses, influencing neurogenesis, and BBB permeability (37,

38). Microglia activation would lead to abnormal neurogenesis

and changes in synapse pruning, then resulting in structural

dysfunction of neurons in adults and neuronal–microglia

interaction disorders in the subsequent process (29, 39, 40).
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Additionally, specific histone marks deposited in genomic

regions associated with inflammatory pathways maintain

microglia priming and long-lasting memory following

initial exposure to inflammatory stimuli in animal studies.

In subsequent immune stimulation, aberrant activation of

inflammatory pathways in microglia leads to a loss of immune

homeostasis (41). Therefore, if there is an immune challenge

early in life, microglia with enhanced activation may be left

in the brains of offspring (42, 43). This may be an important

mechanism by which children exposed to environmental

risk factors early in life are prone to neuroinflammation and

abnormal synapse formation.

Recent evidence also indicates that the ongoing process of

neuroinflammation suffered by children with ASD may come

from intestinal microbiota dysfunction, resulting in microglial

activation in different brain areas (44). When microglia

are activated continuously for a period, mediators will be

constantly produced and then lead to the diminution of synaptic

connections and neuronal cell death (45).

Microglia in ASD

Several studies have shown that there are obvious

abnormalities of microglia both in the morphological

characteristics and the functions in the brains of patients

with ASD, which would cause defects in social interaction and

communication (46, 47). Brain tissues obtained from 11 patients

with ASD have demonstrated microglia were consistently

activated in all brain regions, especially in the cerebellum

(40). Cerebral cortex of patients with ASD exhibited altered

microglial activity as evidenced by morphological changes,

including the increased microglial soma size and extension of

filopodia (46). In addition, the 18 kDa translocator protein

(TSPO) is highly responsive to inflammatory stimulation, which

seemed as an in vivo marker of microglia activation (48, 49).

Recent studies have sought to detect activated microglia in

patients using positron emission tomography for the TSPO (48),

and shreds of evidence suggested TSPOwas broadly increased in

different brain regions of ASD, including pre-frontal, temporal,

cerebellar, and anterior cingulate cortices (50).

The functional regulation of microglia by many similar

genes emphasizes their important roles in ASD. Children with

Rett syndrome (RTT) may display many autism-like features,

such as impairment of social communication and skills, reduced

eye contact as well as restricted interests, and they initially

may be diagnosed with autism (51). RTT is attributed to

the mutations of the MECP2 gene (52). To better study the

pathogenesis of RTT, the MECP2-knockout mice model is

often used, which exhibits similar behavioral characteristics

to patients with RTT. Previous studies have shown that the

autophagy activity of microglia is significantly reduced in

MECP2-knockout mice (51). Specific expression of MECP2 in

cells of microglia could partially rescue the mouse phenotype

in MECP2-knockout mice (29). In addition, disease progression

can be prevented by the implantation of bone-derived myeloid

cells with microglial phenotype into the brain parenchyma

through wild-type bone marrow transplantation into Mecp2-

null hosts under irradiation conditioned. However, when

cranial irradiation is blocked by a lead shield, and microglial

engraftment is prevented, the disease will not be arrested (53).

The report confirms the strong neurotoxic activity of glutamate

in conditioned culture medium (CM) obtained from Mecp2

deficient microglia, but not astrocytes. Hippocampal neurons

treated with CM from Mecp2 deficient microglia showed

abnormal development and bead-like dendritic morphology

over 24 h, as well as signs ofmicrotubule destruction and damage

to postsynaptic glutamate energy components (54). Evidence

demonstrates that microglia are involved in pathogenesis with

synaptic loss through excessively engulfing, thereby eliminating

presynaptic inputs at the end stages of disease (≥P56Mecp2-null

mice) (55). Therefore, the appropriate microglial activity may be

critical for the development or maintenance of neuronal circuits.

Some genes have been validated in mouse models and

behavioral testing for the possibility of pathogenicity in ASD.

For example, evidence shows that exaggerated translation of

eIF4E in microglia, but not astrocytes or other neurons, could

lead to autism-like behaviors in male mice. Translation of

mRNAs requires binding of a translation initiation factor eIF4E

with cap (56). Elevating eIF4E translation in males, increases

microglial density and size, shifting the function to enhanced

phagocytic capacity and altered synapse formation (57). Atg7-

deficient microglia resulted in social behavioral defects and

repetitive behaviors, characteristic features of ASD. It has

shown increasing defects in synaptic refinement, which is

significantly correlated with the function ofmicroglia in synaptic

pruning (20).

There are several environmental factors that contribute to

placental inflammatory histological changes and the production

of pro-inflammatory cytokines, including maternal obesity,

depression, and smoking (58, 59). For example, the expression

of TLR4 mRNA in placental immune and non-immune cells

increased 3–9-fold in obese mothers, which correlated with IL-

6 expression in placental, leading to microglial activation in

offspring (60, 61).

On the one hand, we can find that a variety of ASD-

related genes could cause changes in microglia morphology

or function, leading to the onset and development of the

disease. On the other hand, heterogeneous environmental

states, including maternal asthma, gestational diabetes, pre-

eclampsia, and air pollutants exposure, are inducing microglial

activation and increasing the risk of ASD (62–64). Each

proinflammatory state may have multiple mechanisms of

action, and one of the important mechanisms is that the

activation microglia regulate metabolic stress, oxidative stress,

and neuroendocrine mechanisms to affect neural development
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(65, 66). The assumption is that microglia are particularly

important in the etiopathogenesis of genetic and environmental

factors in ASD. Therefore, it is essential to improve our

comprehension of how microglia affect neural development.

MIA and microglia activation

Several environmental risk factors increase the risk of

ASD, such as lifestyle, prenatal or maternal exposure, including

maternal smoking, toxins, gestational diabetes mellitus (GDM),

thyroidism alteration, and infections (viral or bacterial) (4, 67).

For instance, exposure to maternal GDM diagnosed by 26

weeks of gestation was linked to an increased risk of ASD in

offspring in a large, multiethnic clinical cohort of singletons

(68). Epidemiological studies reported a significant association

between allergic diseases and ASD risk both in maternal

and infants, including asthma, eczema, atopic dermatitis,

allergic rhinitis, and food allergies (69–71). One study has

demonstrated the activation of spinal microglia in adult asthma

and atopic dermatitis models (72), whereas another study

shows that allergic immune activation in prenatal maternal

attenuated microglial activation in rats (73). A meta-analysis

by Jiang et al. shows that maternal infections during the first

or second trimester of pregnancy, whether bacterial, viral,

or otherwise, were associated with a significantly increased

risk of ASD in offspring (64). Two meta-analyses conducted

by Chen et al. and Wu et al. have found that maternal

autoimmune illness is associated with a significant, precise,

and consistent increase in the risk of ASD in the offspring

(62, 74). Maternal immune dysregulation during gestation is a

high-risk factor for autism (75). In cohort studies, infections

during pregnancy, such as rubella or influenza viruses, have

been shown to have a significant impact on neurodevelopmental

processes by causing immune disruptions and cytokine

production in the mother (75). Those factors contributing

to neurodevelopmental disorders may correlate with altered

immune status characterized by microglial activation in various

parts of the brain, which is also related to genetic and epigenetic-

related effects, neurotransmitter alterations and abnormalities in

signaling pathways, and endocrine disruption (4, 20, 76–78).

Maternal immune activation (MIA) models of monkeys

and rodents have attracted much attention nowadays. A

prenatal polyinosinic polycytidylic acid (poly I:C) model in

rhesus monkeys represented increased repetitive behaviors,

abnormal communication, and impaired social interactions.

First-trimester MIA offspring showed atypical social behavior

by inappropriately approaching or remaining in immediate

proximity to an unfamiliar animal (79). Extensive work by

Dr. Paul Patterson and other highly influential researchers has

elucidated part of the mechanisms by which viral infection

or viral mimetic MIA in rodents models, which can alter

offspring immune function persistently and modify fetal brain

development, ultimately lead to the phenotype of autism-like

behaviors (42, 80, 81).

Additionally, research in both human and animal models

suggested that MIA, during crucial times for neurodevelopment

and immune system development, programs the fetal brain

and immune system through inflammatory and epigenetic

mechanisms (42). MIA models are identified to be related

to altered immune status, increased oxidative stress, and an

active neuroinflammatory process characterized by microglial

activation in various brain regions (82, 83). There are a lot

of cytokines that are related to the microglia involved in this

progress. MIA could promote the release of pro-inflammatory

cytokines, such as IL-6, IL-1β, and TNF-α. In addition, these

cytokines may cross the placenta directly into fetal circulation

(84) and promote the activation of microglia (85, 86). Then,

activated microglia could secrete several cytokines, including IL-

6, IL-1β, and TNF-α, to regulate neuronal function and neural

plasticity (87).

The vital effect of those cytokines in fetal neurodevelopment

of the MIA mice models has been well established (42, 88, 89).

IL-6, one of the key factors, was enhanced in the maternal

serum, as well as in the placenta and fetal brain in MIA models.

Autism-like behavioral changes were not seen in the offspring

of IL-6 knockout mice after MIA treatment (90). The combined

use of anti-IL-6 antibodies in pregnant mice exposed to poly

(I:C) prevented behavioral defects and normalized variations

in brain gene expression (90). Wei and his colleagues have

confirmed that IL-6 overexpression could impair and facilitate

the formation of excitatory synapses between mouse cerebellar

(91). IL-1β could inhibit long-term potentiation induction

which is involved in reducing synaptic strength (92), as well

as modulating memory and learning (93). TNF-α is another

immunomodulatory molecule that could produce by glial cells

in the CNS. Chronic increase of TNF-α may potentially hinder

learning and memory in ASD by scaling up synapses during

prolonged activity blockade (94).

Proinflammatory cytokines that cross the disruption BBB

(driven by increased proliferation of microglia overexpressing

of cyclooxygenase-2 in the fetal brain) may initiate a

neuroinflammation cascade, which promotes microglial

overactivation and behavioral alterations of ASD life span (95).

Immune activation during pregnancy has been considered a

potential cause of dysfunctional synaptic pruning and abnormal

microglia-mediated neurogenesis (96, 97), which will be

discussed soon.

How microglia act on synapses

As described by Peter in the early 1990s, early brain

development was characterized by marked changes in synaptic

connections. In the human cortex, synaptic density rises

significantly during the first 1–2 years of life, after which
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competitive and activity-dependent abolition of synapses

reduces synaptic connection density by approximately 50%

(98). That prolonged pruning process was crucial for the

proper development of brain circuits and cognitive functions.

In autism, the long-term pruning process was crucial not only

in shaping brain circuits by increasing dendritic spine densities

but also in the normal development of cognitive function in

the process of neural development (99). Besides, To keep a

steadily internal environment homeostasis, cells are needed

to be equipped with helpers capable of regulating synaptic

exfoliation and remodeling, scavenging abnormal proteins,

invading pathogens, and damaging tissue fragments (100).

Activation of microglia can respond to invading pathogens

and local fragments or proteins in a neuroprotective manner

(101–103). There are similar pathophysiological characteristics

can be identified in the brain between the neurodevelopment

diseases and neurodegenerative diseases (104). These actions

ensure appropriate signal transduction to regulate clearance

processes and transition the response to one of resolution and

repair, providing nutritional support for the release of various

growth factors (104). Any deficiency in the ability of microglia,

either a reduction in cell number or the loss of function,

could alter the normal structure and function of brain health

(104). Abnormal microglia function plays a constructive role

in the early occurrence of those diseases (105, 106). As will be

mentioned later, activated microglia cloud induce pathways that

impacted synapse function and ultimately neuronal function.

Abnormal cortical circuit development can be found

in many neurodevelopmental disorders and neuropsychiatric

diseases, which may be a striking feature, including ASD,

schizophrenia, and intellectual disability (107, 108). And

deregulation of synaptic plasticity in ASD has been approved

(109). The function of microglia in neural circuits and

synaptic plasticity has received extensive attention (110, 111).

In Tsc2+/− ASD mice and patDp/+ mice that it can

be found elevated spined densities in the temporal cortex

and cerebellum and defected adolescent pruning (47, 112).

In neurons, axon guidance, vesicle release, dendritic spine

structure, spine pruning, and synaptic plasticity were closely

related to microglia function (113). Microglia dysfunction

impaired synaptic pruning and led to deficits in social

behavior (20). For example, microglia were found to play

an important role in the development of synaptic plasticity.

Atg7 is necessary for the formation of autophagic vesicles to

transport substances to lysosomes. Atg7-deficient mice showed

autism-like behaviors and increasing dendritic spine density.

Atg7-deficient microglia co-cultured with neurons showed

defective synaptosome breakdown, confirming that microglia

malfunction causes aberrant synaptic pruning (20). The spine

numbers were also increased in mice deficient in microglial

Atg7 (114, 115). Ptenm3m4/m3m4 mice without nuclear PTEN

have shown autism-like behaviors and active microglia with

increased Iba1 and C1q expression, which identifies microglial

activation has an etiological role in ASD via regulating synaptic

pruning (116).

In the mammalian cerebral cortex, there is a dynamic

process of simultaneous formation and elimination/pruning

in postnatal synaptic development (117). There are excessive

synapses produced in early life which is critical for the

remodeling of neural circuits. Synaptic pruning is continuous

from childhood to adolescence, and alters the density of

dendritic spines peaks in early childhood, followed by a

sharp decline to adult levels in later life, culminating in

the formation of normal neural network relationships (118).

Therefore, we list a number of elements and mechanisms that

demonstrate the significance of microglia in synaptic function

(Table 1).

Related mechanisms of microglia in ASD

GABA

Gamma-aminobutyric acid (GABA), an essential

neurotransmitter, could promote neural stem cell proliferation,

neuron migration, axon growth, synapse formation, and circuit

perfection. In addition, as the major inhibitory neurotransmitter

in the mature brain, it also could mediate the transmission

of nerve signals (119). Emerging evidence suggested that it is

a common pathophysiological phenomenon that imbalance

between inhibitory and excitatory transmission of neurons in

children with ASD (157). An imbalance of E/I in neural circuits

has been postulated as a key neurobiological characteristic of

ASD (158). Notably, evidence has shown abnormal expression

of GABA receptors in the postmortem brain of patients with

ASD (159).

Microglia express receptors for sensing synaptic activity,

such as GABA and glutamate (120). GABA can initiate a

transcriptional synaptic remodeling program within microglia

to shape inhibitory connections without affecting excitatory

synapses. Loss of function of GABA receptors in microglia

disrupts this process and leads to abnormal behavior (121).

Microglia depletion or GABA receptors ablation may lead

to superabundant synapses (121). Co-culture with activated

microglia impaired synapse formation and synaptic GABA

release of induced pluripotent stem cells (iPSCs) (122). In

mice, blocking GABA transport abolished stimulation-induced

microglial responses (120). Furthermore, activation of the toll-

like receptors 4 (TLR4) signaling pathway following maternal

LPS exposure induced the abnormal activation of microglia,

leading to lower social and exploration behavior, and more

repetitive behaviors in offspring (160, 161). LPS can activate

microglia through TLR4 and release the proinflammatory

cytokines, IL-1β, which subsequently inhibits GABA receptor

activity at postsynaptic sites and reduces GABA synthesis at

presynaptic sites (123, 162).
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TABLE 1 Related mechanisms in microglia acting on synapses.

Normal function Dysfunction in microglia Reference

GABA Promoting neural stem cell proliferation, neuron

migration, axon growth, synapse formation, and

circuit perfection

1. Microglia depletion or GABA receptors ablation may lead to

superabundant synapses

2. Blocking GABA transport abolished stimulation-induced microglial

responses

3. Activated microglia impaired synapse formation and synaptic

GABA release

(119–123)

Glutamate Glutamate could be divided into three types:

NMDAR, AMPARs, mGluRs, co-regulating E/I

balance with GABA, and altering synaptic

plasticity

1. AMPARs and NMDARs function damage could be found in the

depletion of microglia

2. Expression of mGlu1 receptors is increased in the ASD models

3. Microglia expression neuroligins alter glutamate receptor function

leading to the density of excitatory synapses increased, which would

lead to E/I imbalance

(57, 124–132)

BDNF Promoting neuronal survival, growth, and

differentiation, promoting neurotransmitter

releasing, impacting synaptic and structural

plasticity

1. BDNF acting on microglia could increase phosphorylation of

neuronal tropomyosin-related kinase receptor B, mediating

synaptic plasticity

2. BDNF level could be altered by the pro-inflammatory cytokine

expressed by activated microglia

(133–141)

TREM2-

DAP12

Modulating microglia phagocytosis and the overall

fitness of microglia

Expression of TREM2 in microglia decreased the ability of phagocytic

membrane fragments and increased proinflammatory cytokines

(107, 108, 135, 142–

144)

CX3CL1–

CX3CR1

Regulating neurons maturation, promoting

microglia migration and proliferation, recognition

of synapses engulfment, shaping synaptic plasticity

1. In Cx3cr1-deficient mice, decreased LTP could correlate with

synaptic function.

2. In knockout of the Cx3cr1 gene of microglia, it will cause microglia

transient decrease, leading to synaptic pruning defects

(11, 108, 145–149)

C3 and C4 Involving in synaptic pruning Inhibition of C3 or C4 reduces the number of phagocyte microglia and

the degree of early synaptic loss

(150–156)

Glutamate

The underlying process affecting aberrant synaptic plasticity

is that E/I imbalance can be mediated not only by GABA but

also by Glutamate (Glu) (124). Dysregulation of glutamatergic

and dysconnectivity of functional in ASD are arising from

the alterations of glutamatergic and GABAergic which changes

brain functional connectivity and ultimately contribute to

behavioral disabilities (163–165).

There are three main types of glutamate receptors called

n-methyl-d-aspartate receptors (NMDARs), α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid receptors

(AMPARs), and metabotropic glutamate receptors (mGluRs)

(125). NMDARs mediated synaptic overexpression led to

the amplification of postsynaptic plasticity of neurons (126).

Established evidence suggested that activity-dependent

AMPARs insertion and removal from the postsynaptic

membrane played an important role in the long-term plasticity

of excitatory synaptic transmission (127). Much evidence

supported that both NMDARs and AMPARs have been closely

associated with ASD children (128). Moreover, the depletion of

microglia could damage the function activity both in AMPARs

and NMDARs (129).

Decreased glutamate concentrations in the cortical were

linked with the severity of social impairments (125). Nlgn3KO

mice, exhibiting observably autism-like behaviors, have

markedly increased mGlu1 receptor expression in the brain,

which is resulted from mGlu1 receptor blockade (130–132).

RNA-Seq data were indicating that microglia from male MG4E

mice (expressed highly eIF4E) upregulated the expression

of several cytokines (C-X-C motif chemokine 10 (CXCL10),

CXCL16, IL-1β). These cytokines might upregulate microglia

expression neuroligins through post-translational modification,

alter glutamate receptor function, and lead to mEPSCs

amplitude increasing (57). Finally, E/I imbalance was often

affected by an increase in excitatory synaptic function, as well as

an increase in excitatory synapses density (166), which resulted

in autism-like symptoms (57).

BDNF

Brain-derived neurotrophic factor (BDNF) is the major

principal neurotrophic cytokine in the CNS. It contributes to

the development of the prenatal and postnatal brain, which can

not only promote neuronal survival, growth, and differentiation
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FIGURE 1

Roles of microglia in ASD. Exposure to factors during pregnancy, including diet, smoking, toxins, obesity, age, gestational mellitus, allergic

diseases, infections, MIA, and genetic factors, including mutations in PTEN, MECP2, and ATG7, can lead to abnormal microglial function.

Microglia can secrete cytokines (IL-6, IL-17, IL-1β, TNF-α, and BDNF), neurotransmitters (GABA, Glutamate), and complements (C3 and C4), and

activate signaling pathway (TREM2-DAP12 and CX3CL1–CX3CR1). Thus, activated microglia lead to the abnormal development of synapse

formation, synaptic pruning, dendritic spines altering, and neuron migration. This figure was created with BioRender.com.

(167) but also profound impact on synaptic and structural

plasticity (133). The near meta-analysis showed that higher

peripheral BDNF was consistent with several neurological and

psychological theories on the etiology and core manifestations

of ASD (167).

BDNF acting on microglia could increase the

phosphorylation of neuronal tropomyosin-related kinase

receptor B, an important mediator of synaptic plasticity

(134). BDNF is occurred both at presynaptic and postsynaptic

sites, promoting neurotransmitter releasing, promoting the

function of ion-transmitters and NMDARs, and accelerating

the potency NMDARs and ion-transmitters (135). Overall,

BDNF appeared to enhance excitatory synapses and weakened

inhibitory synapses, leading to an imbalance of E/I (45).

Similar conclusions were reached in gene-depleted microglia

BDNF (134).

BDNF was found to be highly expressed in children

with ASD (136), BDNF may lead to increased synthesis of

synaptic proteins associated with autism and participate in the

development of autism (137), which may enhance synaptic

plasticity (138)or increase the density of dendritic spine (139).

Besides, BDNF mRNA levels can be decreased by increased

levels of the pro-inflammatory cytokine IL-1β, which is mainly

expressed by activated microglia (140).

Together, these findings showed a crucial link between

higher BDNF levels in the neurons of people with ASD

(133), inducing synapse formation, altering functional

connectivity and myelination, and modulating behavioral

performance (141).

TREM2–DAP12

DNAX-activating protein of 12 kDa (DAP12) is a signaling

protein expressed by a variety of cells for general function,

which act in immune responses (108). Triggering receptors

expressed on myeloid cells (TREMs) are a family of cell surface
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receptors expressed broadly on myeloid cells, TREM2 stimulates

the protein tyrosine kinase ERK via DAP12, and TREM2-DAP2

is a complex expressed exclusively in microglia in the CNS (142),

sustaining many transcriptional programs (108, 143). TREM2 is

anchored on the surface of microglia and interacts with DAP12

to initiate signal transduction pathways that promote microglia

activation, apoptosis, phagocytosis, and survival. The defective

TREM2-DAP12 function is identified to be involved in the

pathogenesis of ASD (144).

Interestingly, TREM2 is highly expressed in resting

(unstimulated) microglia and downregulated after LPS or

IFN-γ inflammatory stimulation (135). Among the many

complex processes that happened during brain development,

the TREM2-DAP12 axis is critical for maintaining central

nervous system tissue homeostasis by modulating microglia

phagocytosis and the overall fitness of microglia throughout

their life cycle (107). The expression of TREM2 in microglia

decreased the ability of phagocytic membrane fragments

and increased the gene transcription of proinflammatory

cytokines (107). Notably, long-term circuit hyperexcitability

and decreased functional connectivity were observed in Trem2

(KO) mice, which displayed modifications in social behavior

and repetitive behaviors resembling the phenotype of autism in

humans (144).

CX3CL1–CX3CR1

The CX3CL1 (fractalkine)-CX3CR1 signaling pathway is the

most important communication channel between neurons and

microglia. Neurons’ expression of the CX3CL1 and connection

with CX3CR1 expression on the surface of microglia, their

combined interaction plays an important role in regulating

neurons maturation and function (108).

CX3CR1, encoded by the Cx3cr1 gene, is a Gi-protein

coupled receptor that is mainly expressed by microglia in the

CNS (168). CX3CL1 is mainly expressed in neurons, combined

with CX3CR1 (169), and is thought to be a shutdown signal,

maintaining microglia in a resting situation (168, 170). On the

one hand, soluble fractalkine might act to promote microglia

migration into the brain or proliferation during development;

on the other hand, tethered or locally released fractalkine might

be critical for microglia recognition of synapses before or during

engulfment, in which case the density of microglia might be

normal but the efficiency of engulfment might be reduced (11).

In the Cx3cr1-deficient mice, a transient decrease

in microglia density was founded at different stages of

development (Postnatal days 8, 15, 28), which impaired its

ability to phagocytose synaptic material (11). In the mice

hippocampus, altered phagocytosis causes a transient increase

in dendritic spine density and a raising in Psd95 protein

detected in microglial activation (11). Immature connections

enhanced long-term depression (LTD), and impaired function

of excitatory synaptic networks during the development

of the hippocampal, especially the postnatal area, leads to

altered neural function (145). Both young and adult mice

exhibited deficits in social communication and repetitive

behaviors increasing, which were closely linked to decreased

functional connectivity and reduced synaptic transmission in

the CNS (11, 146). CX3CL1 can also affect synaptic plasticity.

For example, upregulation of CX3CL1 expression in the

hippocampus is associated with processes that shape memory-

related synaptic plasticity (147). Yet, a detectable reduction

in long-term potentiation (LTP) correlates with synaptic

function in Cx3cr1-deficient mice (148). In conclusion, once the

microglia-specific Cx3cr1 gene was knocked out, it resulted in a

transient decrease of microglia, defects in synaptic pruning, and

autism-like behavior (146).

The synapses morphogenesis was relying on the signal of

CX3CL1-CX3CR1 induced by microglia (11), and this signaling

is also a key pathway for neuron-microglia interactions (149).

C3 and C4

Microglia play vital roles in eliminating excess synapses

through the process of synapse pruning (150). This process

requires involving of complement, for instance, labeling of

unnecessary synapses with complement 3 (C3), and subsequent

recognition of C3 by microglia C3 receptors (151).

Complement 4 (C4) promotes the activation of C3, making

C3 firmly attached to its target, mediating the phagocytosis of the

labeled target by microglia (152). Therefore, C4 deficiency led to

synaptic elimination aberrant (153). In a complement-focused

study, patients with ASD have significantly higher degrees of

C4B variant deficiency, compared with controls (154), it could

also find that C1q, C3, and C4mRNA levels were visibly reduced

in the prefrontal cortex (155). Inhibition of C1q, C3, or CR3

reduces the number of phagocyte microglia and the degree of

early synaptic loss (156).

Collectively, interactions between complements may affect

synaptic recognition and phagocytosis by microglia. Future

research on C4 risk variants and other complementary systems

is needed to uncover the possible mechanisms for psychiatric

disorders and may provide new ideas for treatment (22).

Conclusion

Taken together, functional mechanisms of microglia

affecting ASD appear to be increasing. Evidence supports a

role for microglia influenced by genetics and environment

is crucial in ASD pathogenesis. According to the similar

pathophysiological characteristics which have been identified

in both neurodegenerative diseases and ASD, we assume

that microglia have irreplaceable roles in shaping neuronal
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connectivity by regulating synaptic plasticity, and E/I balance.

We summarize the essential cytokines and pathways related to

microglia dysfunction which leads to impairments of behaviors.

Suggested microglia are essential for neurodevelopment

in ASD, far beyond current research understanding

(Figure 1). We believe that exploring the mechanisms of

action of microglia in ASD is critical for future prevention

and treatment.
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